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(Joint work with J. Rosen.) The expression
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is the Hamiltonian in a model for the critical attractive random polymer in one
dimension. Here S = {Sn ; n = 0, 1, 2, . . . } is a simple random walk on Z1. It is
easy to see that

Hn =
∑

x∈Z1

(
Lx

n − Lx+1
n

)2
,

where Lx
n =

∑n
i=1 1{Si=x} is the local time for S. We show that

Hn − 2n
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−∞
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)1/2

η, as n →∞,

where {Lx
1 , x ∈ R1} is the local time of Brownian motion at time 1. (A similar

formula should hold for symmetric random walks with variance 1.)
In general let X := {Xn ; n = 0, 1, 2, . . . } be a mean zero random walk on Z1

in the domain of attraction of a non-degenerate stable process, that is there exists
a function b(n) of regular variation of index 1/β, with 1 < β ≤ 2, such that

lim
n→∞

Xn/b(n) = Uβ,a, (1)

where Uβ,a is a non-degenerate stable random variable with Lévy exponent of the
form

ψβ,a(λ) = (1− ia( sign λ) tan(πβ/2))|λ|β .

In addition assume that almost surely the range of X is not contained in a proper
subgroup of Z1. Let φ(λ) = E(eiλX1) denote the characteristic function of X1

and, as above, let Lx
n :=

∑n
i=1 1{Xi=x} denote the local time of X. Set

cφ,1 :=
8
π

∫ π

−π
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)2

dp.



Let Lβ,a = {Lx
β,a,t ; (x, t) ∈ R1 × R1

+} denote the local time of the stable process
{Ut, t ∈ R+} that is uniquely determined by U1 = Uβ,a.

We obtain the following central limit theorem in which we do not assume that
X1 is symmetric:

Theorem. Let {Lx
n ; (x, n) ∈ Z1 × Z1

+} be the local time of a strongly aperiodic
random walk X that satisfies (1). Then
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as n →∞, where Lβ,a and η are independent. Furthermore, the mean in (2) can
be replaced by

4n

π

∫ π

0
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dp.


