Ramsey-Turán numbers of graphs and hypergraphs.

József Balogh

University of Illinois at Urbana-Champaign, USA Szeged Tudomány Egyetem, Szeged, Hungary

July 2013

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

Ákos Seress (1958-2013)

József Balogh Ramsey-Turán numbers of graphs and hypergraphs.

< 注 → <

э

Balázs Montágh (1967–2013)

József Balogh Ramsey-Turán numbers of graphs and hypergraphs.

Turán Theorem

æ

Turán Theorem

Denote $T_{n,r}$ the complete *r*-partite, *n*-vertex graph with almost equal part sizes. Let

$$\mathsf{ext}(n,H) := \max\{e(G): v(G) = n, H \not\subset G\}.$$

Turán Theorem

Denote $T_{n,r}$ the complete *r*-partite, *n*-vertex graph with almost equal part sizes. Let

$$\operatorname{ext}(n,H) := \max\{e(G): v(G) = n, H \not\subset G\}.$$

Turán's Theorem [1941]

$$\operatorname{ext}(n, K_{r+1}) = e(T_{n,r}).$$

3 N - N -

Graph Ramsey Problem [1929]

Let $\mathbf{R}(s, t)$ be the smallest *n* such that every graph on *n* vertices either contains a clique K_s or an independent set I_t . What is $\mathbf{R}(s, t)$?

3 1 4

Graph Ramsey Problem [1929]

Let $\mathbf{R}(s, t)$ be the smallest *n* such that every graph on *n* vertices either contains a clique K_s or an independent set I_t . What is $\mathbf{R}(s, t)$?

 $(2+o(1))^{s/2} \leq \mathbf{R}(s,s) \leq (4-o(1))^s.$

.

3

Graph Ramsey Problem [1929]

Let $\mathbf{R}(s, t)$ be the smallest *n* such that every graph on *n* vertices either contains a clique K_s or an independent set I_t . What is $\mathbf{R}(s, t)$?

$$(2+o(1))^{s/2} \leq \mathbf{R}(s,s) \leq (4-o(1))^s.$$

 $\mathbf{R}(3,s) \sim \frac{s^2}{\log s}.$

It is believed that the best possible structures are randomlike.

• Extremal graph in Turán Theorem is well-structured, having large independent sets.

3 🖌 🖌 3

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large *K_r*-free graph large independent sets are forbidden?

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large *K*_r-free graph large independent sets are forbidden?
- Ramsey Flavour, but different!

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large *K*_r-free graph large independent sets are forbidden?
- Ramsey Flavour, but different!
- K_5 -free G_n exists with $\alpha(G_n) < n/100$.

- Extremal graph in Turán Theorem is well-structured, having large independent sets.
- What happens if in a large *K*_r-free graph large independent sets are forbidden?
- Ramsey Flavour, but different!
- K_5 -free G_n exists with $\alpha(G_n) < n/100$.
- How many edges such graph can have?

Ramsey and Turán Flavour!

Ramsey-Turán Numbers of graphs

Erdős, V.T. Sós [1970]

The Ramsey-Turán function for a graph H, function f(n),

$$\mathbf{RT}(n,H,f(n)) := \max_{G_n} \{ e(G_n) : H \not\subset G_n, \ \alpha(G_n) \leq f(n) \}.$$

э

3 N - 1

Ramsey-Turán Numbers of graphs

Erdős, V.T. Sós [1970]

The Ramsey-Turán function for a graph H, function f(n),

$$\mathbf{RT}(n,H,f(n)) := \max_{G_n} \{e(G_n) : H \not\subset G_n, \ \alpha(G_n) \leq f(n)\}.$$

Definition

$$\mathbf{RT}(n, H, o(n)) := \left(\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\mathbf{RT}(n, H, \epsilon n)}{n^2}\right) n^2 + o(n^2).$$

Definition

The Ramsey-Turán Density (Number) of H is the constant defined by the double limit.

