Ramsey-Turán numbers of graphs and hypergraphs.

József Balogh

University of Illinois at Urbana-Champaign, USA
Szeged Tudomány Egyetem, Szeged, Hungary

July 2013

Pál Erdős 100!

Ákos Seress (1958-2013)

Balázs Montágh (1967-2013)

Turán Theorem

Turán Theorem

Denote $T_{n, r}$ the complete r-partite, n-vertex graph with almost equal part sizes. Let

$$
\operatorname{ext}(n, H):=\max \{e(G): v(G)=n, H \not \subset G\} .
$$

Turán Theorem

Denote $T_{n, r}$ the complete r-partite, n-vertex graph with almost equal part sizes. Let

$$
\operatorname{ext}(n, H):=\max \{e(G): v(G)=n, H \not \subset G\}
$$

Turán's Theorem [1941]

$$
\operatorname{ext}\left(n, K_{r+1}\right)=e\left(T_{n, r}\right)
$$

K_{4}-free

Ramsey Problem

Graph Ramsey Problem [1929]
Let $\mathbf{R}(s, t)$ be the smallest n such that every graph on n vertices either contains a clique K_{s} or an independent set I_{t}.
What is $\mathbf{R}(s, t)$?

Ramsey Problem

Graph Ramsey Problem [1929]
Let $\mathbf{R}(s, t)$ be the smallest n such that every graph on n vertices either contains a clique K_{s} or an independent set I_{t}.
What is $\mathbf{R}(s, t)$?

$$
(2+o(1))^{s / 2} \leq \mathbf{R}(s, s) \leq(4-o(1))^{s}
$$

Ramsey Problem

Graph Ramsey Problem [1929]

Let $\mathbf{R}(s, t)$ be the smallest n such that every graph on n vertices either contains a clique K_{s} or an independent set I_{t}.
What is $\mathbf{R}(s, t)$?

$$
\begin{gathered}
(2+o(1))^{s / 2} \leq \mathbf{R}(s, s) \leq(4-o(1))^{s} \\
\mathbf{R}(3, s) \sim \frac{s^{2}}{\log s} .
\end{gathered}
$$

It is believed that the best possible structures are randomlike.

Mixing Ramsey and Turán

- Extremal graph in Turán Theorem is well-structured, having large independent sets.

Mixing Ramsey and Turán

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large K_{r}-free graph large independent sets are forbidden?

Mixing Ramsey and Turán

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large K_{r}-free graph large independent sets are forbidden?
- Ramsey Flavour, but different!

Mixing Ramsey and Turán

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large K_{r}-free graph large independent sets are forbidden?
- Ramsey Flavour, but different!
- K_{5}-free G_{n} exists with $\alpha\left(G_{n}\right)<n / 100$.

Mixing Ramsey and Turán

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large K_{r}-free graph large independent sets are forbidden?
- Ramsey Flavour, but different!
- K_{5}-free G_{n} exists with $\alpha\left(G_{n}\right)<n / 100$.
- How many edges such graph can have?

Ramsey and Turán Flavour!

Ramsey-Turán Numbers of graphs

Erdős, V.T. Sós [1970]

The Ramsey-Turán function for a graph H, function $f(n)$,

$$
\mathbf{R T}(n, H, f(n)):=\max _{G_{n}}\left\{e\left(G_{n}\right): H \not \subset G_{n}, \alpha\left(G_{n}\right) \leq f(n)\right\} .
$$

Ramsey-Turán Numbers of graphs

Erdős, V.T. Sós [1970]

The Ramsey-Turán function for a graph H, function $f(n)$,

$$
\mathbf{R T}(n, H, f(n)):=\max _{G_{n}}\left\{e\left(G_{n}\right): H \not \subset G_{n}, \alpha\left(G_{n}\right) \leq f(n)\right\}
$$

Definition

$$
\mathbf{R T}(n, H, o(n)):=\left(\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\mathbf{R T}(n, H, \epsilon n)}{n^{2}}\right) n^{2}+o\left(n^{2}\right)
$$

Definition

The Ramsey-Turán Density (Number) of H is the constant defined by the double limit.

