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József Balogh Ramsey-Turán numbers of graphs and hypergraphs.
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Turán Theorem

Denote Tn,r the complete r -partite, n-vertex graph with almost
equal part sizes. Let

ext(n,H) := max{e(G ) : v(G ) = n,H 6⊂ G}.

Turán’s Theorem [1941]

ext(n,Kr+1) = e(Tn,r ).

complete

K4-free
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Ramsey Problem

Graph Ramsey Problem [1929]

Let R(s, t) be the smallest n such that every graph on n vertices
either contains a clique Ks or an independent set It .
What is R(s, t)?

(2 + o(1))s/2 ≤ R(s, s) ≤ (4− o(1))s .

R(3, s) ∼ s2

log s
.

It is believed that the best possible structures are randomlike.
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József Balogh Ramsey-Turán numbers of graphs and hypergraphs.



Ramsey Problem

Graph Ramsey Problem [1929]

Let R(s, t) be the smallest n such that every graph on n vertices
either contains a clique Ks or an independent set It .
What is R(s, t)?

(2 + o(1))s/2 ≤ R(s, s) ≤ (4− o(1))s .

R(3, s) ∼ s2

log s
.

It is believed that the best possible structures are randomlike.
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Mixing Ramsey and Turán

Extremal graph in Turán Theorem is well-structured, having
large independent sets.

What happens if in a large Kr -free graph large independent
sets are forbidden?

Ramsey Flavour, but different!

K5-free Gn exists with α(Gn) < n/100.

How many edges such graph can have?

Ramsey and Turán Flavour!

József Balogh Ramsey-Turán numbers of graphs and hypergraphs.



Mixing Ramsey and Turán

Extremal graph in Turán Theorem is well-structured, having
large independent sets.

What happens if in a large Kr -free graph large independent
sets are forbidden?

Ramsey Flavour, but different!

K5-free Gn exists with α(Gn) < n/100.

How many edges such graph can have?

Ramsey and Turán Flavour!
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Ramsey-Turán Numbers of graphs

Erdős, V.T. Sós [1970]

The Ramsey-Turán function for a graph H, function f (n),

RT(n,H, f (n)) := max
Gn

{e(Gn) : H 6⊂ Gn, α(Gn) ≤ f (n)} .

Definition

RT(n,H, o(n)) :=

(
lim
ε→0

lim
n→∞

RT(n,H, εn)

n2

)
n2 + o(n2).

Definition

The Ramsey-Turán Density (Number) of H is the constant defined
by the double limit.
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The Ramsey-Turán function for a graph H, function f (n),

RT(n,H, f (n)) := max
Gn

{e(Gn) : H 6⊂ Gn, α(Gn) ≤ f (n)} .

Definition

RT(n,H, o(f (n))) :=

(
lim
ε→0

lim
n→∞

RT(n,H, εf (n))

n2

)
n2 + o(n2).
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Complete Graphs

Erdős, V.T. Sós [1970]

RT(n,K2s+1, o(n)) =
1

2

(
1− 1

s

)
n2 + o(n2).

Example

RT(n,K5, o(n)) =
1

4
n2 + o(n2).

complete

triangle-free, small independence
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Complete Graphs

Erdős, V.T. Sós [1970]

RT(n,K2s+1, o(n)) =
1

2

(
1− 1

s

)
n2 + o(n2).

Example

RT(n,K3, f (n)) ≤ 1

2
f (n) · n.

RT(n,K3, o(n)) = o(n2).
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The inverse problem and applications I.

Ajtai, Komlós, Szemerédi [1980]

There is a c > 0 so that if t = 2e(Gn)/n and Gn is triangle-free,
then

c
n

t
log t < α(Gn).

The inequality is best possible.

Using
t ≤ α(Gn),

Corollary

The Ramsey number R(3,m) = O
(

m2

log m

)
.
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The inverse problem and applications II.

Komlós, Pintz, Szemerédi [1981, 1982]

Heilbronn’s Conjecture is false!
There exists n points in the unit disc in the plane such that the

area of each of the
(n

3

)
triangles is at least Ω

(
log n
n2

)
.

Ajtai, Komlós, Szemerédi [1981]

A set of integers is a Sidon set if all pairwise sums are distinct.
There exists a Sidon set ⊂ [n] of size Ω((n log n)1/3).

Fox [2010]

If α(Gn) = 2 then Gn contains a clique-minor of size

n

3
+

1

9
n4/5 log n.
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The case K4: Upper bound

Erdős, V.T. Sós [1970]

RT(n,K3, o(n)) = o(n2).

RT(n,K5, o(n)) =
1

4
n2 + o(n2).
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RT(n,K3, o(n)) = o(n2).

RT(n,K4, o(n)) ≤ 1

4
n2 + o(n2).