→ < Ξ → <</p>

Ramsey-Turán Numbers of graphs

Erdős, V.T. Sós [1970]

The Ramsey-Turán function for a graph H, function f(n),

$$\mathbf{RT}(n,H,f(n)) := \max_{G_n} \{e(G_n) : H \not\subset G_n, \ \alpha(G_n) \leq f(n)\}.$$

Definition

$$\mathbf{RT}(n,H,o(f(n))) := \left(\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\mathbf{RT}(n,H,\epsilon f(n))}{n^2}\right) n^2 + o(n^2).$$

Complete Graphs

Erdős, V.T. Sós [1970]

$$\mathbf{RT}(n, \mathcal{K}_{2s+1}, o(n)) = \frac{1}{2} \left(1 - \frac{1}{s} \right) n^2 + o(n^2).$$

æ

э

→ < Ξ → <</p>

Complete Graphs

Erdős, V.T. Sós [1970]

$$\mathbf{RT}(n, K_{2s+1}, o(n)) = \frac{1}{2} \left(1 - \frac{1}{s} \right) n^2 + o(n^2).$$

Example

$$\mathbf{RT}(n, K_5, o(n)) = \frac{1}{4}n^2 + o(n^2).$$

Complete Graphs

Erdős, V.T. Sós [1970]

$$\mathbf{RT}(n, \mathcal{K}_{2s+1}, o(n)) = \frac{1}{2} \left(1 - \frac{1}{s}\right) n^2 + o(n^2).$$

Example

$$\mathbf{RT}(n, K_3, f(n)) \leq \frac{1}{2}f(n) \cdot n.$$

$$\mathbf{RT}(n, K_3, o(n)) = o(n^2).$$

æ

< 3 > < 3

The inverse problem and applications I.

Ajtai, Komlós, Szemerédi [1980]

There is a c > 0 so that if $t = 2e(G_n)/n$ and G_n is triangle-free, then

$$c\frac{n}{t}\log t < \alpha(G_n).$$

The inequality is best possible.

The inverse problem and applications I.

Ajtai, Komlós, Szemerédi [1980]

There is a c > 0 so that if $t = 2e(G_n)/n$ and G_n is triangle-free, then

$$c\frac{\pi}{t}\log t < \alpha(G_n).$$

The inequality is best possible.

Using

$$t \leq \alpha(G_n),$$

Corollary

The Ramsey number
$$R(3,m) = O\left(\frac{m^2}{\log m}\right)$$
.

3 N - 1

The inverse problem and applications II.

Komlós, Pintz, Szemerédi [1981, 1982]

Heilbronn's Conjecture is false!

There exists n points in the unit disc in the plane such that the

area of each of the $\binom{n}{3}$ triangles is at least $\Omega\left(\frac{\log n}{n^2}\right)$.

The inverse problem and applications II.

Komlós, Pintz, Szemerédi [1981, 1982]

Heilbronn's Conjecture is false! There exists *n* points in the unit disc in the plane such that the area of each of the $\binom{n}{3}$ triangles is at least $\Omega\left(\frac{\log n}{n^2}\right)$.

Ajtai, Komlós, Szemerédi [1981]

A set of integers is a **Sidon set** if all pairwise sums are distinct. There exists a Sidon set $\subset [n]$ of size $\Omega((n \log n)^{1/3})$.

Fox [2010]

If $\alpha(G_n) = 2$ then G_n contains a clique-minor of size

 $\frac{n}{3} + \frac{1}{9}n^{4/5}\log n.$

The case K_4 : Upper bound

Erdős, V.T. Sós [1970]

$$\mathbf{RT}(n, K_3, o(n)) = o(n^2).$$

$$\mathbf{RT}(n, K_5, o(n)) = \frac{1}{4}n^2 + o(n^2).$$

э

The case K_4 : Upper bound

Erdős, V.T. Sós [1970]

$$\mathbf{RT}(n, K_3, o(n)) = o(n^2).$$
$$\mathbf{RT}(n, K_4, o(n)) \le \frac{1}{4}n^2 + o(n^2).$$
$$\mathbf{RT}(n, K_5, o(n)) = \frac{1}{4}n^2 + o(n^2).$$