Ramsey-Turán Numbers of graphs

Erdős, V.T. Sós [1970]

The Ramsey-Turán function for a graph H, function $f(n)$,

$$
\operatorname{RT}(n, H, f(n)):=\max _{G_{n}}\left\{e\left(G_{n}\right): H \not \subset G_{n}, \alpha\left(G_{n}\right) \leq f(n)\right\} .
$$

Definition

$$
\mathbf{R T}(n, H, o(f(n))):=\left(\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\mathbf{R T}(n, H, \epsilon f(n))}{n^{2}}\right) n^{2}+o\left(n^{2}\right) .
$$

Complete Graphs

Erdős, V.T. Sós [1970]

$$
\mathbf{R T}\left(n, K_{2 s+1}, o(n)\right)=\frac{1}{2}\left(1-\frac{1}{s}\right) n^{2}+o\left(n^{2}\right) .
$$

Complete Graphs

Erdős, V.T. Sós [1970]

$$
\mathbf{R} \mathbf{T}\left(n, K_{2 s+1}, o(n)\right)=\frac{1}{2}\left(1-\frac{1}{s}\right) n^{2}+o\left(n^{2}\right)
$$

Example

$$
\mathbf{R} \mathbf{T}\left(n, K_{5}, o(n)\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right) .
$$

triangle-free, small independence

Complete Graphs

Erdős, V.T. Sós [1970]

$$
\mathbf{R} \mathbf{T}\left(n, K_{2 s+1}, o(n)\right)=\frac{1}{2}\left(1-\frac{1}{s}\right) n^{2}+o\left(n^{2}\right)
$$

Example

$$
\begin{aligned}
& \boldsymbol{R T}\left(n, K_{3}, f(n)\right) \leq \frac{1}{2} f(n) \cdot n \\
& \boldsymbol{R T}\left(n, K_{3}, o(n)\right)=o\left(n^{2}\right)
\end{aligned}
$$

The inverse problem and applications I.
Ajtai, Komlós, Szemerédi [1980]
There is a $c>0$ so that if $t=2 e\left(G_{n}\right) / n$ and G_{n} is triangle-free, then

$$
c \frac{n}{t} \log t<\alpha\left(G_{n}\right) .
$$

The inequality is best possible.

The inverse problem and applications I.

Ajtai, Komlós, Szemerédi [1980]

There is a $c>0$ so that if $t=2 e\left(G_{n}\right) / n$ and G_{n} is triangle-free, then

$$
c \frac{n}{t} \log t<\alpha\left(G_{n}\right) .
$$

The inequality is best possible.
Using

$$
t \leq \alpha\left(G_{n}\right)
$$

Corollary

The Ramsey number $R(3, m)=O\left(\frac{m^{2}}{\log m}\right)$.

The inverse problem and applications II.
Komlós, Pintz, Szemerédi [1981, 1982]
Heilbronn's Conjecture is false!
There exists n points in the unit disc in the plane such that the area of each of the $\binom{n}{3}$ triangles is at least $\Omega\left(\frac{\log n}{n^{2}}\right)$.

The inverse problem and applications II.

Komlós, Pintz, Szemerédi [1981, 1982]
Heilbronn's Conjecture is false!
There exists n points in the unit disc in the plane such that the area of each of the $\binom{n}{3}$ triangles is at least $\Omega\left(\frac{\log n}{n^{2}}\right)$.

Ajtai, Komlós, Szemerédi [1981]

A set of integers is a Sidon set if all pairwise sums are distinct. There exists a Sidon set $\subset[n]$ of size $\Omega\left((n \log n)^{1 / 3}\right)$.

Fox [2010]

If $\alpha\left(G_{n}\right)=2$ then G_{n} contains a clique-minor of size

$$
\frac{n}{3}+\frac{1}{9} n^{4 / 5} \log n
$$

The case K_{4} : Upper bound
Erdős, V.T. Sós [1970]

$$
\mathbf{R} \mathbf{T}\left(n, K_{3}, o(n)\right)=o\left(n^{2}\right) .
$$

$\boldsymbol{R T}\left(n, K_{5}, o(n)\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right)$.

