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What is spatial equilibrium? How long does it take to reach
spatial equilibrium?

Simplest model: N point billiards move in a cube container
[0, 1]3.

Let
Y= (Y17y2:"'7yN)

denote the initial point configuration, and let

M:(,LL]_,,UQ,...,,U.N)

be the corresponding mass distribution.



For convenience, assume that the average mass is 1:

1N N
N Z wr = 1, or equivalently, Z ur = N.
k=1 k=1

An important special case is 1 = 1 = o = ... = Un.

The trick of Unfolding reduces the cube to the torus:






Unfolding of the billiard path in the d-dimensional unit cube

[0,1]% can be defined in the analog way. Formally, unfolding
means the map

2||z/2|| — {z} applied to each coordinate,

where 0 < {z} < 1 denotes the fractional part of a positive real
x’

and ||z|| is the distance of z from the nearest integer.



N




Let
R = (r1(t),r2(t),...,rn(1))

be a family of N continuous rectifiable parametrized space
curves with rg(0) = 0.



General Torus Model:

the trajectory of the kth point particle is
vk + Pk(prr(t)) modulo one: 1<k <N,

where the initial velocity space is either the first type
(Maxwellian distribution)

w= (p11017p21'027"'7pN7'0N) € Q1 = ([0,00) X SO(3))N

equipped with the product measure, where [0, 00) has the
probability measure

2 u
Prlp; < u] = \ﬁ/o y?e vV'/2dy,



or the second type
w=(81,,...,9%x5) € Qs = (SO3))"
(ie., 1 =p; = ps =...= py), or the third type
w = (p1,%1,p2,%2,...,pn,9n) € Q3 = ([0,1] x SO(3))"
with

u
Pr[pkgu]:3/ y?dy =u® for 0<y <1, and 1 for v > 1.
0



Metatheorem:

Consider a general 3-dimensional N-particle torus model with
initial point configuration (), M) where each point particle has
the same space curve

r=ri(t) =ro(t) =... = rn(t).

Then the typical time evolution of the system (representing the
majority of w € Q;, ¢ = 1,2, 3) is described by the negative
entropy



Negentropy,(¢) = Negentropy, (Y, M;r; t),

where
Negentropy, (Y, M;r; t) =

2
:max{ sup Zuke2mny’° exp( (2m|x(2)] [n]) ) Z/J'k}
nezZ4\0

k=1
for the first type (Maxwellian initial velocity distribution),




Negentropy,(Y, M;r; t) =

2
e @ ) Z“’f}

N

Z bre
k=1

2min-yg

=max<{ sup
neZ3\0

for the second type, and finally,



Negentropy,(Y, M;r; t) =

2
e @ ) Z“’f}

N

Z bre
k=1

2min-yg

= max< sup
neZ3\0
for the second type, and finally,

Negentropys (Y, M;r; t) =

e s S ”’“}

N 2

Z bre
k=1

2min-yg

= max{ sup
neZ3\0

for the third type.



The function Negentropy,(¢) = Negentropy,(), M;r;t)
describes the total “order” (microscopic and macroscopic) for
the typical time evolution of the system, starting from

(Y, M;r), at time ¢.



The function Negentropy,(¢) = Negentropy,(Y, M;r; t) is
monotone decreasing in terms of the drifting distance |r(¢)|; the
function Negentropy,(t) is N2 at the start ¢ = 0, and the
system reaches Average Square-Root Equilibrium when
Negentropy,(¢) attains its minimum Y ,_; p2 (which is NV if
every mass py is one).

We have similar formulas in every dimension.



For a given initial condition (Y, M;R;w), let
N(Y, M;R;w; S;t) denote the mass-counting function in a
given test set S at time ¢:

MassCounting = N(Y, M; R;w; S;t) = >,
1<k<N:
xx(t)eS

where xx(t) = yx + Px(pxrx(t)) modulo one is the trajectory of
the kth particle.



In general, for an arbitrary complex valued Lebesgue square
integrable (in the unit torus) test function f € L?, we write

N, M Rw;fit) = > flxu(t

1<k<N

Uo(f)

/de dV = /\f\de ‘/de

denote the “variance” of the given test function f.




Uniformity means
N, MiRiwifit) » N [ £V,
I

where I° is the 3-dimensional unit torus (N = Y_, uy is the
total mass, and V indicates volume). So we study the
discrepancy

N, M;R;w; f;t) — N/ fav.
I3

What we actually study is the square of the discrepancy:

2
H(Y, M;R,w; f;t) = ‘N(y,M;’R;w;f;t) —N/ fav
13




Definition

We study the time evolution of an N-element torus model of
the first type (Y, M; R;w), w € Q1. We say that the system is
in Square-Root Equilibrium with parameters 0 < € < 1 and

C < oo at time ¢, if for every square-integrable test function

f € L? there exists a subset Qi (g;f) C Q1 of the initial velocity
space with measure at least 1 — ¢ such that, for every

w € Qe f)

N
H(Y, M; R;w; f;t) < C-a3(f) Y wi-
k=1

The term o3(f) S8, 43 represents “randomness”
(=“equilibrium”).



We emphasize that Square-Root Equilibrium is not the only
important equilibrium concept: see Utmost Equilibrium.

Utmost Equilibrium is about uniformity in the
high-dimensional configuration space, and Square-Root
Equilibrium is about uniformity in the cubic container
(containing the point particles).

When the system reaches Utmost Equilibrium, it exhibits
full-blown randomness!



We take average over the concrete initial velocity space Q:

Hi(Y, M;R; fit) = | HOMRjw;f;t) dw.
Q
We call it the Big Square-Error of the first type (relative to f);
it is the big quadratic average of the discrepancy with respect
to the given square integrable test function f € L? at time ¢,

assuming the given initial point configuration ) with mass
distribution M.



Since the torus I® is translation invariant, any translated copy
S +w (mod 1), w € R3 is just as good of a test set as S itself.
In general, any translation of f by w modulo one is just as good:

fulX) = F(x —w).
Let

AH()J,M;R;w;f;t):/ H(Y, M; R, w; fw; t) dw =
I3

2

:/IS

N, MiR;wifuit) = N [ fav| dw
I




Definition

Again we study the time evolution of an N-element torus
model of the first type (¥, M; R;w), w € Q;. We say that the
system is in Average Square-Root Equilibrium with parameters
0 <e<land C < oo at time ¢, if for every square-integrable
test function f € L? there exists a subset Qi(g;f) C Q; of the
initial velocity space with measure at least 1 — ¢ such that, for
every w € Qi(¢; f)

H(Y, M;R;w; f;t) < C - aa(f

||M2