э

A B A A B A

The case K_4 : Upper bound

Erdős, V.T. Sós [1970]

$$\mathbf{RT}(n, K_3, o(n)) = o(n^2).$$
$$\mathbf{RT}(n, K_4, o(n)) \le \frac{1}{4}n^2 + o(n^2).$$
$$\mathbf{RT}(n, K_5, o(n)) = \frac{1}{4}n^2 + o(n^2).$$

Szemerédi [1972]

$$\mathbf{RT}(n, K_4, o(n)) \leq \frac{1}{8}n^2 + o(n^2).$$

• In the cluster graph the density of each regular pair is at most

$$1/2 + o(1)$$
.

• The cluster graph is triangle-free.

Bollobás, Erdős [1976]

$$\mathbf{RT}(n, K_4, o(n)) = \frac{1}{8}n^2 + o(n^2).$$

э

∃ → ...

Bollobás, Erdős [1976]

$$\mathbf{RT}(n, K_4, o(n)) = \frac{1}{8}n^2 + o(n^2).$$

Let ε small, k large, $\theta := \varepsilon/\sqrt{k}$, $V_1, V_2 \subset \mathbb{S}^k$, $|V_1| = |V_2| = n/2$.

→ Ξ →

Bollobás, Erdős [1976]

$$\mathbf{RT}(n, K_4, o(n)) = \frac{1}{8}n^2 + o(n^2).$$

Let ε small, k large, $\theta := \varepsilon/\sqrt{k}$, $V_1, V_2 \subset \mathbb{S}^k$, $|V_1| = |V_2| = n/2$. $V(G) := V_1 \cup V_2$.

A B A A B A

3

Bollobás, Erdős [1976]

$$\mathbf{RT}(n, K_4, o(n)) = \frac{1}{8}n^2 + o(n^2).$$

Let ε small, k large, $\theta := \varepsilon/\sqrt{k}$, $V_1, V_2 \subset \mathbb{S}^k$, $|V_1| = |V_2| = n/2$. $V(G) := V_1 \cup V_2$. Let $x_1, y_1 \in V_1$, $x_2, y_2 \in V_2$. • For $i \in \{1, 2\}$ let $x_i y_i \in E(G)$ if $d(x_i, y_i) > 2 - \theta$.

Bollobás, Erdős [1976]

$$\mathbf{RT}(n, K_4, o(n)) = \frac{1}{8}n^2 + o(n^2).$$

Let ε small, k large, $\theta := \varepsilon/\sqrt{k}$, $V_1, V_2 \subset \mathbb{S}^k$, $|V_1| = |V_2| = n/2$. $V(G) := V_1 \cup V_2$. Let $x_1, y_1 \in V_1, x_2, y_2 \in V_2$.

- For $i \in \{1, 2\}$ let $x_i y_i \in E(G)$ if $d(x_i, y_i) > 2 \theta$.
- Let $x_1x_2 \in E(G)$ if $d(x_1, x_2) < \sqrt{2} \theta$.

*K*_{*t*}-independence

Definition [Hajnal]

 K_t -independence number of G:

$$\alpha_t(G) := \max\left\{|S| : S \subseteq V(G), G[S] \text{ is } K_t \text{-free}\right\}.$$

э

∃ → ∢

*K*_t-independence

Definition [Hajnal]

 K_t -independence number of G:

$$\alpha_t(G) := \max\left\{|S| : S \subseteq V(G), G[S] \text{ is } K_t \text{-free}\right\}.$$

Definition [Erdős, Hajnal, Sós, Szemerédi (1983)]

