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Abstract. The theory of sortability of partition property was intrashd to
prove the existence of an optimal partition satisfying thegperty for optimal par-
tition problems over single-parameter space, and themdgteto multi-dimensional
parameter spaces. For each partition property of inteaksgst all levels of sorta-
bilities were obtained; however, the part-specific-saliteds are hard to be deter-
mined for many properties. In this paper, we establish atalgenerate exam-
ples that reveal the non-part-specific-sortabilities @fsth properties for almost
all cases. Such rule also has potential of generating mareism®m examples to
support known results.

Keywords: Optimal partition; objective function; partition propgr sortabil-
ity;

1 Introduction

For a finite se®® of distinct points in a multi-dimensional parameter sp&éde

a partition of © is of the formn = (my,---,7,) wheren,--- ,m, are disjoint
nonempty subsets & whose union i©; moreoverp is referred to as thsizeof

7, m,- -, thepartsof 7, and(ny, - - - ,n,) the shapeof = wheren; := |m;|.

An optimal partition problendeals with the selection of a partition from a given
family IT of partitions of© so as to optimize a given objective function. In many
applications, partitions in the candidate familyhave prescribed sizes which are
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constants in terms at and even have prescribed shapékis called ashape-
family (size-family if all partitions have a prescribed shape (size), andpen-
family if no restriction is placed. The family usually contains exponentially (in
n) many candidates and it is usually difficult to find an optirpaitition analyti-
cally. In the literature, a common approach used to redueedhdidate partitions
is to identify a property of optimal partitions. Thus if tleesire only polynomial
number of partitions satisfying the property, we can find ptineal one in poly-
nomial time by examining all partitions satisfying the peoly. For example, a
partition iscone-separablé the cones spanned by any two parts only have the
origin in common. Some objective functions were proved teehaptimal parti-
tions that are cone-separable [8] and the number of coreraele partitions of
sizep over a set of points inR% is at mostO (n@~ V(%)) which is polynomial in
n [6].

Hwanget al. [9] proposed a strategy to prove the existence of a partitiahis
optimal over a familyiI and satisfies a property. The main idea of the strategy
is to show that for any optimal partitianoverIl not satisfying?, there is a finite
sequence of transformations of partitiondirstarting atr such that the optimal-
ity is preserved and the transformations guarantee endiagartition satisfying
(. The success of the strategy is decided by two sequenti@nsctinvariance”
which ensures transformations staying inside the family ‘@ortability” which
concerns whether transformations end at a partition gaigi), complement-
ing the first notion. We will introduce their formal descigois together with a
commonly used transformation le¢al) k-sorting(introduced in [9]).

A k-subpartitionof a partitionr is a set ofk parts ofr. A Q-k-sortingsorts
a k-subpartitionK of 7 not satisfying@ into a partition/K” such thatk” satisfies
Q. A k-sorting is further characterized by different constraioh K’: A size-
sortingis a sorting withJ(K) = J(K') where J(K) denotes the index set of
a subpartitionk’; a shape-sortingoreserves not only the index set but also the
shape; apen-sortingallows K’ to be any partition satisfying.

A t-family 11, ¢t € {size, shape, opénis @-k-invariant if for every parti-
tion in IT not satisfying@ and ak-subpartition/k” not satisfying@, there exists
a Q-k-t-sorting of K which yields a partition also inl. Changet al. [4] in-
troduced four levels of invariance familiedl is (strong k, t)-invariant if for



every subpartition’ not satisfying) and everyQ-k-sorting of K, 7’ is in II,
IT is (part-specifick, t)-invariant if K is specific but the sorting is arbitraryi
is (sort-specifick, t)-invariant if K is arbitrary but the sorting is specifitf is
(weak k, t)-invariantif both K and the sorting are specific. A familywith each
partition satisfyingQ is surely@-(l, k, t)-invariant and is referred to astavial
invariant family. For simplicity’s sake, we say that a piaot family satisfieg) if

it contains a partition satisfyin@. Accordingly, sortability can be classified into
four levels. Ifl is a member of strong, weak (or {part-specific, sort-specifjg,
then/~! denote the other member of that pair. Th@iis (I, k, t)-sortable if and
only if there exists a non-triviaD-(I=*, k, t)-invariant family and every such fam-
ily satisfies(). Therefore, the studies turn to concern the sortabilitfgsaatition
properties.

