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» For a graph G, we call S € V(G) a dominating set if for all x € V \ S » Theorem 2. Let 1/2 < K < 1 be a constant, let p = n™K, and
there is an s € S such that xs € E(G). We denote by D(G) the G, ~ G(n,p). Then there exists r = r(n) € R such that a.a.s.
domination number of G, the smallest possible size of a dominating set. D(G,) =r+ O* (r exp(nK_l)). As in Theorem 1, r is of the form

S WAS r = log,n — log, (logyn-Inn- (1 — K)*(1 + o(1))) .

» The proof essentially uses Talagrands inequality and was inspired by the
concentration results for the independence number, as it has been done in
Random graphs by Janson, tuczak and Rucinski.

» Throughout, we work in the random graph model G(n, p), that is, in the
space of all graphs where edges are inserted with probability p, all choices » Theorem 3. Let 2/3 < K < 1 be a constant, let p = n—X, and

being made independently. | G, ~ G(n, p). Then for all (constants) C € R, there exists € > 0 such
> We show that for G ~ G(n, p), D(G) is sharply concentrated for a that for any interval | of length C and for any n € N large enough:

certain range of p.
» Notation. We denote by In n the natural logarithm, and for p € [0, 1), Pr(D(Gn) €1) <1 —e.

set q = 11 | » Proof sketch. Assume the opposite and suppose that a.a.s. d := D(G,)
P lies in an interval | of constant length C. From Theorem 2 we know that |
must lie in r + O* (rexp(n~1)). For a dominating set S of size d, we
calle = xs € E(G,) (for x € V\ S, s € S) crucial w.r.t. S if for all
s" €S —s, xs' & E(G,). Thatis, in G,, — e, S is not dominating

anymore.
» In the article On the Domination Number of a Random Graph (2001) B. S
Wieland and A.P. Godbole prove that the domination number is
concentrated on two points asymptotically almost surely (a.a.s.): let po(n) \
be the smallest p for which S T o X
2 2 |
LS In (In n/p). ]
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Let p = p(n) be either constant, or tend to 0 with p(n) > po(n). For
G, ~ G(n,p), a.as. Consider the graph F, ~ G(n, p’), where p’ = p — /p/n. Note that
D(G,) = |log, n — log,(log,n - Inn)| + 1 or we obtain th? same distribution if in G, we delete every edge with

D(Gyn) = [logyn — log,(log, n - Inn)| + 2. probabili.ty N It can be shown that under t.hose assumptions,. a.a.s. |
- - D(F,) lies in I, as well. Hence, our strategy is to delete edges in G,, with

probability ﬁ, and to show that with (at least) constant positive

probability a crucial edge has been destroyed for every dominating set of
size d. That is, with positive probability, the domination number has gone
up. We repeat the process C times, and finally get

We extend the result of Wieland and Godbole to a wider range of p: We Pr(D(F,) € 1) > ¢
show a 2-point-concentration of the domination number even if p tends to
0 almost as fast as n—1/2

» Theorem 1. Let K < 1/2 be a constant, p = n—K and let
G, ~ G(n,p). Then there exists r = r(n) € R such that a.a.s.
D(G,) = |r| +1 or D(G,) = |r| + 2. One can check that r is of the

for some absolute constant € > 0.

form
r = log, n — log, (logq n-lnn-(1-— K)2(1 + 0(1))) : » Forp = "I:f . there is a simpler argument on concentration. Now, G, is

» Proof (sketch). For r € N, consider the expected number of dominating a.a.s. a collection of stars (since a.a.s. no triangles and no paths of length

sets of size r and form its continuous extension to R. That is, consider the 3). In that case, D(G,) = n — e(G). But e(G,) enjoys a binomial

function £(x) := (:) (1 — (1 — p)*)" . Set r to be the unique distribution, and so its variance is \/";I/%

positive solution of £(x) = 1 (£ is inreasing). » There is still an enormous gap between the values of p where we can show

It follows by standard first moment arguments that a.a.s. a 2-point-concentration, and where we can show 'non-concentration’ (on

D(Gn) > [r] + 1. Second moment methods and careful analysis of the an interval of constant length). It is desirable to close this gap. We

asymptotics yield that a.a.s. D(Gn) < [r] + 2 conjecture that for p = o(n~!/?), the domination number is not

concentrated on two values anymore.

» The calculations carry through even when K tends to 1/2 from below
In“n

sufficiently slowly. That is, we can actually push p down to p(n) = n”
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or K(n) = 3 — &nlnn peghectively, where ¢ is some small constant.
2 Inn

> When p tends to 1, then the asymptotics of log, n change drastically.
However, adjusting the estimates to this case, we get the same result: Let

p(n) =1 —0o(1) and G, ~ G(n,p). Then a.as.
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