Asymmetric exclusion: a way to anomalous scaling

Joint work with Timo Seppäläinen

Márton Balázs

Alfréd Rényi Institute of Mathematics MTA-BME Stochastics Research Group

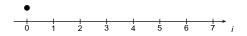
> Erdős Centennial July 1., 2013

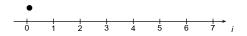
An easy example

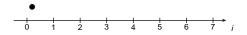
The totally asymmetric simple exclusion process

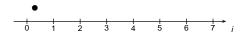
Exotic scaling

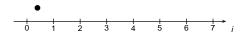
Proof

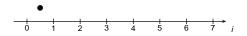


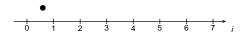


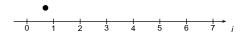


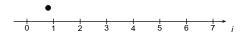


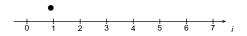


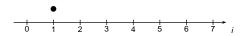


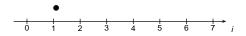


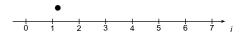


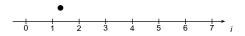


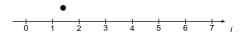


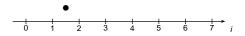


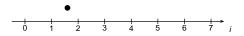


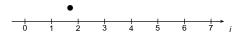


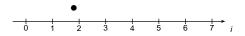


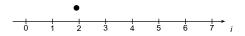


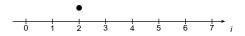


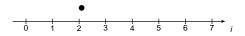


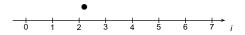


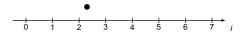


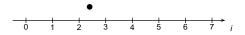


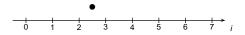


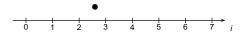


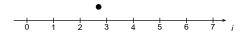


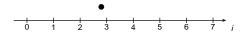


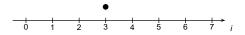


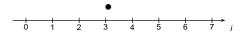


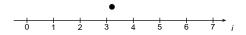


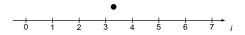


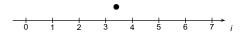


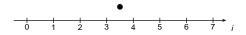


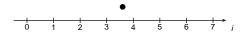


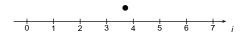


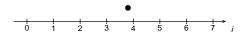


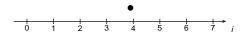


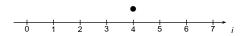


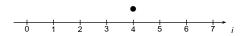




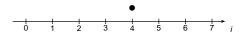






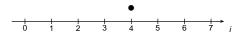


A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time *t* is S(t), counting the number of steps.



~> Continuous time Markov jump process with rate 1.

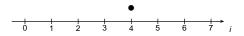
A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time *t* is S(t), counting the number of steps.



~ Continuous time Markov jump process with rate 1.

LLN: $\lim_{t\to\infty} \frac{\mathbf{S}(t)}{t} = 1$ a.s.

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time *t* is S(t), counting the number of steps.

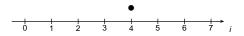


~ Continuous time Markov jump process with rate 1.

LLN:
$$\lim_{t\to\infty} \frac{\mathbf{S}(t)}{t} = 1$$
 a.s.

Fluctuations: $\lim_{t\to\infty} \frac{\operatorname{Var} S(t)}{t} = 1.$

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time *t* is S(t), counting the number of steps.

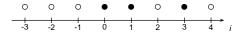


~> Continuous time Markov jump process with rate 1.

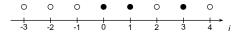
LLN:
$$\lim_{t\to\infty} \frac{\mathbf{S}(t)}{t} = 1$$
 a.s.

Fluctuations: $\lim_{t\to\infty} \frac{\operatorname{Var} S(t)}{t} = 1.$

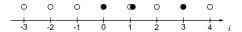
CLT:
$$\lim_{t\to\infty} \frac{\mathbf{S}(t)-t}{\sqrt{t}} \sim \mathcal{N}(0, 1).$$



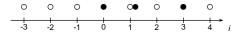
Bernoulli(ϱ) product distribution.