The sortability theory was first introduced to deal with tHgeats in one-
dimensional parameter space [9], and the:, ¢)-sortabilities for partition prop-
erties of interest were later completely determined [4].aAget al. [6] first ex-
tended the sortability theory to multi-dimensional partanspace. The properties
of interest (will be defined in Section 2) are acyclic, congeparablev.S), non-
penetrating {V P), noncrossing {/C), cone-separableC(n.S), sphere-separable
(SS), and monopoly. Most of their sortabilities were obtainédg] except:k-
part-specific-sortabilities fav P, S.S, CvS, andNC whenk > 2 andC'nS when
k = 2. In this paper, we prove their non-sortabilities for> 3 by generating
invariant families from an identical rule; further, suchergan also be applied to
generate a weak-invariant-family not satisfyingV P which is much more con-
cise than the known example in [5].

2 Main Result

For a finite sef) C R?, let Cong(2) denote the cone spanned Gywith its vertex
at the origin0, and letCon\(£2) denote the convex hull g2. A cone ispointedif
for any nonzero point, not bothv and—wv are in the cone. Furthermor®,is said
to penetrateanother finite se®’ c R?if QO N Conu(Y') # (; in this case we write
Q— Q.

The following properties of a partitiom are considered in the literature [1, 2,



3,5,6,7].
Convex SeparablgCvS):  For alli, j, Con7;) N ConV(7r;) = ().

Noncrossing NC'): For all i, j, either Conyr;) N Conv\(r;) = ) or
m; C Conv(7;) and Conyr;) N wr; = () or vice
versa.

Nonpenetrating N P): For alli, j, m; /4 ;.

Cone Separablg’nS): For all4, j, Conédr;) N Condn;) = {0}.

Sphere Separabl&S): For all 4, j, there exists a sphetg¢ C R? such
that one part is withirt and the other outside of
S.

The implications among the partition properties were givdie] as in Figure
1 where = " means that if a partition satisfi€s then it also satisfie®’.

NP
A

CnS = CvS = SS
X
NC

Figure 1: Implications among properties.

For a finite sef2 ¢ R? andd > 0, let (5) denote the se@ U {6v : v € Q}.
For the sake of simplicity, we defir@(0) = Q. For a sphereS = {z € R? :
|z — v|| < R}, the boundary of is given by bdS) = {z € R¢ : ||z — v|| = R}.
Let 5 denote the unit sphere centering)at

Lemma 1. For any finite set? C bd(B) and anyo with0 < § < 1, ifv €
Cony2(6)) N bd(B), thenv € .

Proof. LetQ = {zy,22, - ,2,}. Thenv = >"7  a;x; + >, b;dx; for some
non-negativey;’s andb;’s with Y7 (a; + b;) = 1. Then

s

L= ol £ D@+ bl = 1= (1-8) b < 1. &

i=1 i=1
Sinced < 1,> 7 b = 0and thus; = 0fori = 1,---,s. That the equality of
(1) holds impliesy = axz; for somea > 0 and some; further,1 = ||v|| and thus
v=ux; €. ]



A consequence of Lemma 1 is for any finite setsQ* c bd(B) with Q' ¢
0%, QY(0) ¢ Con(Q?(4)); otherwise Q' C Conu(Q?(4)) and them)! C Q% a
contradiction.

Lemma 2. Supposé!, Q% C bd(B) c R? are finite and distinct, and Cor@’)
is pointed fori = 1,2. For Q € {CvS, NC}, {Q(5), Q%*(9)} satisfie) for all &
with 0 < § < 1ifand only if{Q2!, Q?} satisfie<CnS. For Q = N P, the statement
holds except for the necessary condition undler 3.

Proof. LetQ! = {zy, 2o, -, 2} andQ? = {y1, 42, - - , v, }. For the sufficient
condition, suppos¢Q!, Q?} satisfiesCn.S. Then there exists a nonzedevector
C such thatC'z > 0 > Cy forall z € Q' andy € Q2. Then

S

C Z(aixi + aiox;) = Z(ai +a,0)Cx; >0

=1 =1

> Z(b, + b,0)Cy; = CZ(biyi + b;0y;)

i=1 i=1
for anya;, a, > 0 but not all zerop;, b, > 0 but not all zero, and anyy < 6 < 1.
Hence,{Q'(5),Q2(0)} satisfiesCv.S and thusNC and N P by implications in
Figure 1.
For the necessary condition, it is easy to derive from Lemntiaal neither
QL(6) c Conv2%(5)) norQ?(6) c Conv(Q'(d)); hence, it suffices to consider
Q = CvS. Suppose to the contrary that C¢fé) NCong(2?) contains a non-zero

pointv. Thenv = Z a;r; = Z byy; for some non-negative;’s andb,’s with
i=1 i=1

S (a;+b) =1 Leta= Y a,andb =3 b. f a=b, thend  “u; =
a
i=1

Z %yi whose coefficients sum tb, respectively. Thus € ConuQ'(d)) N

i=1
Conv(?(d)) for any0 < § < 1, a contradiction. Suppose, w.l.og> b. Letd =

b a; bz rob;
o (< 1). Then; T = Z 55«%’ where}~" | 2 = 1. Thus ConyQ2'(4)) N

i=1
Conv(?(6)) # ) whend = g, a contradiction.



