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We will discuss the geometry of random and non random planar
graphs and its manifestation in the behaviour of a simple random
walk.

A random walk on the vertices of a graph is called simple if the
next step is chosen uniformly among the neighbors of the current
position.
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Harmonic functions

Recall, a function h from the vertices of a graph to R is harmonic,
if for every vertex,

h(v) = 1/dv

∑
u∼v

h(u).



Harmonic functions
Assume G is an infinite bounded degree transient planar graph,
then G admits non constant bounded harmonic functions.

The proof with Oded Schramm, almost twenty years ago, uses a
discrete uniformization via an infinite version of the square tiling of
Brooks, Smith, Stone and Tutte (1940). Note the contrast
between transient trees and the 3 dimensional grid.
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Harmonic functions

With Oded we conjectured that for transient, bounded degree
planar graphs with one end, the boundary of the tiling above, is a
realization of the Poisson boundary.
That is, any bounded harmonic function is realized as a solution to
the Dirichlet problem with respect to a bounded measurable
function on the boundary, and uniquely absorbing means having
one transient end.

Theorem (Agelos Georgakopoulos (2013) )

The conjecture is true.
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Harmonic functions

Omer Angel, Martin Barlow, Ori Gurel-Gurevich and Asaf
Nachmias, announced analogous results for circle packing
uniformization, for which many questions regarding the harmonic
measure are still open.

With Agelos and Nicolas Curien, we showed (2012) that if a planar
graph admits no non-constant bounded harmonic functions then
the trajectories of two independent simple random walks intersect
almost surely. Unlike in Zd , d > 4.
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Isoperimetric dichotomy

Let

i(G ) = inf
0<|S|<∞

|∂S |
|S | .

An infinite graph G with i(G ) > 0 is called non-amenable.
Otherwise it is called amenable.

See Brian Bowditch (95) for a short proof of the fact (suggested
by Gromov) that infinite planar graphs are either non-amenable or
there is C <∞ and arbitrarily large sets, S , with boundary ∂S of
size smaller than C |S |1/2.
Thus e.g. the 3 dimensional grid is not planar.
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Speed dichotomy

By Markov type theory developed recently in Ball–Naor, Peres,
Sheffield and Schramm –Ding, Lee and Peres:

Theorem
The simple random walk on an infinite planar graph is either
ballistic or there is C <∞ so that for any time t, there is a
starting vertex v, so that

E (dist(Xt , v)) < Ct1/2 log t.

Where Xt is a random walk starting at v .



Some perspective: Speed in vertex transitive graphs

A graph is vertex transitive if for any pair of vertices there is an
isometry of the graph mapping one to the other.

Anna Erschler proved that on infinite vertex transitive graphs the
simple random walk is at least diffusive and constructed examples
(lamplighter graphs) where dist(o,Xn) � nα where X (n) denotes
the simple random walk starting at o for α = 1− 2−n for all n.

Gidi Amir and Balint Virag constructed examples for any α ≥ 3/4.
It is still open to construct examples with 1/2 < α < 3/4.
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Uniform growth

A graph admits uniform volume growth f , if there is 1 ≤ C <∞,
all balls of radius r has volume between (1/C )f (r) and Cf (r).

Try to imagine a planar triangulation with uniform polynomial
volume growth of balls which is faster than quadratic.
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Uniform growth, an example



Cuts in planar graphs

Theorem (with Panos Papasoglu )

Let G be a planar graph such that |B(v , 2n)| < C |B(u, n)| for
some constant C > 0 for any two balls. Then for every vertex v of
G and integer n, there is a domain Ω such that B(v , n) ⊂ Ω,
Ω ⊂ B(v , 6n) and the size of the boundary of Ω is at most order n.

That is, for a volume doubling planar graphs even with polynomial
growth faster than quadratic there are still linear cuts, unlike say
the 3 dimensional grid.
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Cuts in planar graphs

This suggests that, a volume doubling planar graphs even with
polynomial growth faster than quadratic, has a fractal structure of
cactus like folds at all scales, in order to account for the volume
together with the small cuts as seen from every point.

The facts above suggest heuristically that volume is generated by
large fractal mushrooms, and that the complements of balls have
many connected components.
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Subdiffusive

Assume G planar and has uniform polynomial volume growth rβ

with β > 2.

Conjecture

The simple random walk spends a long time in such traps and
hence is subdiffusive (that is, dist(o,Xn) � nα where X (n) denotes
the simple random walk starting at o and α < 1/2) ?