The case K_{4} : Upper bound

Erdős, V.T. Sós [1970]

$$
\begin{gathered}
\mathbf{R T}\left(n, K_{3}, o(n)\right)=o\left(n^{2}\right) \\
\mathbf{R T}\left(n, K_{4}, o(n)\right) \leq \frac{1}{4} n^{2}+o\left(n^{2}\right) . \\
\mathbf{R T}\left(n, K_{5}, o(n)\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right) .
\end{gathered}
$$

The case K_{4} : Upper bound

Erdős, V.T. Sós [1970]

$$
\begin{gathered}
\mathbf{R T}\left(n, K_{3}, o(n)\right)=o\left(n^{2}\right) \\
\mathbf{R T}\left(n, K_{4}, o(n)\right) \leq \frac{1}{4} n^{2}+o\left(n^{2}\right) . \\
\mathbf{R T}\left(n, K_{5}, o(n)\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right) .
\end{gathered}
$$

Szemerédi [1972]

$$
\mathbf{R T}\left(n, K_{4}, o(n)\right) \leq \frac{1}{8} n^{2}+o\left(n^{2}\right) .
$$

- In the cluster graph the density of each regular pair is at most

$$
1 / 2+o(1)
$$

- The cluster graph is triangle-free.

The case K_{4} : Lower bound
Bollobás, Erdős [1976]

$$
\mathbf{R T}\left(n, K_{4}, o(n)\right)=\frac{1}{8} n^{2}+o\left(n^{2}\right) .
$$

The case K_{4} : Lower bound
Bollobás, Erdős [1976]

$$
\mathbf{R T}\left(n, K_{4}, o(n)\right)=\frac{1}{8} n^{2}+o\left(n^{2}\right) .
$$

Let ε small, k large, $\theta:=\varepsilon / \sqrt{k}, \quad V_{1}, V_{2} \subset \mathbb{S}^{k},\left|V_{1}\right|=\left|V_{2}\right|=n / 2$.

The case K_{4} : Lower bound
Bollobás, Erdős [1976]

$$
\mathbf{R T}\left(n, K_{4}, o(n)\right)=\frac{1}{8} n^{2}+o\left(n^{2}\right) .
$$

Let ε small, k large, $\theta:=\varepsilon / \sqrt{k}, \quad V_{1}, V_{2} \subset \mathbb{S}^{k},\left|V_{1}\right|=\left|V_{2}\right|=n / 2$. $V(G):=V_{1} \cup V_{2}$.

The case K_{4} : Lower bound
Bollobás, Erdős [1976]

$$
\mathbf{R T}\left(n, K_{4}, o(n)\right)=\frac{1}{8} n^{2}+o\left(n^{2}\right) .
$$

Let ε small, k large, $\theta:=\varepsilon / \sqrt{k}, \quad V_{1}, V_{2} \subset \mathbb{S}^{k},\left|V_{1}\right|=\left|V_{2}\right|=n / 2$. $V(G):=V_{1} \cup V_{2}$.
Let $x_{1}, y_{1} \in V_{1}, x_{2}, y_{2} \in V_{2}$.

- For $i \in\{1,2\}$ let $x_{i} y_{i} \in E(G)$ if $d\left(x_{i}, y_{i}\right)>2-\theta$.

The case K_{4} : Lower bound
Bollobás, Erdős [1976]

$$
\mathbf{R T}\left(n, K_{4}, o(n)\right)=\frac{1}{8} n^{2}+o\left(n^{2}\right) .
$$

Let ε small, k large, $\theta:=\varepsilon / \sqrt{k}, \quad V_{1}, V_{2} \subset \mathbb{S}^{k},\left|V_{1}\right|=\left|V_{2}\right|=n / 2$. $V(G):=V_{1} \cup V_{2}$.
Let $x_{1}, y_{1} \in V_{1}, x_{2}, y_{2} \in V_{2}$.

- For $i \in\{1,2\}$ let $x_{i} y_{i} \in E(G)$ if $d\left(x_{i}, y_{i}\right)>2-\theta$.
- Let $x_{1} x_{2} \in E(G)$ if $d\left(x_{1}, x_{2}\right)<\sqrt{2}-\theta$.

K_{t}-independence

Definition [Hajnal]

K_{t}-independence number of G :

$$
\alpha_{t}(G):=\max \left\{|S|: S \subseteq V(G), G[S] \text { is } K_{t}-\text { free }\right\}
$$

K_{t}-independence

Definition [Hajnal]

K_{t}-independence number of G :

$$
\alpha_{t}(G):=\max \left\{|S|: S \subseteq V(G), G[S] \text { is } K_{t}-\text { free }\right\}
$$

Definition [Erdős, Hajnal, Sós, Szemerédi (1983)]