Let $\mathbf{RT}_t(n, H, f(n))$ be the maximum number of edges in an *H*-free graph *G* on *n* vertices with

$$\alpha_t(G) \leq f(n).$$

Define

$$\mathbf{RT}_t(n, H, o(n)) = \left(\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\mathbf{RT}_t(n, H, \epsilon n)}{n^2}\right) n^2 + o(n^2).$$

・ 同 ト ・ ヨ ト ・ ヨ

Erdős, Hajnal, Sós, Szemerédi [1983]

•
$$\mathbf{RT}_3(n, K_4, o(n)) = o(n^2).$$

- ۲
- •
- ۲

э

Image: 1 million (1 million)

Erdős, Hajnal, Sós, Szemerédi [1983]

•
$$\mathbf{RT}_3(n, K_4, o(n)) = o(n^2).$$

٩

•
$$\mathbf{RT}_3(n, K_7, o(n)) = \frac{1}{4}n^2 + o(n^2).$$

Erdős, Hajnal, Sós, Szemerédi [1983]

- $\mathbf{RT}_3(n, K_4, o(n)) = o(n^2).$
- $o(n^2) \leq \mathbf{RT}_3(n, K_5, o(n)) \leq \frac{1}{12}n^2 + o(n^2).$
- $o(n^2) \leq \mathbf{RT}_3(n, K_6, o(n)) \leq \frac{1}{6}n^2 + o(n^2).$
- $\mathbf{RT}_3(n, K_7, o(n)) = \frac{1}{4}n^2 + o(n^2).$

3 N - 1

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]:

• Is
$$\mathbf{RT}_3(n, K_5, o(n)) = \Omega(n^2)$$
?

э

∃ → ∢

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]:

• Is
$$\mathbf{RT}_3(n, K_5, o(n)) = \Omega(n^2)$$
?

• What is the smallest ℓ such that $\mathbf{RT}_t(n, K_{t+\ell}, o(n)) = \Omega(n^2)$? Trivially $2 \leq \ell \leq t+1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]:

• Is
$$\mathbf{RT}_3(n, K_5, o(n)) = \Omega(n^2)$$
?

• What is the smallest ℓ such that $\mathbf{RT}_t(n, K_{t+\ell}, o(n)) = \Omega(n^2)$? Trivially $2 \leq \ell \leq t+1$.

Balogh, Lenz [2011]

For every $t \ge 2$

$$\mathbf{RT}_t(n, K_{t+2}, o(n)) = \Omega(n^2).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

More problems:

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]: Should be true!

$$\mathbf{RT}_t(n, K_{2t}, o(n)) \ge \frac{1}{8}n^2 + o(n^2),$$

More problems:

Erdős, Hajnal, Simonovits, Sós, Szemerédi [1994]: Should be true!

$$\mathsf{RT}_t(n, K_{2t}, o(n)) \ge \frac{1}{8}n^2 + o(n^2),$$

Balogh, Lenz [2013]

For every $t \ge 2$

$$\mathbf{RT}_t(n, \mathcal{K}_{t+\lceil t/2\rceil+1}, o(n)) \geq \frac{1}{8}n^2 + o(n^2).$$

Known to be sharp for $t \leq 8$ even, should be for every even t.

Balogh, Lenz [2013]

Let $2 \le s \le r$. Let ℓ be the maximum positive integer such that $\lceil r \cdot 2^{-\ell} \rceil < s$. Then

$$\mathbf{RT}_r(n, K_{r+s}, o(n)) \ge \frac{1}{2^{\ell+2}}n^2 + o(n^2) \approx \frac{s-1}{4r}n^2 + o(n^2).$$

Known to be sharp, when 4r/(s-1) is a power of 2 and $s \leq 5$.

3 1 4

Other direction

Example

$$\mathbf{RT}(n, K_5, o(n)) = \frac{1}{4}n^2 + o(n^2).$$

Other direction

Example

$$\mathbf{RT}(n, K_5, C\sqrt{n \cdot \log n}) = \frac{1}{4}n^2 + o(n^2).$$

Ramsey Number $\mathbf{R}(3, m)$

æ

Ajtai, Komlós, Szemerédi [1980]

The Ramsey number
$$\mathbf{R}(3, m) = O\left(\frac{m^2}{\log m}\right)$$
.