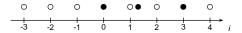
Bernoulli(*p*) product distribution.



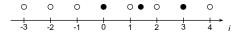
Bernoulli(*p*) product distribution.



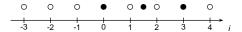
Bernoulli(*p*) product distribution.



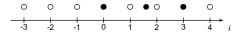
Bernoulli(*p*) product distribution.



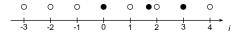
Bernoulli(*p*) product distribution.



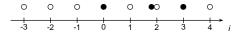
Bernoulli(*p*) product distribution.



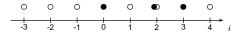
Bernoulli(*p*) product distribution.



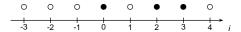
Bernoulli(*p*) product distribution.



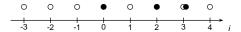
Bernoulli(*p*) product distribution.



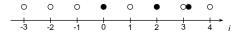
Bernoulli(*p*) product distribution.



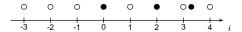
Bernoulli(*p*) product distribution.



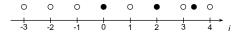
Bernoulli(*p*) product distribution.



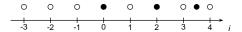
Bernoulli(*p*) product distribution.



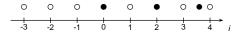
Bernoulli(*p*) product distribution.



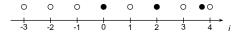
Bernoulli(*p*) product distribution.



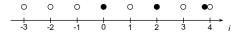
Bernoulli(*p*) product distribution.



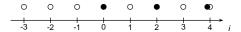
Bernoulli(*p*) product distribution.



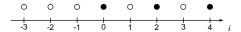
Bernoulli(*p*) product distribution.



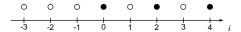
Bernoulli(*p*) product distribution.



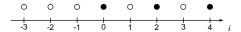
Bernoulli(*p*) product distribution.



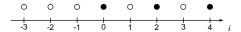
Bernoulli(*p*) product distribution.



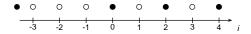
Bernoulli(*p*) product distribution.



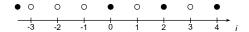
Bernoulli(*p*) product distribution.



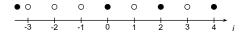
Bernoulli(*p*) product distribution.



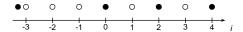
Bernoulli(*p*) product distribution.



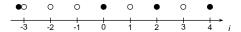
Bernoulli(*p*) product distribution.



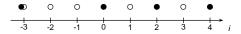
Bernoulli(*p*) product distribution.



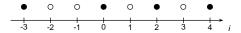
Bernoulli(*p*) product distribution.



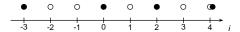
Bernoulli(*p*) product distribution.



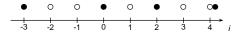
Bernoulli(*p*) product distribution.



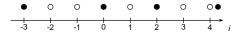
Bernoulli(*p*) product distribution.



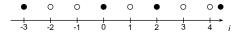
Bernoulli(*p*) product distribution.



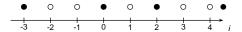
Bernoulli(*p*) product distribution.



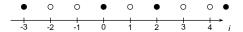
Bernoulli(*p*) product distribution.



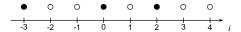
Bernoulli(*p*) product distribution.



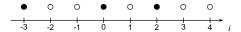
Bernoulli(*p*) product distribution.



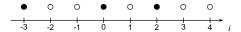
Bernoulli(*p*) product distribution.



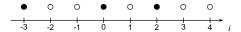
Bernoulli(*p*) product distribution.



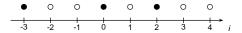
Bernoulli(*p*) product distribution.



Bernoulli(*p*) product distribution.



Bernoulli(*p*) product distribution.



Bernoulli(*p*) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.

The Bernoulli(ρ) distribution is stationary (and non-reversible) for all $0 \le \rho \le 1$.

These are the important (= ergodic) stationary distributions.

An observer starts from the origin, and moves with velocity V.

An observer starts from the origin, and moves with velocity V.