Let $\mathbf{R} \mathbf{T}_{t}(n, H, f(n))$ be the maximum number of edges in an H-free graph G on n vertices with

$$
\alpha_{t}(G) \leq f(n)
$$

Define

$$
\mathbf{R} \mathbf{T}_{t}(n, H, o(n))=\left(\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\mathbf{R} \mathbf{T}_{t}(n, H, \epsilon n)}{n^{2}}\right) n^{2}+o\left(n^{2}\right)
$$

K_{t}-independence

Erdős, Hajnal, Sós, Szemerédi [1983]

- $\mathbf{R T}_{3}\left(n, K_{4}, o(n)\right)=o\left(n^{2}\right)$.
-
-
-

K_{t}-independence

Erdős, Hajnal, Sós, Szemerédi [1983]

- $\mathbf{R T}_{3}\left(n, K_{4}, o(n)\right)=o\left(n^{2}\right)$.
-
-
- $\mathbf{R T}_{3}\left(n, K_{7}, o(n)\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right)$.
K_{4}-free, small 3-independence

K_{t}-independence

Erdős, Hajnal, Sós, Szemerédi [1983]

- $\mathbf{R T}_{3}\left(n, K_{4}, o(n)\right)=o\left(n^{2}\right)$.
- $o\left(n^{2}\right) \leq \mathbf{R} \mathbf{T}_{3}\left(n, K_{5}, o(n)\right) \leq \frac{1}{12} n^{2}+o\left(n^{2}\right)$.
- $o\left(n^{2}\right) \leq \mathbf{R T}_{3}\left(n, K_{6}, o(n)\right) \leq \frac{1}{6} n^{2}+o\left(n^{2}\right)$.
- $\mathbf{R T}_{3}\left(n, K_{7}, o(n)\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right)$.
K_{4}-free, small 3-independence

K_{t}-independence

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]:

- Is $\mathbf{R T}_{3}\left(n, K_{5}, o(n)\right)=\Omega\left(n^{2}\right)$?

K_{t}-independence

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]:

- Is $\mathbf{R T}_{3}\left(n, K_{5}, o(n)\right)=\Omega\left(n^{2}\right)$?
- What is the smallest ℓ such that $\mathbf{R}_{t}\left(n, K_{t+\ell}, o(n)\right)=\Omega\left(n^{2}\right)$? Trivially $2 \leq \ell \leq t+1$.

K_{t}-independence

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]:

- Is $\mathbf{R T}_{3}\left(n, K_{5}, o(n)\right)=\Omega\left(n^{2}\right)$?
- What is the smallest ℓ such that $\mathbf{R}_{t}\left(n, K_{t+\ell}, o(n)\right)=\Omega\left(n^{2}\right)$? Trivially $2 \leq \ell \leq t+1$.

Balogh, Lenz [2011]

For every $t \geq 2$

$$
\mathbf{R} \mathbf{T}_{t}\left(n, K_{t+2}, o(n)\right)=\Omega\left(n^{2}\right)
$$

More problems:

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]: Should be true!

$$
\mathbf{R T}_{t}\left(n, K_{2 t}, o(n)\right) \geq \frac{1}{8} n^{2}+o\left(n^{2}\right),
$$

More problems:

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]: Should be true!

$$
\mathbf{R} \mathbf{T}_{t}\left(n, K_{2 t}, o(n)\right) \geq \frac{1}{8} n^{2}+o\left(n^{2}\right)
$$

Balogh, Lenz [2013]

For every $t \geq 2$

$$
\mathbf{R} \mathbf{T}_{t}\left(n, K_{t+\lceil t / 2\rceil+1}, o(n)\right) \geq \frac{1}{8} n^{2}+o\left(n^{2}\right)
$$

Known to be sharp for $t \leq 8$ even, should be for every even t.

More Precise Result

Balogh, Lenz [2013]

Let $2 \leq s \leq r$. Let ℓ be the maximum positive integer such that $\left\lceil r \cdot 2^{-\ell}\right\rceil<s$. Then

$$
\mathbf{R} \mathbf{T}_{r}\left(n, K_{r+s}, o(n)\right) \geq \frac{1}{2^{\ell+2}} n^{2}+o\left(n^{2}\right) \approx \frac{s-1}{4 r} n^{2}+o\left(n^{2}\right)
$$

Known to be sharp, when $4 r /(s-1)$ is a power of 2 and $s \leq 5$.

