What is Geometric Entropy, and does it really increase?

József Beck

Rutgers

Wednesday, July $3^{\text {rd }} 2013$.

What is spatial equilibrium? How long does it take to reach spatial equilibrium?

Simplest model: N point billiards move in a cube container $[0,1]^{3}$.

Let

$$
\mathcal{Y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathrm{y}_{N}\right)
$$

denote the initial point configuration, and let

$$
\mathcal{M}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)
$$

be the corresponding mass distribution.

For convenience, assume that the average mass is 1 :

$$
\frac{1}{N} \sum_{k=1}^{N} \mu_{k}=1, \quad \text { or equivalently, } \quad \sum_{k=1}^{N} \mu_{k}=N
$$

An important special case is $1=\mu_{1}=\mu_{2}=\ldots=\mu_{N}$.

The trick of Unfolding reduces the cube to the torus:

Unfolding of the billiard path in the d-dimensional unit cube
$[0,1]^{d}$ can be defined in the analog way. Formally, unfolding means the map

$$
2\|x / 2\| \rightarrow\{x\} \text { applied to each coordinate, }
$$

where $0 \leq\{x\}<1$ denotes the fractional part of a positive real x,
and $\|x\|$ is the distance of x from the nearest integer.

Let

$$
\mathcal{R}=\left(\mathbf{r}_{1}(t), \mathbf{r}_{2}(t), \ldots, \mathbf{r}_{N}(t)\right)
$$

be a family of N continuous rectifiable parametrized space curves with $\mathbf{r}_{k}(0)=\mathbf{0}$.

General Torus Model:

the trajectory of the k th point particle is

$$
\mathbf{y}_{k}+\vartheta_{k}\left(\rho_{k} \mathbf{r}(t)\right) \text { modulo one : } 1 \leq k \leq N
$$

where the initial velocity space is either the first type (Maxwellian distribution)

$$
\omega=\left(\rho_{1}, \vartheta_{1}, \rho_{2}, \vartheta_{2}, \ldots, \rho_{N}, \vartheta_{N}\right) \in \Omega_{1}=([0, \infty) \times S O(3))^{N}
$$

equipped with the product measure, where $[0, \infty)$ has the probability measure

$$
\operatorname{Pr}\left[\rho_{j} \leq u\right]=\sqrt{\frac{2}{\pi}} \int_{0}^{u} y^{2} e^{-y^{2} / 2} d y
$$

or the second type

$$
\omega=\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{N}\right) \in \Omega_{2}=(S O(3))^{N}
$$

(i.e., $1=\rho_{1}=\rho_{2}=\ldots=\rho_{N}$), or the third type

$$
\omega=\left(\rho_{1}, \vartheta_{1}, \rho_{2}, \vartheta_{2}, \ldots, \rho_{N}, \vartheta_{N}\right) \in \Omega_{3}=([0,1] \times S O(3))^{N}
$$

with

$$
\operatorname{Pr}\left[\rho_{k} \leq u\right]=3 \int_{0}^{u} y^{2} d y=u^{3} \text { for } 0 \leq y \leq 1, \text { and } 1 \text { for } u \geq 1
$$

Metatheorem:

Consider a general 3-dimensional N-particle torus model with initial point configuration $(\mathcal{Y}, \mathcal{M})$ where each point particle has the same space curve

$$
\mathbf{r}=\mathbf{r}_{1}(t)=\mathbf{r}_{2}(t)=\ldots=\mathbf{r}_{N}(t)
$$

Then the typical time evolution of the system (representing the majority of $\omega \in \Omega_{i}, i=1,2,3$) is described by the negative entropy

$$
\operatorname{Negentropy}_{i}(t)=\operatorname{Negentropy}_{i}(\mathcal{Y}, \mathcal{M} ; \mathbf{r} ; t)
$$