RT(n,K5, o(n)) =
1

4
n2 + o(n2).

Szemerédi [1972]

RT(n,K4, o(n)) ≤ 1

8
n2 + o(n2).

In the cluster graph the density of each regular pair is at most

1/2 + o(1).

The cluster graph is triangle-free.
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The case K4: Lower bound

Bollobás, Erdős [1976]

RT(n,K4, o(n)) =
1

8
n2 + o(n2).

Let ε small, k large, θ := ε/
√

k , V1,V2 ⊂ Sk , |V1| = |V2| = n/2.
V (G ) := V1 ∪ V2.
Let x1, y1 ∈ V1, x2, y2 ∈ V2.

For i ∈ {1, 2} let xiyi ∈ E (G ) if d(xi , yi ) > 2− θ.
Let x1x2 ∈ E (G ) if d(x1, x2) <

√
2− θ.

x2
y2

x1

y1
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RT(n,K4, o(n)) =
1

8
n2 + o(n2).

Let ε small, k large, θ := ε/
√

k , V1,V2 ⊂ Sk , |V1| = |V2| = n/2.
V (G ) := V1 ∪ V2.
Let x1, y1 ∈ V1, x2, y2 ∈ V2.

For i ∈ {1, 2} let xiyi ∈ E (G ) if d(xi , yi ) > 2− θ.
Let x1x2 ∈ E (G ) if d(x1, x2) <

√
2− θ.

x2
y2

x1

y1
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Kt-independence

Definition [Hajnal]

Kt-independence number of G :

αt(G ) := max {|S | : S ⊆ V (G ),G [S ] is Kt-free} .

Definition [Erdős, Hajnal, Sós, Szemerédi (1983)]

Let RTt(n,H, f (n)) be the maximum number of edges in an
H-free graph G on n vertices with

αt(G ) ≤ f (n).

Define

RTt(n,H, o(n)) =

(
lim
ε→0

lim
n→∞

RTt(n,H, εn)

n2

)
n2 + o(n2).
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Kt-independence

Erdős, Hajnal, Sós, Szemerédi [1983]

RT3(n,K4, o(n)) = o(n2).
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Kt-independence

Erdős, Hajnal, Sós, Szemerédi [1983]

RT3(n,K4, o(n)) = o(n2).

RT3(n,K7, o(n)) = 1
4 n2 + o(n2).

complete

K4-free, small 3-independence
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Kt-independence

Erdős, Hajnal, Sós, Szemerédi [1983]

RT3(n,K4, o(n)) = o(n2).

o(n2) ≤ RT3(n,K5, o(n)) ≤ 1
12 n2 + o(n2).

o(n2) ≤ RT3(n,K6, o(n)) ≤ 1
6 n2 + o(n2).

RT3(n,K7, o(n)) = 1
4 n2 + o(n2).

complete

K4-free, small 3-independence
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Kt-independence

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]:

Is RT3(n,K5, o(n)) = Ω(n2)?

What is the smallest ` such that RTt(n,Kt+`, o(n)) = Ω(n2)?
Trivially 2 ≤ ` ≤ t + 1.

Balogh, Lenz [2011]

For every t ≥ 2

RTt(n,Kt+2, o(n)) = Ω(n2).
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More problems:

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]: Should be true!

RTt(n,K2t , o(n)) ≥ 1

8
n2 + o(n2),

Balogh, Lenz [2013]

For every t ≥ 2

RTt(n,Kt+dt/2e+1, o(n)) ≥ 1

8
n2 + o(n2).

Known to be sharp for t ≤ 8 even, should be for every even t.
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More Precise Result

Balogh, Lenz [2013]

Let 2 ≤ s ≤ r . Let ` be the maximum positive integer such that
dr · 2−`e < s. Then

RTr (n,Kr+s , o(n)) ≥ 1

2`+2
n2 + o(n2) ≈ s − 1

4r
n2 + o(n2).

Known to be sharp, when 4r/(s − 1) is a power of 2 and s ≤ 5.
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Other direction

Example

RT(n,K5, o(n)) =
1

4
n2 + o(n2).

complete

triangle-free, small independence
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Other direction

Example

RT(n,K5,C
√

n · log n) =
1

4
n2 + o(n2).

complete

triangle-free, small independence
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Ramsey Number R(3,m)

Ajtai, Komlós, Szemerédi [1980]

The Ramsey number R(3,m) = O

(
m2

log m

)
.

J. H. Kim [1995]

R(3,m) = Θ

(
m2

log m

)
.

Shearer [1983]

R(3,m) ≤ (1 + o(1))
m2

log m
.

Bohman-Keevash; Pontiveros-Griffiths-Morris [2013+](
1

4
− o(1)

)
m2

log m
≤ R(3,m).