Other direction

Example

$$
\mathbf{R T}\left(n, K_{5}, o(n)\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right) .
$$

triangle-free, small independence

Other direction

Example

$$
\mathbf{R T}\left(n, K_{5}, C \sqrt{n \cdot \log n}\right)=\frac{1}{4} n^{2}+o\left(n^{2}\right)
$$

triangle-free, small independence

Ramsey Number R(3,m)

Ramsey Number R(3, m)

Ajtai, Komlós, Szemerédi [1980]

The Ramsey number $\mathbf{R}(3, m)=O\left(\frac{m^{2}}{\log m}\right)$.

Ramsey Number R(3,m)

Ajtai, Komlós, Szemerédi [1980]

The Ramsey number $\mathbf{R}(3, m)=O\left(\frac{m^{2}}{\log m}\right)$.

J. H. Kim [1995]

$$
\mathbf{R}(3, m)=\Theta\left(\frac{m^{2}}{\log m}\right)
$$

Ramsey Number R(3,m)

Shearer [1983]

$$
\mathbf{R}(3, m) \leq(1+o(1)) \frac{m^{2}}{\log m} .
$$

Ramsey Number R(3,m)

Shearer [1983]

$$
\mathbf{R}(3, m) \leq(1+o(1)) \frac{m^{2}}{\log m} .
$$

Bohman-Keevash; Pontiveros-Griffiths-Morris [2013+]

$$
\left(\frac{1}{4}-o(1)\right) \frac{m^{2}}{\log m} \leq \mathbf{R}(3, m)
$$

Ramsey Number R(3,m)

Shearer [1983]

$$
\mathbf{R}(3, m) \leq(1+o(1)) \frac{m^{2}}{\log m} .
$$

Bohman-Keevash; Pontiveros-Griffiths-Morris [2013+]

$$
\left(\frac{1}{4}-o(1)\right) \frac{m^{2}}{\log m} \leq \mathbf{R}(3, m)
$$

$$
\mathbf{R}_{3}^{*}(n):=x \text { such that } \mathbf{R}(3, x)=n .
$$

Corollary

$$
(1 / \sqrt{2}-o(1)) \sqrt{n \log n} \leq \mathbf{R}_{3}^{*}(n) \leq(\sqrt{2}+o(1)) \sqrt{n \log n} .
$$

Phase Transitions of K_{5}

Example
 $\mathbf{R T}\left(n, K_{5}, c \sqrt{n \log n}\right)=n^{2} / 4+o\left(n^{2}\right)$ for every $c>1$.

Phase Transitions of K_{5}

Example

$\mathbf{R T}\left(n, K_{5}, c \sqrt{n \log n}\right)=n^{2} / 4+o\left(n^{2}\right)$ for every $c>1$.

> Erdős, V.T. Sós [1970]
> $\mathbf{R T}\left(n, K_{5}, c \sqrt{n}\right) \leq n^{2} / 8+o\left(n^{2}\right)$ for every $c>0$. $\mathbf{R T}\left(n, K_{5}, c \sqrt{n}\right)=o\left(n^{2}\right)$ for some $c>0$?

Phase Transitions of K_{5}

Example

$\mathbf{R T}\left(n, K_{5}, c \sqrt{n \log n}\right)=n^{2} / 4+o\left(n^{2}\right)$ for every $c>1$.

> Erdős, V.T. Sós $[1970]$
> $\mathbf{R T}\left(n, K_{5}, c \sqrt{n}\right) \leq n^{2} / 8+o\left(n^{2}\right)$ for every $c>0$. $\mathbf{R T}\left(n, K_{5}, c \sqrt{n}\right)=o\left(n^{2}\right)$ for some $c>0$?

Balogh-Hu-Simonovits [2013+]

$$
\mathbf{R} \mathbf{T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right)
$$

Phase Transitions of K_{5}

Example

$\mathbf{R T}\left(n, K_{5}, c \sqrt{n \log n}\right)=n^{2} / 4+o\left(n^{2}\right)$ for every $c>1$.

Erdős, V.T. Sós [1970]

$\mathbf{R T}\left(n, K_{5}, c \sqrt{n}\right) \leq n^{2} / 8+o\left(n^{2}\right)$ for every $c>0$.
$\mathbf{R T}\left(n, K_{5}, c \sqrt{n}\right)=o\left(n^{2}\right)$ for some $c>0$?