The quantity of our interest is:

 $J_V(t) = \#\{\text{particles that pass the observer by time } t\} \\ - \#\{\text{particles the observer passes by time } t\}.$

An observer starts from the origin, and moves with velocity V.

The quantity of our interest is:

 $J_V(t) = \#\{\text{particles that pass the observer by time } t\} \\ - \#\{\text{particles the observer passes by time } t\}.$

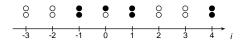
Again, counting the number of steps of a given type.

An observer starts from the origin, and moves with velocity V.

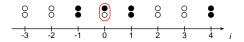
The quantity of our interest is:

 $J_V(t) = \#\{\text{particles that pass the observer by time } t\} \\ - \#\{\text{particles the observer passes by time } t\}.$

Again, counting the number of steps of a given type.

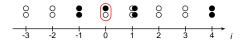


Stochastic coupling: evolution as close as possible



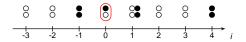
Stochastic coupling: evolution as close as possible

Second class particle



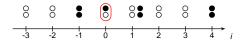
Stochastic coupling: evolution as close as possible

Second class particle



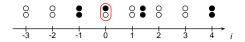
Stochastic coupling: evolution as close as possible

Second class particle



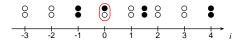
Stochastic coupling: evolution as close as possible

Second class particle



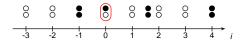
Stochastic coupling: evolution as close as possible

Second class particle



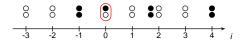
Stochastic coupling: evolution as close as possible

Second class particle



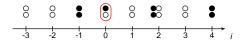
Stochastic coupling: evolution as close as possible

Second class particle



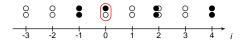
Stochastic coupling: evolution as close as possible

Second class particle



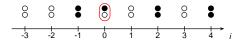
Stochastic coupling: evolution as close as possible

Second class particle



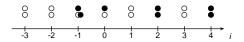
Stochastic coupling: evolution as close as possible

Second class particle



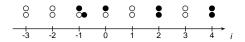
Stochastic coupling: evolution as close as possible

Second class particle



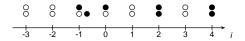
Stochastic coupling: evolution as close as possible

Second class particle



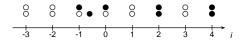
Stochastic coupling: evolution as close as possible

Second class particle



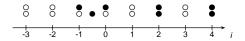
Stochastic coupling: evolution as close as possible

Second class particle



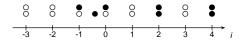
Stochastic coupling: evolution as close as possible

Second class particle



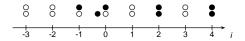
Stochastic coupling: evolution as close as possible

Second class particle



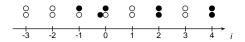
Stochastic coupling: evolution as close as possible

Second class particle



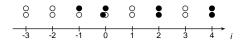
Stochastic coupling: evolution as close as possible

Second class particle



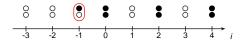
Stochastic coupling: evolution as close as possible

Second class particle



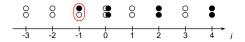
Stochastic coupling: evolution as close as possible

Second class particle



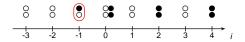
Stochastic coupling: evolution as close as possible

Second class particle



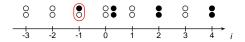
Stochastic coupling: evolution as close as possible

Second class particle



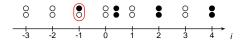
Stochastic coupling: evolution as close as possible

Second class particle



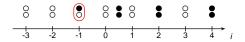
Stochastic coupling: evolution as close as possible

Second class particle



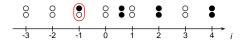
Stochastic coupling: evolution as close as possible

Second class particle



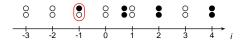
Stochastic coupling: evolution as close as possible

Second class particle



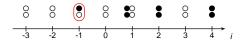
Stochastic coupling: evolution as close as possible

Second class particle



Stochastic coupling: evolution as close as possible

Second class particle



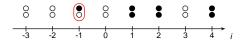
Stochastic coupling: evolution as close as possible