where
$\operatorname{Negentropy}_{1}(\mathcal{Y}, \mathcal{M} ; \mathbf{r} ; t)=$
$=\max \left\{\sup _{\mathbf{n} \in \mathbb{Z}^{d} \backslash \mathbf{0}}\left|\sum_{k=1}^{N} \mu_{k} e^{2 \pi \mathbf{i n} \cdot \mathbf{y}_{k}}\right|^{2} \exp \left(-(2 \pi|\mathbf{r}(t)||\mathbf{n}|)^{2}\right), \sum_{k=1}^{N} \mu_{k}^{2}\right\}$
for the first type (Maxwellian initial velocity distribution),
$\operatorname{Negentropy}_{2}(\mathcal{Y}, \mathcal{M} ; \mathbf{r} ; t)=$
$=\max \left\{\sup _{\mathbf{n} \in \mathbb{Z}^{3} \backslash \mathbf{0}}\left|\sum_{k=1}^{N} \mu_{k} e^{2 \pi \mathrm{in} \cdot \mathbf{y}_{k}}\right|^{2} \min \left\{\frac{1}{20(2 \pi|\mathbf{r}(t)||\mathbf{n}|)^{2}}, 1\right\}, \sum_{k=1}^{N} \mu_{k}^{2}\right\}$
for the second type, and finally,
$\operatorname{Negentropy}_{2}(\mathcal{Y}, \mathcal{M} ; \mathbf{r} ; t)=$
$=\max \left\{\sup _{\mathbf{n} \in \mathbb{Z}^{3} \backslash \mathbf{0}}\left|\sum_{k=1}^{N} \mu_{k} e^{2 \pi \mathrm{in} \cdot \mathbf{y}_{k}}\right|^{2} \min \left\{\frac{1}{20(2 \pi|\mathbf{r}(t)||\mathbf{n}|)^{2}}, 1\right\}, \sum_{k=1}^{N} \mu_{k}^{2}\right\}$
for the second type, and finally,
$\operatorname{Negentropy}_{3}(\mathcal{Y}, \mathcal{M} ; \mathbf{r} ; t)=$
$=\max \left\{\sup _{\mathbf{n} \in \mathbb{Z}^{3} \backslash \mathbf{0}}\left|\sum_{k=1}^{N} \mu_{k} e^{2 \pi \mathbf{i n} \cdot \mathbf{y}_{k}}\right|^{2} \min \left\{\frac{1}{2(2 \pi|\mathbf{r}(t)||\mathbf{n}|)^{4}}, 1\right\}, \sum_{k=1} \mu_{k}^{2}\right\}$
for the third type.

The function Negentropy $_{i}(t)=$ Negentropy $_{i}(\mathcal{Y}, \mathcal{M} ; \mathbf{r} ; t)$ describes the total "order" (microscopic and macroscopic) for the typical time evolution of the system, starting from $(\mathcal{Y}, \mathcal{M} ; \mathbf{r})$, at time t.

The function Negentropy $_{i}(t)=$ Negentropy $_{i}(\mathcal{Y}, \mathcal{M} ; \mathbf{r} ; t)$ is monotone decreasing in terms of the drifting distance $|\mathbf{r}(t)|$; the function $\operatorname{Negentropy}_{i}(t)$ is N^{2} at the start $t=0$, and the system reaches Average Square-Root Equilibrium when Negentropy $_{i}(t)$ attains its minimum $\sum_{k=1} \mu_{k}^{2}$ (which is N if every mass μ_{k} is one).

We have similar formulas in every dimension.

For a given initial condition $(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega)$, let $N(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; S ; t)$ denote the mass-counting function in a given test set S at time t :

$$
\text { MassCounting }=N(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; S ; t)=\sum_{\substack{1 \leq k \leq N: \\ \mathbf{x}_{k}(t) \in S}} \mu_{k},
$$

where $\mathbf{x}_{k}(t)=\mathbf{y}_{k}+\vartheta_{k}\left(\rho_{k} \mathbf{r}_{k}(t)\right)$ modulo one is the trajectory of the k th particle.