Ajtai, Komlós, Szemerédi [1980]

The Ramsey number
$$\mathbf{R}(3, m) = O\left(\frac{m^2}{\log m}\right)$$
.

J. H. Kim [1995]

$$\mathbf{R}(3,m) = \Theta\left(\frac{m^2}{\log m}\right).$$

> < 프 > < 프 >

Ramsey Number $\mathbf{R}(3, m)$

Shearer [1983]

$$\mathbf{R}(3,m) \leq (1+o(1)) \, \frac{m^2}{\log m}.$$

æ

Ramsey Number R(3, m)

Shearer [1983]

$$\mathbf{R}(3,m) \leq (1+o(1)) \, \frac{m^2}{\log m}.$$

Bohman-Keevash; Pontiveros-Griffiths-Morris [2013+]

$$\left(rac{1}{4}-o(1)
ight)rac{m^2}{\log m}\leq {f R}(3,m).$$

э

→ 3 → < 3</p>

Ramsey Number $\mathbf{R}(3, m)$

Shearer [1983]

$$\mathbf{R}(3,m) \leq (1+o(1)) \frac{m^2}{\log m}.$$

Bohman-Keevash; Pontiveros-Griffiths-Morris [2013+]

$$\left(rac{1}{4}-o(1)
ight)rac{m^2}{\log m}\leq {f R}(3,m).$$

$$\mathbf{R}_3^*(n) := x$$
 such that $\mathbf{R}(3, x) = n$.

Corollary

$$\left(1/\sqrt{2}-o(1)\right)\sqrt{n\log n} \leq \mathbf{R}_3^*(n) \leq \left(\sqrt{2}+o(1)\right)\sqrt{n\log n}.$$

э

Phase Transitions of K_5

Example

$$RT(n, K_5, c\sqrt{n \log n}) = n^2/4 + o(n^2)$$
 for every $c > 1$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Example

$$RT(n, K_5, c\sqrt{n \log n}) = n^2/4 + o(n^2)$$
 for every $c > 1$.

Erdős, V.T. Sós [1970]

 $\begin{aligned} & \mathbf{RT}(n, \mathcal{K}_5, c\sqrt{n}) \leq n^2/8 + o(n^2) \text{ for every } c > 0. \\ & \mathbf{RT}(n, \mathcal{K}_5, c\sqrt{n}) = o(n^2) \text{ for some } c > 0? \end{aligned}$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

$$RT(n, K_5, c\sqrt{n \log n}) = n^2/4 + o(n^2)$$
 for every $c > 1$.

Erdős, V.T. Sós [1970]

$$RT(n, K_5, c\sqrt{n}) \le n^2/8 + o(n^2)$$
 for every $c > 0$.
 $RT(n, K_5, c\sqrt{n}) = o(n^2)$ for some $c > 0$?

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

▲御▶ ▲理▶ ★理≯

Example

$$RT(n, K_5, c\sqrt{n \log n}) = n^2/4 + o(n^2)$$
 for every $c > 1$.

Erdős, V.T. Sós [1970]

$$RT(n, K_5, c\sqrt{n}) \le n^2/8 + o(n^2)$$
 for every $c > 0$.
 $RT(n, K_5, c\sqrt{n}) = o(n^2)$ for some $c > 0$?

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

 K_5 has a phase transition at $\sqrt{n \log n}$.

