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What is spatial equilibrium? How long does it take to reach

spatial equilibrium?

Simplest model: N point billiards move in a cube container

[0; 1]3.

Let

Y = (y1;y2; : : : ;yN )

denote the initial point con�guration, and let

M = (�1; �2; : : : ; �N )

be the corresponding mass distribution.



For convenience, assume that the average mass is 1:

1

N

NX
k=1

�k = 1; or equivalently;
NX

k=1

�k = N :

An important special case is 1 = �1 = �2 = : : : = �N .

The trick of Unfolding reduces the cube to the torus:





Unfolding of the billiard path in the d-dimensional unit cube

[0; 1]d can be de�ned in the analog way. Formally, unfolding

means the map

2kx=2k ! fxg applied to each coordinate;

where 0 � fxg < 1 denotes the fractional part of a positive real

x ,

and kxk is the distance of x from the nearest integer.



S

=

S1 S2

S4 S3



Let

R = (r1(t); r2(t); : : : ; rN (t))

be a family of N continuous recti�able parametrized space

curves with rk (0) = 0.



General Torus Model:

the trajectory of the kth point particle is

yk + #k (�kr(t)) modulo one : 1 � k � N ;

where the initial velocity space is either the �rst type

(Maxwellian distribution)

! = (�1; #1; �2; #2; : : : ; �N ; #N ) 2 
1 = ([0;1)� SO(3))N

equipped with the product measure, where [0;1) has the
probability measure

Pr[�j � u ] =

s
2

�

Z u

0
y2e�y2=2 dy ;



or the second type

! = (#1; #2; : : : ; #N ) 2 
2 = (SO(3))N

(i.e., 1 = �1 = �2 = : : : = �N ), or the third type

! = (�1; #1; �2; #2; : : : ; �N ; #N ) 2 
3 = ([0; 1]� SO(3))N

with

Pr[�k � u ] = 3

Z u

0
y2 dy = u3 for 0 � y � 1; and 1 for u � 1:



Metatheorem:

Consider a general 3-dimensional N -particle torus model with

initial point con�guration (Y;M) where each point particle has

the same space curve

r = r1(t) = r2(t) = : : : = rN (t):

Then the typical time evolution of the system (representing the

majority of ! 2 
i , i = 1; 2; 3) is described by the negative

entropy



Negentropyi (t) = Negentropyi (Y;M; r; t);

where

Negentropy1(Y;M; r; t) =

= max
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for the �rst type (Maxwellian initial velocity distribution),



Negentropy2(Y;M; r; t) =
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for the second type, and �nally,
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for the third type.



Negentropy2(Y;M; r; t) =

= max
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for the second type, and �nally,

Negentropy3(Y;M; r; t) =

= max
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for the third type.



The function Negentropyi (t) = Negentropyi (Y;M; r; t)
describes the total �order� (microscopic and macroscopic) for

the typical time evolution of the system, starting from

(Y;M; r), at time t .



The function Negentropyi (t) = Negentropyi (Y;M; r; t) is
monotone decreasing in terms of the drifting distance jr(t)j; the
function Negentropyi (t) is N

2 at the start t = 0, and the

system reaches Average Square-Root Equilibrium when

Negentropyi (t) attains its minimum
P

k=1 �
2
k (which is N if

every mass �k is one).

We have similar formulas in every dimension.



For a given initial condition (Y;M;R;!), let
N (Y;M;R;!;S ; t) denote the mass-counting function in a

given test set S at time t :

MassCounting = N (Y;M;R;!;S ; t) =
X

1�k�N :
xk (t)2S

�k ;

where xk (t) = yk + #k (�krk (t)) modulo one is the trajectory of

the kth particle.



In general, for an arbitrary complex valued Lebesgue square

integrable (in the unit torus) test function f 2 L2, we write

N (Y;M;R;!; f ; t) =
X

1�k�N

f (xk (t))�k :

Let

�2
0(f ) =

Z
I 3

����f �
Z
I 3
f dV

����2 dV =

Z
I 3
jf j2 dV �

����
Z
I 3
f dV

����2

denote the �variance� of the given test function f .



Uniformity means

N (Y;M;R;!; f ; t) � N

Z
I 3
f dV ;

where I 3 is the 3-dimensional unit torus (N =
PN

k=1 �k is the

total mass, and V indicates volume). So we study the

discrepancy

N (Y;M;R;!; f ; t)�N

Z
I 3
f dV :

What we actually study is the square of the discrepancy:

H(Y;M;R;!; f ; t) =

����N (Y;M;R;!; f ; t)�N

Z
I 3
f dV

����2 :



De�nition

We study the time evolution of an N -element torus model of

the �rst type (Y;M;R;!), ! 2 
1. We say that the system is

in Square-Root Equilibrium with parameters 0 < " < 1 and

C <1 at time t , if for every square-integrable test function

f 2 L2 there exists a subset 
1("; f ) � 
1 of the initial velocity

space with measure at least 1� " such that, for every

! 2 
1("; f )

H(Y;M;R;!; f ; t) � C � �2
0(f )

NX
k=1

�2
k :

The term �2
0(f )

PN
k=1 �

2
k represents �randomness�

(=�equilibrium�).



We emphasize that Square-Root Equilibrium is not the only

important equilibrium concept: see Utmost Equilibrium.

Utmost Equilibrium is about uniformity in the

high-dimensional con�guration space, and Square-Root

Equilibrium is about uniformity in the cubic container

(containing the point particles).

When the system reaches Utmost Equilibrium, it exhibits

full-blown randomness!



We take average over the concrete initial velocity space 
1:

H1(Y;M;R; f ; t) =

Z

1

H(Y;M;R;!; f ; t) d!:

We call it the Big Square-Error of the �rst type (relative to f );

it is the big quadratic average of the discrepancy with respect

to the given square integrable test function f 2 L2 at time t ,

assuming the given initial point con�guration Y with mass

distribution M.



Since the torus I 3 is translation invariant, any translated copy

S +w (mod 1), w 2 R3 is just as good of a test set as S itself.

In general, any translation of f by w modulo one is just as good:

fw(x) = f (x�w):

Let

AH(Y;M;R;!; f ; t) =

Z
I 3
H(Y;M;R;!; fw; t) dw =

=

Z
I 3

����N (Y;M;R;!; fw; t)�N

Z
I 3
f dV

����2 dw



De�nition

Again we study the time evolution of an N -element torus

model of the �rst type (Y;M;R;!), ! 2 
1. We say that the

system is in Average Square-Root Equilibrium with parameters

0 < " < 1 and C <1 at time t , if for every square-integrable

test function f 2 L2 there exists a subset 
1("; f ) � 
1 of the

initial velocity space with measure at least 1� " such that, for

every ! 2 
1("; f )

AH(Y;M;R;!; f ; t) � C � �2
0(f )

NX
k=1

�2
k :


