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Let A be a finite set of real numbers, the sum set and the
product set are defined by

A+A = {a+ b; a, b ∈ A}, A ·A = {ab; a, b ∈ A}.

In size they are between |A| and |A|2.
A+A can be small if A has some ’additive structure’, sim-

ilarly A ·A can be small if A has some ’multiplicative structure’.
The Erdős–Szemerédi sum–product conjecture claims that

these structures cannot come together, namely for any ϵ > 0 and
for any sufficiently big finite set A

max{|A+A|, |A ·A|} ≥ |A|2−ϵ.

The best result is due to Solymosi (2009),

max{|A+A|, |A ·A|} ≥ |A|4/3

(2 log |A|)1/3
.



Another notion to measure the ’additivity’ (or ’multiplicat-
ivity’) of a set is the additive energy (or multiplicative energy).

E+(A) = #{a1 + a2 = a3 + a4; a1, a2, a3, a4 ∈ A},
E×(A) = #{a1a2 = a3a4; a1, a2, a3, a4 ∈ A}.

In size they are between |A|2 and |A|3. Sometimes better to
view the energy as the quadratic moment of the representation
function,

sA(r) = #{r = a1 + a2; a1, a2 ∈ A},
pA(r) = #{r = a1a2; a1, a2 ∈ A}.

We have

E+(A) =
∑
r

sA(r)
2, E×(A) =

∑
r

pA(r)
2,

and a straightforward Cauchy–Schwarz inequality gives

|A|4 ≤ |A+A|E+(A), |A|4 ≤ |A ·A|E×(A).



If A is ’additive’, i.e. A+A is small, then E+(A) is big,
If A is ’multiplicative’, i.e. A ·A is small, then E×(A) is big.
One may believe that the sum–product conjecture appears

as one of the two energies should be small. However, this is very
far from true.

This is because E+(A) or E×(A) being big does not require
that A+A or A·A being small. For example, if half of A has some
additive structure, while the other half has some multiplicative
structure then both energies are big.

We will show that this is the only example (in a weak sense).
Every finite set of real numbers A can be split into two disjoint
parts A = B ∪ C with both E+(B) and E×(C) are small.

The sum–product conjecture would follow if these energies
are as small as |A|2+ϵ. However, this is not true either.



THEOREM 1: There are arbitrarily large finite sets of integers
A such that for any split A into two parts A = B ∪ C one has

max{E+(B), E×(C)} ≫ |A|7/3.

CONSTRUCTION: Let N be a large integer, and let

A = {m2n ; m ≤ 2N2/3, m is odd, n ≤ N1/3}.

Note that A is an arithmetic progression for any fixed n, as well
as a geometric progression for any fixed m. Obviously |A| ∼
N and one can show that both the additive and multiplicative
energy of A are big. This is also true for any big subset of A, if
B ⊂ A, |B| ≥ |A|/2 then E+(B) ≫ N7/3, and E×(B) ≫ N7/3.

THEOREM 2: Any finite set of real numbers A can be split
into two sets A = B ∪ C such that

max{E+(B), E×(C)} ≪ |A|3−2/33 log |A|.



Key ingredients:

We have mentioned that E+(A) big does not imply A+A small.

However E+(A) big DOES imply that A′ + A′ small for a big
subset A′ ⊂ A.

The quantitative statement is known as the B–Sz–G lemma.
There are several versions, the lemma below is due to Thomas
Schoen.

LEMMA 1: Let 1 > θ > 0 be a fixed real number and A be
a subset of the real numbers with |A| ≤ N . If E+(A) > N2+θ,
then there is an A′ ⊂ A such that

i.) |A′ +A′| ≪ N8−7θ, ii.) |A′| ≫ N (1+3θ)/4.

Note that the result is not trivial for θ close to 1 only. The
proof is a complex averaging argument.



The next lemma is the key ingredient of Solymosi in his
sum–product estimate. It is actually estimating the multiplicat-
ive energy by the size of the sum set.

LEMMA 2: Let A be a large finite subset of the real numbers.
We have

E×(A) ≪ |A+A|2 log |A|.

The proof is elementary geometry and is well described in
the talk of Solymosi tomorrow.



Finally we need the fact that the multiplicative energy (or
the additive energy as well) shows some subadditive behavior.

LEMMA 3: Let Aj , j = 1, . . . ,K be finite subsets of the real
numbers. We have

E×(
K∪
j=1

Aj) ≤ K3
K∑
j=1

E×(Aj).

This is a simple consequence of the Cauchy–Schwarz in-
equality.



The idea of the proof:

The optimal chice is θ = 31/33, write |A| = N .
If E+(A) ≤ N2+θ then B ∪ C = A ∪ ∅ and we are done.
If E+(A) > N2+θ then there is an A1 ⊂ A large with small
doubling by Lemma 1.
If E+(A \ A1) ≤ N2+θ then B ∪ C = (A \ A1) ∪ A1 and we
are done since E×(A1) ≪ |A1 + A1|2 logN ≪ N16−14θ logN by
Lemma 2 and Lemma 1.
If E+(A\A1) > N2+θ then we repeat this argument with A\A1

in place of A getting an A2 ⊂ A \ A1, next we repeat with
A \ (A1 ∪A2) in place of A, and so on.



We arrive at large disjoint subsets A1, . . . , AK ⊂ A such that for
all j = 1, . . . ,K Aj +Aj has small doubling and

E+

(
A \

K∪
j=1

Aj

)
≤ N2+θ.

We get the decomposition

B ∪ C =
(
A \

K∪
j=1

Aj

)
∪
( K∪
j=1

Aj

)
.

E×(C) is small by Lemma 3 and Lemma 2.



Some remarks on further works:

– Similar results can be derived in finite fields of prime order.
– Similar results can be derived for higher degree energies, for
higher moments of the representation functions.
– Similar results can be derived for multiple energies, for the
number of additive (multiplicative) six–tuples, eight–tuples, etc.
– For the decomposition A = B ∪ C in Theorem 2, the mutual
energies of B and C are also small,

max{E+(B,C), E×(B,C)} ≪ |A|3−1/33 log1/2 |A|.

Here

E+(B,C) = #{b1 + c1 = b2 + c2; b1, b2 ∈ B, c1, c2 ∈ C},
E×(B,C) = #{b1c1 = b2c2; b1, b2 ∈ B, c1, c2 ∈ C}.



Finally:

– I have NO ANY idea what is the right exponent in the theor-
ems. There is probably room for improvement in both the con-
struction of a lower bound and in the upper bound.

THANK YOU FOR YOUR ATTENTION.