▲□ → ▲ □ → ▲ □ →

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

• $\mathbf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$

э

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathbf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$

э

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathbf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$

э

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathbf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, o(R_3^*(n))) \approx e(T_{n,4}).$

э

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathbf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathsf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, o(R_3^*(n))) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, K_{13}, R_4^*(n)) \approx e(T_{n,4}).$

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathsf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, o(R_3^*(n))) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, K_{13}, R_4^*(n)) \approx e(T_{n,4}).$
- $\mathsf{RT}(n, K_{13}, o(R_4^*(n))) \approx e(T_{n,3}).$

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathsf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, o(R_3^*(n))) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, \mathcal{K}_{13}, \mathcal{R}_4^*(n)) \approx e(\mathcal{T}_{n,4}).$
- $\mathbf{RT}(n, K_{13}, o(R_4^*(n))) \approx e(T_{n,3}).$
- $\mathbf{RT}(n, K_{13}, R_5^*(n)) \approx e(T_{n,3}).$

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathbf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, o(R_3^*(n))) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, K_{13}, R_4^*(n)) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, K_{13}, o(R_4^*(n))) \approx e(T_{n,3}).$
- $\mathbf{RT}(n, K_{13}, R_5^*(n)) \approx e(T_{n,3}).$
- $\mathbf{RT}(n, K_{13}, o(R_5^*(n))) \approx e(T_{n,2}).$

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathsf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, o(R_3^*(n))) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, \mathcal{K}_{13}, \mathcal{R}_4^*(n)) \approx e(\mathcal{T}_{n,4}).$
- $\mathbf{RT}(n, K_{13}, o(R_4^*(n))) \approx e(T_{n,3}).$
- $\mathbf{RT}(n, K_{13}, R_5^*(n)) \approx e(T_{n,3}).$
- $\mathbf{RT}(n, K_{13}, o(R_5^*(n))) \approx e(T_{n,2}).$
- $\mathbf{RT}(n, K_{13}, R_7^*(n)) \approx e(T_{n,2}).$

Balogh-Hu-Simonovits [2013+]

Phase transitions of K_r are at around inverse Ramsey numbers!

Example

- $\mathsf{RT}(n, K_{13}, n) \approx e(T_{n,12}).$
- $\mathbf{RT}(n, K_{13}, o(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, R_3^*(n)) \approx e(T_{n,6}).$
- $\mathbf{RT}(n, K_{13}, o(R_3^*(n))) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, K_{13}, R_4^*(n)) \approx e(T_{n,4}).$
- $\mathbf{RT}(n, K_{13}, o(R_4^*(n))) \approx e(T_{n,3}).$
- $\mathbf{RT}(n, K_{13}, R_5^*(n)) \approx e(T_{n,3}).$
- $\mathbf{RT}(n, K_{13}, o(R_5^*(n))) \approx e(T_{n,2}).$
- $\mathbf{RT}(n, K_{13}, R_7^*(n)) \approx e(T_{n,2}).$
- **RT** $(n, K_{13}, o(R_7^*(n))) \approx o(n^2).$

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Balogh-Hu-Simonovits [2013+]

$$\operatorname{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

Dependent Random Choice Lemma

Let a, d, m, n, r be positive integers. Let G = (V, E) be a graph with n vertices and average degree d = 2e(G)/n. If there is a positive integer t such that

$$\frac{d^t}{n^{t-1}} - \binom{n}{r} \left(\frac{m}{n}\right)^t \ge a,$$

then G contains a subset U of at least a vertices such that every r vertices in U have at least m common neighbors.

.

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

• Assume there is a K_5 -free graph G on n vertices with εn^2 edges and $\alpha(G) = o(\sqrt{n \log n})$.

э

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

- Assume there is a K_5 -free graph G on n vertices with εn^2 edges and $\alpha(G) = o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)

- A 🖻 🕨 - A

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

- Assume there is a K_5 -free graph G on n vertices with εn^2 edges and $\alpha(G) = o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- |U| is large, and $\alpha(G)$ is small, so there is a triangle in G[U].

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

- Assume there is a K_5 -free graph G on n vertices with εn^2 edges and $\alpha(G) = o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- |U| is large, and $\alpha(G)$ is small, so there is a triangle in G[U].
- The three vertices of this triangle have a lot of common neighbors.

.