Note that no such small cuts in the context of vertex transitive
graphs.
E.g. Aldous proved that for any finite vertex transitive graph the
isoperimetric constant is at least order 1

diameter .
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Subdiffusive

We know one example supporting the conjecture, Angel and
Schramm’s Uniform infinite planar quadrangulation.
For the UIPQ, which has asymptotic volume growth r4,
subdiffusivity holds. The proof (with Nicolas Curien) uses spatial
Markovity, to get an upper bound of 1/3, conjecturally the
exponent is 1/4.
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The uniform infinite planar quadrangulation



Limits

A limit of finite graphs Gn is a random rooted infinite graph (G , ρ)
with the property that neighborhoods of Gn around a random
vertex converge in distribution to neighborhoods of G around ρ.

Formally, let (G , o) and (G1, o1), (G2, o2), . . . be random
connected rooted locally finite graphs. We say that (G , o) is the
limit of (Gj , oj) as j →∞ if for every r > 0 and for every finite
rooted graph (H, o ′), the probability that (H, o ′) is isomorphic to a
ball of radius r in Gj centered at oj converges to the probability
that (H, o ′) is isomorphic to a ball of radius r in G centered at o.



Limits

Exercise: What is the limit of n-levels full binary trees?
Hint: A random uniform vertex in the n-levels full binary, is near
the leaves.



Limits

Exercise: What is the limit of n-levels full binary trees?
Hint: A random uniform vertex in the n-levels full binary, is near
the leaves.



Limits

Exercise: What is the limit of n-levels full binary trees?
Hint: A random uniform vertex in the n-levels full binary, is near
the leaves.



The limit of the n-levels full binary tree is the canopy tree,
consisting of half line N with a binary tree of height n rooted at n
and the root is on the line with geometric(1/2) distance to 0.

This example illustrates the following: With Oded Schramm we
proved (2001) that limits of bounded degree finite planar graphs
are a.s. recurrent for the simple random walk.

The proof uses circle packing and the fact that near a random
point the circle packing ”looks” as if it has at most one
accumulation point.
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UIPT

Angel and Schramm constructed the uniform infinite planar
triangulation (UIPT), a rooted infinite random triangulation which
is the limit (in the sense above) of finite random triangulations:
the uniform measure on all nonisomorphic triangulations of the
sphere of size n.
The UIPQ is a similar construction with quadrangulation, due to
Krikun and Chassaing.



UIPT

The UIPT/Q looks very different from random perturbations of the
plane as in the Poisson-Voronoi triangulation and has a rather
surprising geometry at first encounter, e.g. volume growth of balls
in the UIPT is asymptotically r4.
The UIPT is recurrent for the simple random walk (Gurel-Gurevich
and Nachmias (2012)).



UIPQ

Le Gall and Miermont (2011) proved that the random
triangulations scaled Gromov-Hausdorff converge to a random
compact metric space of dimension 4. This limiting surface called
the Brownian map can be seen as the two-dimensional sphere
equipped with a random metric which induces the usual topology
but makes it a fractal space of Hausdorff dimension 4.
It is of interest to obtain quantitative estimates on the rate of
convergence as in the Hungarian coupling of random walks and
Brownian motion.



UIPQ



UIPQ

A glimpse of the conformal structure of
random planar maps

Nicolas Curien⇤

Abstract

We present a way to study the conformal structure of random planar maps. The main idea is
to explore the map along an SLE (Schramm-Loewner evolution) process of parameter  = 6 and
to combine the locality property of the SLE6 together with the spatial Markov property of the
underlying lattice in order to get a non-trivial geometric information. We follow this path in the
case of the conformal structure of the boundary of half-planar random planar triangulations.

Under a reasonable technical assumption that we have unfortunately not been able to verify, we
prove that the conformal uniformization of random planar maps has a fractal boundary measure of
Hausdor↵ dimension 1

3 almost surely. This agrees with the physics KPZ predictions and represents
a first step towards a rigorous understanding of the links between random planar maps and the
Gaussian free field (GFF). Several conjectures related to the SLE6 and the GFF are presented at
the end of the paper.

AMS subject classifications:

Keywords: Random planar maps, conformal geometry, SLE processes, quantum gravity.

“uniformization”������������!

Figure 1: A random triangulation embedded not isometrically in R3 and an approximation of its
uniformization on the two-dimensional sphere.

⇤CNRS & Université Paris 6, E-mail: nicolas.curien@gmail.com
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UIPQ

Oded Schramm and Bill Thurston considered circle packing
uniformization of large random quadrangulations.