Balogh-Hu-Simonovits [2013+]

$$
\mathbf{R T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right)
$$

K_{5} has a phase transition at $\sqrt{n \log n}$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]
Phase transitions of K_{r} are at around inverse Ramsey numbers!

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]
Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R} \mathbf{T}\left(n, K_{13}, n\right) \approx e\left(T_{n, 12}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right)$
$\approx e\left(T_{n, 6}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{3}^{*}(n)\right)\right) \approx e\left(T_{n, 4}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{3}^{*}(n)\right)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{4}^{*}(n)\right) \approx e\left(T_{n, 4}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{3}^{*}(n)\right)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{4}^{*}(n)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{4}^{*}(n)\right)\right) \approx e\left(T_{n, 3}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{3}^{*}(n)\right)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{4}^{*}(n)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{4}^{*}(n)\right)\right) \approx e\left(T_{n, 3}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{5}^{*}(n)\right) \approx e\left(T_{n, 3}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{3}^{*}(n)\right)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{4}^{*}(n)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{4}^{*}(n)\right)\right) \approx e\left(T_{n, 3}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{5}^{*}(n)\right) \approx e\left(T_{n, 3}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{5}^{*}(n)\right)\right) \approx e\left(T_{n, 2}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{3}^{*}(n)\right)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{4}^{*}(n)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{4}^{*}(n)\right)\right) \approx e\left(T_{n, 3}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{5}^{*}(n)\right) \approx e\left(T_{n, 3}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{5}^{*}(n)\right)\right) \approx e\left(T_{n, 2}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{7}^{*}(n)\right) \approx e\left(T_{n, 2}\right)$.

Phase Transitions of cliques

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_{r} are at around inverse Ramsey numbers!

Example

- $\mathbf{R T}\left(n, K_{13}, n\right)$
$\approx e\left(T_{n, 12}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{3}^{*}(n)\right) \approx e\left(T_{n, 6}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{3}^{*}(n)\right)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{4}^{*}(n)\right) \approx e\left(T_{n, 4}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{4}^{*}(n)\right)\right) \approx e\left(T_{n, 3}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{5}^{*}(n)\right) \approx e\left(T_{n, 3}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{5}^{*}(n)\right)\right) \approx e\left(T_{n, 2}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, R_{7}^{*}(n)\right) \approx e\left(T_{n, 2}\right)$.
- $\boldsymbol{R T}\left(n, K_{13}, o\left(R_{7}^{*}(n)\right)\right) \approx o\left(n^{2}\right)$.

Proof

Balogh-Hu-Simonovits [2013+]

$$
\mathbf{R} \mathbf{T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right)
$$

Proof

Balogh-Hu-Simonovits [2013+]

$$
\mathbf{R} \mathbf{T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right)
$$

Dependent Random Choice Lemma

Let a, d, m, n, r be positive integers. Let $G=(V, E)$ be a graph with n vertices and average degree $d=2 e(G) / n$. If there is a positive integer t such that

$$
\frac{d^{t}}{n^{t-1}}-\binom{n}{r}\left(\frac{m}{n}\right)^{t} \geq a
$$

then G contains a subset U of at least a vertices such that every r vertices in U have at least m common neighbors.

Proof

Balogh-Hu-Simonovits [2013+]

$$
\mathbf{R T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right)
$$

- Assume there is a K_{5}-free graph G on n vertices with εn^{2} edges and $\alpha(G)=o(\sqrt{n \log n})$.

Proof

Balogh-Hu-Simonovits [2013+]

$$
\boldsymbol{R T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right) .
$$

- Assume there is a K_{5}-free graph G on n vertices with εn^{2} edges and $\alpha(G)=o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)

Proof

Balogh-Hu-Simonovits [2013+]

$$
\boldsymbol{R T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right) .
$$

- Assume there is a K_{5}-free graph G on n vertices with εn^{2} edges and $\alpha(G)=o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- $|U|$ is large, and $\alpha(G)$ is small, so there is a triangle in $G[U]$.

Proof

Balogh-Hu-Simonovits [2013+]

$$
\boldsymbol{R T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right) .
$$

- Assume there is a K_{5}-free graph G on n vertices with εn^{2} edges and $\alpha(G)=o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- $|U|$ is large, and $\alpha(G)$ is small, so there is a triangle in $G[U]$.
- The three vertices of this triangle have a lot of common neighbors.