R∗3(n) := x such that R(3, x) = n.

Corollary(
1
/√

2− o(1)
)√

n log n ≤ R∗3(n) ≤
(√

2 + o(1)
)√

n log n.
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Phase Transitions of K5

Example

RT(n,K5, c
√

n log n) = n2/4 + o(n2) for every c > 1.

Erdős, V.T. Sós [1970]

RT(n,K5, c
√

n) ≤ n2/8 + o(n2) for every c > 0.
RT(n,K5, c

√
n) = o(n2) for some c > 0?

Balogh-Hu-Simonovits [2013+]

RT
(

n,K5, o
(√

n log n
))

= o(n2).

K5 has a phase transition at
√

n log n.
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Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of Kr are at around inverse Ramsey numbers!

Example

RT(n,K13, n) ≈ e(Tn,12).

RT(n,K13, o(n)) ≈ e(Tn,6).

RT(n,K13,R
∗
3 (n)) ≈ e(Tn,6).

RT(n,K13, o(R∗3 (n))) ≈ e(Tn,4).

RT(n,K13,R
∗
4 (n)) ≈ e(Tn,4).

RT(n,K13, o(R∗4 (n))) ≈ e(Tn,3).

RT(n,K13,R
∗
5 (n)) ≈ e(Tn,3).

RT(n,K13, o(R∗5 (n))) ≈ e(Tn,2).

RT(n,K13,R
∗
7 (n)) ≈ e(Tn,2).

RT(n,K13, o(R∗7 (n))) ≈ o(n2).
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József Balogh Ramsey-Turán numbers of graphs and hypergraphs.



Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of Kr are at around inverse Ramsey numbers!

Example

RT(n,K13, n) ≈ e(Tn,12).

RT(n,K13, o(n)) ≈ e(Tn,6).

RT(n,K13,R
∗
3 (n)) ≈ e(Tn,6).

RT(n,K13, o(R∗3 (n))) ≈ e(Tn,4).

RT(n,K13,R
∗
4 (n)) ≈ e(Tn,4).

RT(n,K13, o(R∗4 (n))) ≈ e(Tn,3).

RT(n,K13,R
∗
5 (n)) ≈ e(Tn,3).

RT(n,K13, o(R∗5 (n))) ≈ e(Tn,2).

RT(n,K13,R
∗
7 (n)) ≈ e(Tn,2).

RT(n,K13, o(R∗7 (n))) ≈ o(n2).
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Proof

Balogh-Hu-Simonovits [2013+]

RT
(

n,K5, o
(√

n log n
))

= o(n2).

Assume there is a K5-free graph G on n vertices with εn2

edges and α(G ) = o
(√

n log n
)
.

G contains a large subset U such that every 3 vertices in U
have a lot of common neighbors. (Dependent Random Choice
Lemma)

|U| is large, and α(G ) is small, so there is a triangle in G [U].

The three vertices of this triangle have a lot of common
neighbors.

So there is an edge in their common neighborhood.

Find a K5! Contradiction.
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Dependent Random Choice Lemma

Let a, d ,m, n, r be positive integers. Let G = (V ,E ) be a graph
with n vertices and average degree d = 2e(G )/n. If there is a
positive integer t such that

d t

nt−1
−
(

n

r

)(m

n

)t
≥ a,

then G contains a subset U of at least a vertices such that every r
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Ramsey Graphs are sparse!

Non-symmetric Ramsey:

For a fixed s as t →∞(
t

log t

)(s+1)/2

≤ R(s, t) ≤ ts−1

logs−2 t
.

Balogh-Hu-Simonovits [2013+]

If Ks 6⊂ Gn, α(Gn) ≤ t and n ≈ R(s, t), then

e(Gn) = o(n2).
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Open Problems

Erdős, Hajnal, Simonovits, Sós, and Szemerédi [1994]:

RT(n,H, o(n)) ≤ RT(n,Kγ(H), o(n)),

where γ is a graph parameter related to arboricity.

” = ”?

Open Question:

RT (n,K2,2,2, o(n)) = o(n2)?
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Open Problems

Balogh-Hu-Simonovits [2013+]

RT(n,K5, o(R∗3 (n/2))) = o(n2).

Open Question:

RT (n,K5, (1− ε)R∗3 (n/2)) = o(n2)?

József Balogh Ramsey-Turán numbers of graphs and hypergraphs.



Open Problems

Similarly to K5:

RT(n,K6,
√

n · log n) =
n2

4
.

Via dependent random choice, Sudakov [2003]:

RT(n,K6,
√

n · 2−ω
√

log n) = o(n2)

for any function ω = ω(n) going to infinity arbitrarily slowly.

Open Question:

RT(n,K6, ε
√

n log n) >
n2

100
?
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