ForQ = NP andd = 2, along bdB) order points inQ! U Q2 clock-
wise. Suppose there existz € Q' andy € (¥ such thatzr,y, z are ordered
fori # j. Let 'y be the intersection point of th®, segment and thez seg-
ment. Thenyy € Con\2!(§)) N Conv(Q?(§)) whenever) < § < ¢, a con-
tradiction. Hence, points if2' are consecutive along the order for= 1, 2;
further, their convex hulls are pointed and thus they areedatigjoint. Ford >
3.letQ = {(L L Ly (SL L L and 0’ = {u ¢ (), =
Ojmipry fori=1,--- ,d—1}. It is easy to verify thafQ'(4), 2%(6)} satisfies
NP forany0 < § < 1, butQ! andQ? are not cone-separable.

]

For a partitionr = {my,--- ,7,}, letw(5) denote{n;(0) : : = 1,--- ,p}; for
a family IT of partitions, letlI(0) denote{n(J) : = € II}. Then we have

Lemma 3. For Q € {CvS, NG, | = weak or sort-specific, an@ C bd(B) c R4,
if ITis an(l, k, t)-invariant family of partitions oB not satisfying_'n.S, thenlI(d)
is an(l, k, t)-invariant family not satisfying) for some) < 6 < 1. For@Q = NP,
the statement holds fakr= 2.

Proof. Letr; andr; be any two parts of a partition € II. It is easy to verify
that if {m;(d"), 7;(0") } does not satisfy) for some0 < §' < 1, then{m; (), 7;(d)}
does not satisfy) for any0 < 6 < ¢. Thus by Lemma 2, there existséa
with 0 < § < 1 such that for anyr € II, {m;, 7;} satisfiesCnS if and only
{mi(0),m;(6)} satisfies for any two partsr; andr; of 7. Let(d) € II(9) be a
partition not satisfying). Then for anyk-subpartitionk (¢) of 7(0), K(4) does
not satisfy@ if and only if K does not satisfy'nS. Besides, &'nS-k-t-sorting

of K provides a)-sorting of K'(§) while v anddv are always sorted into the same
part, guaranteein (J) being a(l, k, t)-invariant family not satisfyingy. ]

Theorem 4. NP is not(strong,2, t)-sortable.

Proof. By Lemma 3 and the nofstrong 2, t)-sortability of CnS [5, 6], the the-
orem follows. ]

For example, théweak, 2, shapg-invariant family not satisfyingV P con-
structed from the invariant family not satisfyign.S in [5] is shown in Figure
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Figure 2: We start on the partition' = ({1,1’,2,2".7, 7'}, {3,3,4,4,6,6'},
{0,0,5,5,8,8}) which does not satisiWP. Sortw, and i, two parts not
satisfying N P, to obtain a partitionr* = ( {1,1,2,2',7,7'}, {0,0',3,3',4,4'},
{5,5,6,6',8,8'}). =* can be viewed as a rotation of by an angle?"; thus,
7! will be encountered again if the corresponding sortingsragtemented nine
times.

2. Notice that the pattern of this invariant family is muchmmooncise than the
example in [5].

Theorem 5. CvS, NC and NP are not (part-specific,k, t)-sortable for anyt
and anyk > 3.

Proof. Obtained from Lemma 3 and the nopart-specifick, ¢t)-sortability of
CnS for k > 3 [6]. ]

For example, thésort-specific3, shapg-invariant family not satisfying) €
{CvS,NC, NP} is shown in Figure 3 which is constructed from the invariant
family not satisfyingCn.S in [6].
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Figure 3: Each figure shows a partition{df 1, 2, 2, 3,3, 4,4’ 5, 5'} and the con-

vex hull of each part. Let us discuss unordered partitiorescevi easily extend the
arguments to ordered partitions. In figure (a),3alubpartitions not satisfyin@
areK; = {{1,1'},{2,2/,5,5'},{3,3'} } and K, = {{1,1'},{2,2/,5,5'},{4,4'} }.

(b) is obtained from &)-3-shape-sorting of{; and (c) is obtained from &-3-
shape-sorting of{,. Either case keeps the same pattern as in Figure (a). Thus
continuing the same sorting rule would produce partitidith® same pattern and
thus generate gsort-specific3, shapg-invariant family not satisfyingj.
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