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Abstract

Sierpinski graphs, S(n, k), were defined originally in 1997 by Klavzar and Miluti-
novié. The graph S(1, k) is simply the complete graph K} and S(n, 3) are the graphs
of Tower of Hanoi problem. We generalize the notion of Sierpiniski graphs, replacing
the complete graph appearing in the case S(1, k) with any graph. The newly intro-
duced notion of generalized Sierpiniski graphs can be seen as a criteria to define a
graph to be self-similar. We describe the automorphism group of those graphs and
compute their distinguishing number. We also study existence of perfect codes in
those graphs and give a complete characterization of the existence of perfect codes
in the case when the basic graph is a power of a cycle.
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1 Introduction

Klavzar and Milutinovié¢ introduced in 1997 in [5] graphs S(n, k) that gener-
alize the graphs of Tower of Hanoi problem. Later, those graphs have been
called Sierpinski graphs in [6], since their introduction was first motivated by
topological studies of Lipscomb’s space [9,10]. Those graphs have been well
studied since their introduction, see for example [2,4,7,6]. They can be defined
recursively with the following process: S(1, k) is isomorphic to the complete
graphs on k vertices, S(n+1, k) is constructed from S(n, k) by copying n times
graph S(n, k) and adding exactly one edge between each pair of copies. When
k = 3, those graphs are exactly Tower of Hanoi graphs and for larger k, they
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can be seen as graph of a variation of Hanoi problem [5]. In this paper, we
generalize this construction for any graph G, by defining generalized Sierpinski
graphs, S(n,G). S(1,G) is isomorphic to the graph G and we can construct
S(n+ 1,G) by copying |G| times S(n,G) and adding one edge between copy
x and copy y of S(n,G) whenever (x,y) is an edge of G. When G is the
complete graph on k vertices, we obtain graphs S(n, k).

In Section 2 we give a formal definition of S(n,G) and some preliminairy re-
sults on those graphs. In Section 3, we study automorphism group of S(n, G).
We compute the number of automorphisms and the distinguishing number
of S(n,G) generalizing some results of [3,7]. In [6], it is shown that always
there exists a perfect code in S(n, k). In Section 4, we study perfect codes in
S(n,G). The existence of such codes depends of the graph G and we give a
complete characterization when G is a power of cycle.

2 Preliminaries

Let k£ be an integer and G be a finite undirected graph on a vertex set
{1,...,k}. In the following, vertices of graphs will be identified with words
on integers. We denote by {1,...,k}" the set of words of size n on al-
phabet {1,...,k}. The letters of a word u of {1...,k}" are denoted by
U = ujyus - - - U,. The concatenation of two words u and v is denoted by uv.

The generalized Sierpinski graph of G of dimension n denoted by S(n, Q)
is the graph with vertex set {1,...,k}"™ and edge set defined by: {u,v} is an
edge if and only if there exists i € {1,...,n} such that:

(1) Uj = Vj if j <1,

(i) u; # v; and (ug,v;) € E(G),

(iii) u; =v; and v; = u; if j > .

In other words, if {u,v} is an edge of S(n,G), there is an edge {z,y} of G
and a word w such that v = wxy---y and v = wyx - - - x. We says that edge
{u,v} is using edge {x,y} of G.

Graphs S(n,G) can be constructed recursively from G with the following
process: S(1,G) is isomorphic to G. To construct S(n,G) for n > 1, copy k
times S(n — 1,G) and add to labels of vertices in copy = of S(n — 1,G) the
letter x at the beginning. Then for any edge {z,y} of G, add en edge between
vertex xy - - -y and vertex yx - - - x. See Figures 1 and 2 for some examples. For
any word u of length d, with 1 < d < n, the subgraph of S(n,G) induced by
vertices with label beginning by w, is isomorphic to S(n — d,G). We will call
this subgraph the copy u of S(n — d, G). For a vertex x of G, we call extreme
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Figure 1. S(1,C4), S(2,C4) and S(3,Cy)

vertex x of S(n,G) the vertex with label z - --z. Next proposition generalizes
a result of [5]:

Proposition 2.1 Let x and y be two vertices of a graph G, then the distance
between extreme vertices x and y in S(n,G) is (2" — 1)dg(x,y).

Connectivity of G gives information on connectivity of S(n,G). For example,
if G is not connected then clearly, S(n,G) is also not connected. If G is 1-
edge-connected we have the following result, useful for proving results of next
session:

Proposition 2.2 Let {x,y} be a cutting edge of a graph G. Then each edge
of S(n, G) using edge {z,y} is a cutting edge of S(n,G).

