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 Continuous time Markov jump process with rate 1.

LLN: lim
t→∞

S(t)
t = 1 a.s.

Fluctuations: lim
t→∞

VarS(t)
t = 1.

CLT: lim
t→∞

S(t)−t√
t

∼ N (0, 1).
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The Bernoulli(̺) distribution is stationary (and non-reversible)
for all 0 ≤ ̺ ≤ 1.

These are the important (= ergodic) stationary distributions.
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An observer starts from the origin, and moves with velocity V .

The quantity of our interest is:
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Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t : Q(t).

Its velocity: lim
t→∞

EQ(t)
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≤ lim sup
t→∞

Var(J1−2̺(t))
t2/3

< ∞.

Important preliminaries: Cator and Groeneboom 2006, B.,
Cator and Seppäläinen 2006.

Func. analytic methods: Quastel, Valkó 2007. Combi.-analytic
methods: Johansson, Tracy, Widom, Spohn, Prähofer, Ferrari,
Borodin, Corwin and many others 1999-.
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works with similar arguments: compare models of which the
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the green second class particles, and heights.

Lower bounds tend to be more messy.
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Lower bound
In the upper bound, the relevant orders were

u= (deviation ofQ(t)) ∼ t2/3, ̺− λ ∼ t−1/3.

The lower bound

Var(J1−2̺(t)) ≥ c · t2/3

works with similar arguments: compare models of which the
densities differ by t−1/3, and use connections between Q(t),
the green second class particles, and heights.

Lower bounds tend to be more messy.

Thank you.
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