In general, for an arbitrary complex valued Lebesgue square integrable (in the unit torus) test function $f \in L^{2}$, we write

$$
N(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t)=\sum_{1 \leq k \leq N} f\left(\mathrm{x}_{k}(t)\right) \mu_{k}
$$

Let

$$
\sigma_{0}^{2}(f)=\int_{I^{3}}\left|f-\int_{I^{3}} f d V\right|^{2} d V=\int_{I^{3}}|f|^{2} d V-\left|\int_{I^{3}} f d V\right|^{2}
$$

denote the "variance" of the given test function f.

Uniformity means

$$
N(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t) \approx N \int_{I^{3}} f d V
$$

where I^{3} is the 3-dimensional unit torus ($N=\sum_{k=1}^{N} \mu_{k}$ is the total mass, and V indicates volume). So we study the discrepancy

$$
N(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t)-N \int_{I^{3}} f d V
$$

What we actually study is the square of the discrepancy:

$$
\mathbf{H}(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t)=\left|N(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t)-N \int_{I^{3}} f d V\right|^{2}
$$

Definition

We study the time evolution of an N-element torus model of the first type $(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega), \omega \in \Omega_{1}$. We say that the system is in Square-Root Equilibrium with parameters $0<\varepsilon<1$ and $C<\infty$ at time t, if for every square-integrable test function $f \in L^{2}$ there exists a subset $\Omega_{1}(\varepsilon ; f) \subset \Omega_{1}$ of the initial velocity space with measure at least $1-\varepsilon$ such that, for every
$\omega \in \Omega_{1}(\varepsilon ; f)$

$$
\mathbf{H}(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t) \leq C \cdot \sigma_{0}^{2}(f) \sum_{k=1}^{N} \mu_{k}^{2}
$$

The term $\sigma_{0}^{2}(f) \sum_{k=1}^{N} \mu_{k}^{2}$ represents "randomness" (="equilibrium").

We emphasize that Square-Root Equilibrium is not the only important equilibrium concept: see Utmost Equilibrium.

Utmost Equilibrium is about uniformity in the high-dimensional configuration space, and Square-Root Equilibrium is about uniformity in the cubic container (containing the point particles).

When the system reaches Utmost Equilibrium, it exhibits full-blown randomness!

We take average over the concrete initial velocity space Ω_{1} :

$$
\mathbf{H}_{1}(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; f ; t)=\int_{\Omega_{1}} \mathbf{H}(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t) d \omega
$$

We call it the Big Square-Error of the first type (relative to f); it is the big quadratic average of the discrepancy with respect to the given square integrable test function $f \in L^{2}$ at time t, assuming the given initial point configuration \mathcal{Y} with mass distribution \mathcal{M}.

Since the torus I^{3} is translation invariant, any translated copy $S+\mathrm{w}(\bmod 1), \mathrm{w} \in \mathbb{R}^{3}$ is just as good of a test set as S itself. In general, any translation of f by w modulo one is just as good:

$$
f_{\mathrm{w}}(\mathrm{x})=f(\mathrm{x}-\mathrm{w})
$$

Let

$$
\begin{gathered}
\mathbf{A} \mathbf{H}(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t)=\int_{I^{3}} \mathbf{H}\left(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f_{\mathrm{w}} ; t\right) d \mathbf{w}= \\
\quad=\int_{I^{3}}\left|N\left(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f_{\mathrm{w}} ; t\right)-N \int_{I^{3}} f d V\right|^{2} d \mathbf{w}
\end{gathered}
$$

Definition

Again we study the time evolution of an N-element torus model of the first type $(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega), \omega \in \Omega_{1}$. We say that the system is in Average Square-Root Equilibrium with parameters $0<\varepsilon<1$ and $C<\infty$ at time t, if for every square-integrable test function $f \in L^{2}$ there exists a subset $\Omega_{1}(\varepsilon ; f) \subset \Omega_{1}$ of the initial velocity space with measure at least $1-\varepsilon$ such that, for every $\omega \in \Omega_{1}(\varepsilon ; f)$

$$
\mathbf{A H}(\mathcal{Y}, \mathcal{M} ; \mathcal{R} ; \omega ; f ; t) \leq C \cdot \sigma_{0}^{2}(f) \sum_{k=1}^{N} \mu_{k}^{2}
$$