3 Automorphism group of S(n,G)

We denote by Aut(G) the automorphism group of a graph G. In this sec-
tion, we study Aut(S(n,G)) for any graph G. We denote by Aut(S(n,G)/x)
(resp. Aut(S(n,G)/[z])) the set of automorphisms of S(n, G) that fix extreme
vertices y with y adjacent to = (resp. x = y or y adjacent to x). The next
proposition gives a decomposition of any automorphism of Aut(S(n,G)):

Proposition 3.1 Let G be a connected graph, T € Aut(S(n,G)). Let x be a
vertex of G. There is a vertex o(x) of G such that all vertices of copy x of
S(n —1,G) are sent to vertices of copy o(x) of S(n —1,G). The function o
is an automorphism of G and the function o, : {1,... k}"t — {1,... k}"!
defined by T(zv) = o4(x)o(v) for v € {1,....k}" ' is an automorphism
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Figure 2. S(3,G) where G is a house

of S(n — 1,G). This implies a bijection between Aut(S(n,G)) and the set
Aut(G) x [] Aut(S(n —1,G)/x).
zeV

Proof [Sketch of the proof] We prove by induction that in fact each copy
of S(d,G), for 1 < d < n is preserved by the automorphism. We first prove
that an automorphism of S(n,G) must send any copy of S(d,G) on at most
two different copies of S(d,G). Then we prove that if it is the case, then G
must have a cutting edge and by Proposition 2.2, there is a cutting edge of
S(n, G) that is sent to another cutting edge. We finish the proof by a counting
argument. d

Corollary 3.2 The number of automorphisms of S(n,G) is:

| Aut(S(n, G))] = |Aut(G)
[T (Aut(G/[2])| 4P ED | Aut(G ) | dle)=DP () +(n-1))

zeV
n—3 )
with P(k,n) = > (n—2—14)k" and d(x) is the degree of x.
i=0
For example, if G = Cy, then |Aut(G)| = 23, |Aut(G/z)| = 2, |Aut(G/[z])| =
1 and we obtain: |Aut(Cy,n)| = 24P +n=1,



A distinguishing coloring of a graph G is a coloring of vertices (not necessarily
a proper coloring) such that the only automorphism of G that fixes the color-
ing is the identity. See Figure 3 for an example of a distinguishing coloring of
S(2,C4). The distinguishing number D(G) of a graph G is the minimal num-
ber of colors required in any distinguishing coloring (see [1]). We denote by
D(G/x) the minimal number of colors required when the only automorphism
of G that fixes the open neighborhood of x and the coloring is the identity.
We have:

Theorem 3.3 Ford > 2 and G such that D(G) > 1:

D(S(n,G)) = max( max D(G/z),2)
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Figure 3. The distinguishing number of S(2,C}y) is 2

4 Perfect codes

We say that a vertex x is dominated by a vertex y if d(z,y) < 1. A perfect code
of G is a subset of vertices of G that is both a packing (no vertex is dominated
twice) and a dominating set (every vertex is dominated). Existence of perfect
codes is an NP-complete problem for general graphs [8]. It has been shown in
[6] that there is always a perfect code in S(n, K). This is not anymore true
for general graphs S(n,G). We first give a necessary and sufficient condition
for existence of perfect codes when GG has no perfect code:

Proposition 4.1 Let G be a graph with no perfect code. The following state-
ments are equivalent:

(i) There is a integer n > 1 such that S(n,G) has a perfect code.

(ii) For all integers n > 1, S(n,G) has a perfect code.

(i) S(2,G) has a perfect code.
)

There is an oriented 2-factor H in G such that for any vertex x of G,
x has exactly one ingoing neighbor u(x) and one outgoing neighbor c(x)

(iv



and there is packing S, of G containing c(x) such that u(x) is the only
vertex not dominated by S,.

We finally give a complete characterization of the existence of perfect codes
S(n,G) when G is a power of cycle, providing more infinite families of graphs
with perfect codes.

Theorem 4.2 Let k,r,n be integers with k > 3,1 <r < %, n > 1. There is
a perfect code in S(n,Cy}) if and only if one of the following statements holds:

(i) 7+ 1 is even and k=1 mod (2r + 1), or
(ii) r=1and k=0 mod (2r + 1), or
(i) k=0 mod (2r +1) and n = 2.

To prove this theorem, we use Proposition 4.1 when k& # 0 mod (2r + 1)
(there is no perfect codes) and show that the statement (iv) of the proposition
is true only when r + 1 is even and £k = 1 mod (2r + 1). Whenever k& = 0
mod (2r+1), we study weak perfect codes, i.e. packings where extreme vertices
are not necessarily dominated and we show that there is no weak perfect code
when the dimension n is larger or equal to 3 and r > 1.
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