Uniformization of large random quadrangulations, conjecturally
converge to exponential of the Gaussian free field.
Progress, due among others to Krikun, Duplantier and Sheffield
and Curien.
Further establish the KPZ relation
(Knizhnik-Polyakov-Zamolodchikov) between random and
Euclidean geometries.
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Limits of triangulations with no genus restriction

Guth, Parlier and Young (2010) studied pants decomposition of
random closed surfaces obtained by randomly gluing N Euclidean
triangles (with unit side length) together.

Their work indicates that the injectivity radius around a typical
point is growing to infinity. That is, the growing neighborhoods
around a random vertex are simply connected.

Gamburd and Makover (2002) showed that as N grows the genus
will converge to N/4 and by Euler’s characteristic the average
degree will grow to infinity.
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Limits of triangulations with linear genus

Take a uniform measure on triangulations with N triangles
conditioned on the genus to be CN for some fixed C < 1/4 and a
uniformly chosen root.

We conjecture that as N grows, this random surface converges to
a rooted random triangulation of the hyperbolic plane with average
degree 6/(1− 4C ).

In particular we believe that the local injectivity radius around a
typical vertex will go to infinity on such a surface as N grows.
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Scaling limits

There is growing interest in establishing a rigorous theory of two
dimensional continuum quantum gravity. Heuristically, quantum
gravity is a metric chosen on the sphere uniformly among all
possible metrics. Although there are successful discrete
mathematical quantum gravity models, we do not yet have a
satisfactory continuum definition of a planar random length metric
space (rather than random measure).



Random subdivisions

One possible toy model is to start with a unit square divide it four
squares and now recursively at each stage pick a square uniformly
at random from the current squares (ignoring their sizes) and
divide it to four squares and so on.



Random subdivisions

Look at the minimal number of squares needed in order to connect
the bottom left and top right corner with a connected set of
squares.

It is conjectured that there is a deterministic scaling function, such
that after dividing the random minimal number of squares needed
after n subdivisions by it, the result is a non degenerate random
variable. Establishing the conjecture will provide a random planar
length metric space.

Question
Does geodesic stabilize, as we further divide?



Random subdivisions

Look at the minimal number of squares needed in order to connect
the bottom left and top right corner with a connected set of
squares.

It is conjectured that there is a deterministic scaling function, such
that after dividing the random minimal number of squares needed
after n subdivisions by it, the result is a non degenerate random
variable. Establishing the conjecture will provide a random planar
length metric space.

Question
Does geodesic stabilize, as we further divide?



Random subdivisions

Look at the minimal number of squares needed in order to connect
the bottom left and top right corner with a connected set of
squares.

It is conjectured that there is a deterministic scaling function, such
that after dividing the random minimal number of squares needed
after n subdivisions by it, the result is a non degenerate random
variable. Establishing the conjecture will provide a random planar
length metric space.

Question
Does geodesic stabilize, as we further divide?



Random subdivisions

Very recently Mikhail Khristoforov , Victor Kleptsyn and Michele
Triestino, established existence of scaling limit in simpler random
geometric set up. They were able to construct a random metric on
the fractal objects that are the limit on finite graphs: this is an
intermediate difficulty problem, since contrary to an interval, the
number of possible geodesic paths joining any two points is infinite,
but still it saves some peculiarity of the one-dimensional world.



Generalization of planarity

Excluded minor, Separation, Packability.



Generalization of planarity

Question
Which graphs can be realized as the nerve graph of a sphere
packing in Euclidean d-dimensional space?

Where vertices correspond to spheres with disjoint interiors and
edges to tangent spheres.



Packing

Theorem (with Oded Schramm)

The grid Z4, T3 × Z and lattices in hyperbolic 4-space cannot be
sphere packed in Euclidean R3.

The proof is an adaptation of the result above, that bounded
degree transient planar graph admits non constant harmonic
functions, to p-potential theory.
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Packing

The following is an extension to higher dimension of the theorem
of Bowditch.

Theorem (with Nicolas Curien)

Let G be an infinite locally finite connected graph which admits a
regular packing in Rd . Then we have the following alternative:
either G has a positive Cheeger constant, or there are arbitrarily

large subsets S of G such that |∂S | < |S | d−1
d

+o(1).

The proof uses sparse graphs limits: Local limits of bounded
degree finite planar graphs are a.s. recurrent for the simple random
walk, adapt the proof to show that local limit of finite graphs that
are regularly packed in Rd , are d-parabolic, which is the key to
results above.
We conjecture an analogous speed dichotomy here as well.
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