Second class particle



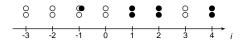
Stochastic coupling: evolution as close as possible

Second class particle



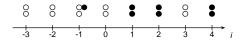
Stochastic coupling: evolution as close as possible

Second class particle



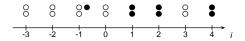
Stochastic coupling: evolution as close as possible

Second class particle



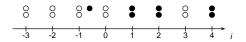
Stochastic coupling: evolution as close as possible

Second class particle



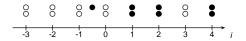
Stochastic coupling: evolution as close as possible

Second class particle



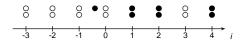
Stochastic coupling: evolution as close as possible

Second class particle



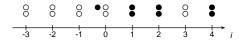
Stochastic coupling: evolution as close as possible

Second class particle



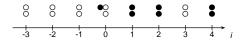
Stochastic coupling: evolution as close as possible

Second class particle



Stochastic coupling: evolution as close as possible

Second class particle

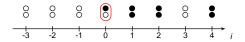


Stochastic coupling: evolution as close as possible

Second class particle

Stochastic coupling: evolution as close as possible

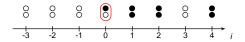
Second class particle



Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t: Q(t).

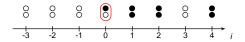


Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t: Q(t).

Its velocity:
$$\lim_{t\to\infty} \frac{\mathbf{E}\mathbf{Q}(t)}{t} = 1 - 2\varrho$$

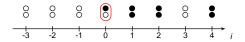


Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t: Q(t).

Its velocity: $\lim_{t\to\infty} \frac{EQ(t)}{t} = 1 - 2\varrho$ = characteristic velocity.



Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t: Q(t).

Its velocity: $\lim_{t\to\infty} \frac{EQ(t)}{t} = 1 - 2\varrho$ = characteristic velocity.

This is the speed of information propagation.

On the characteristics $V = 1 - 2\varrho$:

On the characteristics $V = 1 - 2\varrho$:

Theorem (B. - Seppäläinen)

$$0 < \liminf_{t \to \infty} \frac{\operatorname{Var}(J_{1-2\varrho}(t))}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var}(J_{1-2\varrho}(t))}{t^{2/3}} < \infty.$$

On the characteristics $V = 1 - 2\varrho$:

Theorem (B. - Seppäläinen)

$$0 < \liminf_{t \to \infty} \frac{\operatorname{Var}(J_{1-2\varrho}(t))}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var}(J_{1-2\varrho}(t))}{t^{2/3}} < \infty.$$

Important preliminaries: Cator and Groeneboom 2006, B., Cator and Seppäläinen 2006.

On the characteristics $V = 1 - 2\varrho$:

Theorem (B. - Seppäläinen)

$$0 < \liminf_{t \to \infty} \frac{\operatorname{Var}(J_{1-2\varrho}(t))}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var}(J_{1-2\varrho}(t))}{t^{2/3}} < \infty.$$

Important preliminaries: Cator and Groeneboom 2006, B., Cator and Seppäläinen 2006.

Func. analytic methods: Quastel, Valkó 2007. Combi.-analytic methods: Johansson, Tracy, Widom, Spohn, Prähofer, Ferrari, Borodin, Corwin and many others 1999-.

1. An algebraic miracle

Miracle: exact identities.

Theorem (B. - Seppäläinen; ideas also from B. Tóth, H. Spohn, and M. Prähofer)

 $\mathbf{EQ}(t) = (1 - 2\varrho)t,$ $\mathbf{Var}(J_{1-2\varrho}(t)) = c \cdot \mathbf{E}|\mathbf{Q}(t) - \mathbf{EQ}(t)| = c \cdot \mathbf{E}|\mathbf{\widetilde{Q}}(t)|.$

1. An algebraic miracle

Miracle: exact identities.

Theorem (B. - Seppäläinen; ideas also from B. Tóth, H. Spohn, and M. Prähofer)

$$\begin{split} \mathbf{E}\mathbf{Q}(t) &= (1 - 2\varrho)t, \\ \mathbf{Var}(J_{1-2\varrho}(t)) &= c \cdot \mathbf{E}|\mathbf{Q}(t) - \mathbf{E}\mathbf{Q}(t)| = c \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)|. \end{split}$$

Proof by combinatorial tricks, partial summations, covariances, independence.

