Adjacency algebra of unitary Cayley graph

A.Satyanarayana Reddy

Department of Mathematics and Statistics
Indian Institute of Technology Kanpur
Kanpur, India-208016, email: satya@iitk.ac.in.

Abstract
Let \(A \) be the adjacency matrix of a graph \(X \). The set of all polynomials in \(A \) with coefficients from the field of complex numbers \(\mathbb{C} \) forms an algebra called the adjacency algebra of \(X \), denoted by \(\mathcal{A}(X) \). In this study, we show that the adjacency algebra of every unitary Cayley graph is a coherent algebra and its consequences.

Keywords: Adjacency algebra, circulant graphs, coherent algebra, distance polynomial graphs.

1 Introduction and preliminaries

For a fixed positive integer \(n \), let \(U_n = \{ k : 1 \leq k \leq n, \gcd(k, n) = 1 \} \). If \(|S| \) denotes the cardinality of the set \(S \), then \(|U_n| = \varphi(n) \). The function \(\varphi(n) \) is known as the Euler-totient function. Let \(\zeta_n \in \mathbb{C} \) denote a primitive \(n \)-th root of unity, i.e., \(\zeta^n = 1 \) and \(\zeta^k \neq 1 \) for \(0 < k < n \). Let \(N_n = \{ \zeta_n^k : 0 \leq k \leq n - 1 \} \) be the set of all the \(n \)-th roots of unity, forms a cyclic group with respect to multiplication. Also for each positive divisor \(d \) of \(n \), \(M_d = \{ \zeta_n^{bk} | k \in U_d \} \) denote the set of all primitive \(d \)-th roots of unity. Then \(M_d = M_d^{-1} \), \(|M_d| = \varphi(d) \) and \(N_n = \cup_{d|n} M_d \). We denote a circulant graph by \(X_d^n \) and define it as \(X_d^n = \text{Cay}(N_n, M_d) \) (where \(\text{Cay}(G, S) \) is a Cayley graph on the group \(G \), with connection set \(S = S^{-1} \)) \(^1\) with \(n \) vertices and the degree of every vertex is \(|M_d| = \varphi(d) \). Throughout this paper we fix \(n \), hence we denote the graph \(X_d^n \) simply by \(X_d \). Note that \(X_d \) is a graph with \(n \) vertices. When \(d = n \), the

\(^1\) for more information about Cayley graphs and circulant graphs refer Biggs [1] and Chris D. Godsil & Gordon Royle [3]
The unitary Cayley graph X_n has been studied as an object of independent interest (see, for example [Koltz & Sander [4]]).

Let $A(X)$ (or simply A) be the 0-1 adjacency matrix of a graph X. The set of all polynomials in A with coefficients from the complex number field \mathbb{C} forms an algebra called the adjacency algebra of X, denoted by $\mathcal{A}(X)$. For any two vertices u and v of a connected graph X, let $d(u, v)$ denote the length of the shortest path from u to v. Then the diameter of a connected graph $X = (V, E)$ is $\max\{d(u, v) : u, v \in V\}$. It is shown in Biggs [1] that if X is a connected graph with diameter ℓ, then

$$\ell + 1 \leq \dim(\mathcal{A}(X)) \leq n. \quad (1)$$

where $\dim(\mathcal{A}(X))$ is the dimension of $\mathcal{A}(X)$ as a vector space over \mathbb{C}.

Lemma 1.1 (Biggs [1]) A graph X is connected regular if and only if $J \in \mathcal{A}(X)$. Where J is a square matrix of appropriate size with all entries '1's.

Definition 1.2 Hadamard product of two $n \times n$ matrices A and B is denoted by $A \odot B$ and is defined as $(A \odot B)_{xy} = A_{xy}B_{xy}$.

Two $n \times n$ matrices A and B are said to be disjoint if their Hadamard product is the zero matrix.

Definition 1.3 A sub algebra of $M_n(\mathbb{C})$ is called coherent if it contains the matrices I and J and if it is closed under conjugate-transposition and Hadamard multiplication.

Theorem 1.4 Every coherent algebra contains unique basis of mutually disjoint $0,1$-matrices (matrices with entries either 0 or 1).

Definition 1.5 Let $X = (V, E)$ be a graph with adjacency matrix A then any coherent algebra which contains A is called coherent algebra of X.

Definition 1.6 If $X = (V, E)$ be a graph and A is its adjacency matrix then coherent closure of X, denote by $\langle\langle A \rangle\rangle$ or $CC(X)$, is the smallest coherent algebra containing A.

Let $X = (V, E)$ be a connected graph with diameter ℓ. The k-th distance matrix $D_k(0 \leq k \leq \ell)$ of X, is defined as follows $(D_k)_{rs} = \begin{cases} 1, & \text{if } d(v_r, v_s) = k \\ 0, & \text{otherwise}. \end{cases}$

It is clear from the definition that the matrices D_k for $1 \leq k \leq \ell$ are adjacency matrices of graphs and are called distance graphs with respect to the given
graph. It follows that

\[D_0 = I \text{ (Identity matrix)}, \quad D_1 = A, \quad D_0 + D_1 + \ldots + D_\ell = J. \]

A connected graph \(X \) is said to be a distance polynomial graph if \(D_k \in \mathcal{A}(X) \) for \(1 \leq k \leq \ell \). From the Lemma 1.1 the following note is evident.

Note 1 • Every distance polynomial graph is regular connected graph. But converse is not true.

• Every connected regular graph of diameter 2 is a distance polynomial graph.

Theorem 1.7 If \(X \) be a connected graph, then \(\mathcal{CC}(X) \) contains all the distance matrices of \(X \).

2 Main results

Theorem 2.1 \(\mathcal{A}(X^n) \) is a coherent algebra for every \(n \).

Consequently from Theorem 1.7, we have following result.

Corollary 2.2 Every unitary Cayley graph is a distance polynomial graph.

Lemma 2.3 Let \(B_n = \{ A_d|d \text{ divides } n \} \), then \(L(B_n) \) is a coherent subalgebra of \(M_n(\mathbb{C}) \) of dimension \(|B_n| = \tau(n) \), where \(L(S) \) is the linear span of the set \(S \), \(A_d \) is the adjacency matrix of the graph \(X_d \) and \(\tau(n) \) is the number of devisors of \(n \).

We also see some of the consequences of above results.

References