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

- Assume there is a K_5 -free graph G on n vertices with εn^2 edges and $\alpha(G) = o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- |U| is large, and $\alpha(G)$ is small, so there is a triangle in G[U].
- The three vertices of this triangle have a lot of common neighbors.
- So there is an edge in their common neighborhood.

4 🗇 🕨 4 🖻 🕨 4

Balogh-Hu-Simonovits [2013+]

$$\mathsf{RT}\left(n, K_5, o\left(\sqrt{n \log n}\right)\right) = o(n^2).$$

- Assume there is a K_5 -free graph G on n vertices with εn^2 edges and $\alpha(G) = o(\sqrt{n \log n})$.
- G contains a large subset U such that every 3 vertices in U have a lot of common neighbors. (Dependent Random Choice Lemma)
- |U| is large, and $\alpha(G)$ is small, so there is a triangle in G[U].
- The three vertices of this triangle have a lot of common neighbors.
- So there is an edge in their common neighborhood.
- Find a K_5 ! Contradiction.

A (1) < A (1) < A (1) < A (1) </p>

Ramsey Graphs are sparse!

Non-symmetric Ramsey:

For a fixed s as $t \to \infty$

$$\left(\frac{t}{\log t}\right)^{(s+1)/2} \leq \mathbf{R}(s,t) \leq \frac{t^{s-1}}{\log^{s-2} t}$$

Balogh-Hu-Simonovits [2013+]

If $K_s \not\subset G_n$, $\alpha(G_n) \leq t$ and $n \approx \mathbf{R}(s, t)$, then

$$e(G_n)=o(n^2).$$

э

3 N - 1

Open Problems

• Erdős, Hajnal, Simonovits, Sós, and Szemerédi [1994]:

 $\mathbf{RT}(n, H, o(n)) \leq \mathbf{RT}(n, K_{\gamma(H)}, o(n)),$

where γ is a graph parameter related to arboricity.

" = "?

- 4 B b - 4 B b

3

Open Problems

• Erdős, Hajnal, Simonovits, Sós, and Szemerédi [1994]:

$$\mathbf{RT}(n, H, o(n)) \leq \mathbf{RT}(n, K_{\gamma(H)}, o(n)),$$

where γ is a graph parameter related to arboricity.

" = "?

Open Question:

RT
$$(n, K_{2,2,2}, o(n)) = o(n^2)$$
?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

Balogh-Hu-Simonovits [2013+]

$$\mathbf{RT}(n, K_5, o(R_3^*(n/2))) = o(n^2).$$

Open Question:

RT
$$(n, K_5, (1 - \varepsilon)R_3^*(n/2)) = o(n^2)$$
?

★御≯ ★理≯ ★理≯

• Similarly to K₅:

$$\mathsf{RT}(n, K_6, \sqrt{n \cdot \log n}) = \frac{n^2}{4}.$$

イロト イポト イヨト イヨ

æ

• Similarly to K₅:

$$\mathsf{RT}(n, K_6, \sqrt{n \cdot \log n}) = \frac{n^2}{4}.$$

• Via dependent random choice, Sudakov [2003]:

$$\mathbf{RT}(n, K_6, \sqrt{n} \cdot 2^{-\omega\sqrt{\log n}}) = o(n^2)$$

for any function $\omega = \omega(n)$ going to infinity arbitrarily slowly.

Image: Image:

• Similarly to K₅:

$$\mathsf{RT}(n, K_6, \sqrt{n \cdot \log n}) = \frac{n^2}{4}.$$

• Via dependent random choice, Sudakov [2003]:

$$\mathbf{RT}(n, K_6, \sqrt{n} \cdot 2^{-\omega\sqrt{\log n}}) = o(n^2)$$

for any function $\omega = \omega(n)$ going to infinity arbitrarily slowly.

Open Question:

$$\mathsf{RT}(n, \mathcal{K}_6, \varepsilon \sqrt{n \log n}) > \frac{n^2}{100} ?$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