1. An algebraic miracle

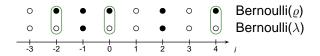
Miracle: exact identities.

Theorem (B. - Seppäläinen; ideas also from B. Tóth, H. Spohn, and M. Prähofer)

$$\begin{split} \mathbf{E}\mathbf{Q}(t) &= (1 - 2\varrho)t, \\ \mathbf{Var}(J_{1-2\varrho}(t)) &= c \cdot \mathbf{E}|\mathbf{Q}(t) - \mathbf{E}\mathbf{Q}(t)| = c \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)|. \end{split}$$

Proof by combinatorial tricks, partial summations, covariances, independence.

 $\mathbf{E}\mathbf{Q}(t) = (1 - 2\varrho)t$ $\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)|$



$$\mathbf{EQ}(t) = (1 - 2\varrho)t$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

Coupling three processes:

$$\mathbf{EQ}(t) = (1 - 2\varrho)t$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

Coupling three processes:

Push Q abnormally to the right: $\hat{Q}(t) \ge u$ \Rightarrow abnormally many second class particles pass

$$\mathbf{EQ}(t) = (1 - 2\varrho)t$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

Coupling three processes:

 $\operatorname{Var}(J_{1-2\rho}(t)) = c \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)|$

Push Q abnormally to the right: $\widetilde{Q}(t) \ge u$

- \Rightarrow abnormally many second class particles pass
- \Rightarrow abnormally large difference between J and J $^{\lambda}$

$$\mathbf{EQ}(t) = (1 - 2\varrho)t$$

Coupling three processes:

Push Q abnormally to the right: $\widetilde{Q}(t) \ge u$

⇒ abnormally many second class particles pass

- \Rightarrow abnormally large difference between J and J $^{\lambda}$
- \Rightarrow via Chebyshev's inequality:

$$\mathsf{P}\{\widetilde{\mathsf{Q}}(t) \geq u\} \leq c \cdot \frac{t^2}{u^4} \cdot \mathsf{Var}(J_{1-2\varrho}(t))$$

after optimising in λ .

 $\mathbf{EQ}(t) = (1 - 2\varrho)t$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)|$$

Coupling three processes:

Push Q abnormally to the right: $\widetilde{Q}(t) \ge u$

- \Rightarrow abnormally many second class particles pass
- \Rightarrow abnormally large difference between J and J $^{\lambda}$
- \Rightarrow via Chebyshev's inequality:

$$\mathsf{P}\{\widetilde{\mathsf{Q}}(t) \geq u\} \leq c \cdot \frac{t^2}{u^4} \cdot \mathsf{Var}(J_{1-2\varrho}(t))$$

after optimising in λ .

 $\mathsf{P}\{\widetilde{\mathsf{Q}}(t) \ge u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathsf{Var}(J_{1-2\varrho}(t)) \qquad \mathsf{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$

Repeat to the left:

$$\mathsf{P}\{|\widetilde{\mathsf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathsf{Var}(J_{1-2\varrho}(t)).$$

 $\mathsf{P}\{\widetilde{\mathsf{Q}}(t) \ge u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathsf{Var}(J_{1-2\varrho}(t)) \qquad \mathsf{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}[\widetilde{\mathsf{Q}}(t)]$

Repeat to the left:

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot \operatorname{Var}(J_{1-2\varrho}(t)).$$

Recall the miracle:

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = : c \cdot \frac{t^2}{u^4} \cdot \mathbf{E}.$$

$$\mathsf{P}\{\widetilde{\mathsf{Q}}(t) \ge u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathsf{Var}(J_{1-2\varrho}(t)) \qquad \mathsf{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

Repeat to the left:

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot \operatorname{Var}(J_{1-2\varrho}(t)).$$

Recall the miracle:

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = : c \cdot \frac{t^2}{u^4} \cdot \mathbf{E}.$$

Innocent as it looks... but already implies the 2/3 scaling.