Proof

Balogh-Hu-Simonovits [2013+]

$$
\boldsymbol{R T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right) .
$$

- Assume there is a K_{5}-free graph G on n vertices with εn^{2} edges and $\alpha(G)=o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- $|U|$ is large, and $\alpha(G)$ is small, so there is a triangle in $G[U]$.
- The three vertices of this triangle have a lot of common neighbors.
- So there is an edge in their common neighborhood.

Proof

Balogh-Hu-Simonovits [2013+]

$$
\boldsymbol{R T}\left(n, K_{5}, o(\sqrt{n \log n})\right)=o\left(n^{2}\right) .
$$

- Assume there is a K_{5}-free graph G on n vertices with εn^{2} edges and $\alpha(G)=o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- $|U|$ is large, and $\alpha(G)$ is small, so there is a triangle in $G[U]$.
- The three vertices of this triangle have a lot of common neighbors.
- So there is an edge in their common neighborhood.
- Find a K_{5} ! Contradiction.

Ramsey Graphs are sparse!

Non-symmetric Ramsey:
For a fixed s as $t \rightarrow \infty$

$$
\left(\frac{t}{\log t}\right)^{(s+1) / 2} \leq \mathbf{R}(s, t) \leq \frac{t^{s-1}}{\log ^{s-2} t}
$$

Balogh-Hu-Simonovits [2013+]
If $K_{s} \not \subset G_{n}, \alpha\left(G_{n}\right) \leq t$ and $n \approx \mathbf{R}(s, t)$, then

$$
e\left(G_{n}\right)=o\left(n^{2}\right)
$$

Open Problems

- Erdős, Hajnal, Simonovits, Sós, and Szemerédi [1994]:

$$
\mathbf{R} \mathbf{T}(n, H, o(n)) \leq \mathbf{R} \mathbf{T}\left(n, K_{\gamma(H)}, o(n)\right),
$$

where γ is a graph parameter related to arboricity.

$$
"=" ?
$$

Open Problems

- Erdős, Hajnal, Simonovits, Sós, and Szemerédi [1994]:

$$
\mathbf{R} \mathbf{T}(n, H, o(n)) \leq \mathbf{R} \mathbf{T}\left(n, K_{\gamma(H)}, o(n)\right),
$$

where γ is a graph parameter related to arboricity.

$$
"=" ?
$$

Open Question:

$$
\mathbf{R T}\left(n, K_{2,2,2}, o(n)\right)=o\left(n^{2}\right) ?
$$

Open Problems

Balogh-Hu-Simonovits [2013+]

$$
\mathbf{R} \mathbf{T}\left(n, K_{5}, o\left(R_{3}^{*}(n / 2)\right)\right)=o\left(n^{2}\right)
$$

Open Question:

$$
\mathbf{R T}\left(n, K_{5},(1-\varepsilon) R_{3}^{*}(n / 2)\right)=o\left(n^{2}\right) ?
$$

Open Problems

- Similarly to K_{5} :

$$
\mathbf{R T}\left(n, K_{6}, \sqrt{n \cdot \log n}\right)=\frac{n^{2}}{4}
$$

Open Problems

- Similarly to K_{5} :

$$
\mathbf{R} \mathbf{T}\left(n, K_{6}, \sqrt{n \cdot \log n}\right)=\frac{n^{2}}{4}
$$

- Via dependent random choice, Sudakov [2003]:

$$
\mathbf{R} \mathbf{T}\left(n, K_{6}, \sqrt{n} \cdot 2^{-\omega \sqrt{\log n}}\right)=o\left(n^{2}\right)
$$

for any function $\omega=\omega(n)$ going to infinity arbitrarily slowly.

Open Problems

- Similarly to K_{5} :

$$
\mathbf{R} \mathbf{T}\left(n, K_{6}, \sqrt{n \cdot \log n}\right)=\frac{n^{2}}{4}
$$

- Via dependent random choice, Sudakov [2003]:

$$
\mathbf{R} \mathbf{T}\left(n, K_{6}, \sqrt{n} \cdot 2^{-\omega \sqrt{\log n}}\right)=o\left(n^{2}\right)
$$

for any function $\omega=\omega(n)$ going to infinity arbitrarily slowly.

Open Question:

$$
\mathbf{R T}\left(n, K_{6}, \varepsilon \sqrt{n \log n}\right)>\frac{n^{2}}{100} ?
$$