$$\mathsf{P}\{\widetilde{\mathsf{Q}}(t) \ge u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathsf{Var}(J_{1-2\varrho}(t)) \qquad \mathsf{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

Repeat to the left:

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot \operatorname{Var}(J_{1-2\varrho}(t)).$$

Recall the miracle:

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = : c \cdot \frac{t^2}{u^4} \cdot \mathbf{E}.$$

Innocent as it looks... but already implies the 2/3 scaling.

$$\mathsf{P}\{|\widetilde{\mathsf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot E \qquad \qquad \mathsf{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot E$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

$$E = \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \, \mathrm{d}u$$

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot E$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

$$E = \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \, \mathrm{d}u$$
$$= E \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > vE\} \, \mathrm{d}v$$

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot E$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

$$E = \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \, \mathrm{d}u$$
$$= E \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > vE\} \, \mathrm{d}v$$
$$\leq E \int_{1/2}^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > vE\} \, \mathrm{d}v + \frac{1}{2}E$$

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot E$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

3. The calculation $\mathbf{P}\{|\mathbf{Q}(t)| > u\} < \mathbf{c} \cdot \frac{t^2}{t^4} \cdot \mathbf{E}.$ $E = \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = \int_{0}^{\infty} \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \, \mathrm{d}u$ $= E \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > vE\} \, \mathrm{d}v$ $\leq E \int_{1/2}^{\infty} \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > vE\} \, \mathrm{d}v + \frac{1}{2}E$ $\leq c \cdot \frac{t^2}{E^2} + \frac{1}{2}E,$

that is: $E^3 \leq c \cdot t^2$.

$$\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot E$$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

3. The calculation $\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le c \cdot \frac{t^2}{u^4} \cdot E.$ $E = \mathbf{E}|\widetilde{\mathbf{Q}}(t)| = \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \, \mathrm{d}u$ $= E \int_0^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > vE\} \, \mathrm{d}v$ $\le E \int_{1/2}^\infty \mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > vE\} \, \mathrm{d}v + \frac{1}{2}E$

$$\leq E \int_{1/2} \mathbf{P}\{|\mathbf{Q}(t)| > \mathbf{V}E\} \, \mathrm{d}\mathbf{V} + \frac{1}{2}$$
$$\leq \mathbf{c} \cdot \frac{t^2}{E^2} + \frac{1}{2}E,$$

that is: $E^3 \leq c \cdot t^2$.

$$\operatorname{Var}(J_{1-2\varrho}(t)) \stackrel{\operatorname{Miracle}}{=} \operatorname{const.} \cdot E \leq c \cdot t^{2/3}.$$

 $\mathbf{P}\{|\widetilde{\mathbf{Q}}(t)| > u\} \le \mathbf{c} \cdot \frac{t^2}{u^4} \cdot \mathbf{E}$

$$\operatorname{Var}(J_{1-2\varrho}(t)) = c \cdot \mathsf{E}|\widetilde{\mathsf{Q}}(t)|$$

Lower bound

In the upper bound, the relevant orders were

 $u = (\text{deviation of } Q(t)) \sim t^{2/3}, \qquad \varrho - \lambda \sim t^{-1/3}.$

Lower bound

In the upper bound, the relevant orders were

 $u = (\text{deviation of } Q(t)) \sim t^{2/3}, \qquad \varrho - \lambda \sim t^{-1/3}.$

The lower bound

$$\operatorname{Var}(J_{1-2\varrho}(t)) \ge c \cdot t^{2/3}$$

works with similar arguments: compare models of which the densities differ by $t^{-1/3}$, and use connections between Q(t), the green second class particles, and heights.

Lower bounds tend to be more messy.

Lower bound

In the upper bound, the relevant orders were

 $u = (\text{deviation of } Q(t)) \sim t^{2/3}, \qquad \varrho - \lambda \sim t^{-1/3}.$

The lower bound

$$\operatorname{Var}(J_{1-2\varrho}(t)) \ge c \cdot t^{2/3}$$

works with similar arguments: compare models of which the densities differ by $t^{-1/3}$, and use connections between Q(t), the green second class particles, and heights.

Lower bounds tend to be more messy.

Thank you.