
Fractional chromatic number

Definition: Denoting the set of independent sets of a graph G by S(G) a
fractional coloring is a function (a weighting) w : S(G)→ R+,0, such that

∀v ∈ V (G) :
∑

A3v,A∈S(G)

w(A) ≥ 1.

The fractional chromatic number χf (G) is the value

inf
∑

A∈S(G)

w(A)

taken under the above conditions. Instead of inf one can write min as the
infimum is always attained.

The above can be formulated as a linear program as follows: Let A be a matrix
with n := |V (G)| rows and s := |S(G)| columns in which the columns are the
characteristic vectors of the independent sets. This means that A[i, j] = 1 if
vertex vi ∈ Aj , where Aj denotes the jth independent set, and A[i, j] = 0
otherwise. Then χf (G) = min(c · x), where c = (1, . . . , 1) is the s-dimensional
all-1 vector and the minimization is under the constraints

Ax ≥ b

for the n-dimensional all-1 vector b = (1, . . . , 1)T and

x ≥ 0.

All the inequalities are meant coordinatewise.

A linear program as the above has a dual:

yA ≤ c, y ≥ 0,

and we seek
max(y · b)

under these constraint. With the above matrix a vector y satisfying the con-
straints is a non-negative weighting of the vertices such that the total weight in
any independent set is at most 1. Such a weighting is called a fractional clique
and the maximum possible total weight (that is the maximum of y · b) is the
fractional clique number ωf (G).

By the Duality Theorem of linear programming

χf (G) = ωf (G).
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This is a minimax theorem as any feasible solution for the first linear program
gives an upper bound for the value given by any feasible solution of the dual
program:

y · b ≤ y(Ax) = (yA)x ≤ c · x.

Therefore if we present a fractional coloring and a fractional clique for a graph
giving the same value, then they are necessarily optimal.

An alternative definition for χf (G) can be given by b-fold colorings.

Definition: For a positive integer b a b-fold coloring of a graph G is an attach-
ment of b distinct colors to each vertex such that adjacent vertices get disjoint
sets of colors. The minimum nuber of colors needed for this is the b-fold chro-
matic number χb(G).

A b-fold coloring is easy to turn to a fractional coloring: just attach weight 1
b

to every independent set that is a color class in your b-fold coloring. (Note that
you may use two different colors on exactly the same vertices. Then the two
color classes coincide and the corresponding independent set gets the weight 1

b
twice. Or several times if there are other color classes that are the same.)

It is also easy to see that a fractional clique with all weights rational can also
be turned into a b-fold coloring for some appropriate b. Since irrationals can
arbitrarily well approximated by rationals, this leads to the fact that

χf (G) = inf
b

χb(G)

b
,

where again we can write min in place of inf.

A graph homomorphism from graph F to graph G is a mapping ϕ : V (F ) →
V (G) that preserves edges that is for which

uv ∈ E(F )⇒ ϕ(u)ϕ(v) ∈ E(G).

The existence of a homomorphism from F to G is denoted by F → G. It is worth
noting that a proper coloring of a graph G is equivalent to a homomorphism of
G to the complete graph Kn. Generalizing this, one can observe that a b-fold
coloring of a graph G using a colors is equivalent to a homomorphism to the
Kneser graph KG(a, b). Thus we get that

χf (G) = inf
{a
b

: G→ KG(a, b)
}
,

where again, we can write min in place of inf.
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Definition: A graph G is called vertex-transitive if for all pairs of vertices u
and v one can give an automorphism (meaning an isomorphism to itself) of G
that maps u to v. Intuitively, this means that all vertices ”look the same”, that
is the graph is highly symmetric.

Theorem: If G is vertex-transitive, then

χf (G) =
|V (G)|
α(G)

.

Proof: First we show that χf (G) ≥ |V (G)|
α(G) for any graph G. Indeed, giving

weight 1
α(G) to every vertex no independent set gets more weight than 1, so this

is a fractional clique with total weight |V (G)|
α(G) . Thus

χf (G) = ωf (G) ≥ |V (G)|
α(G)

.

Now we prove that for vertex-transitive graphs the reverse inequality also holds.
If G is vertex-transitive, then all vertices are contained in the same number
of maximum independent sets. Call this number t and give every maximum
independent set (that is those of size α(G)) weight 1

t . By the definition of t
this is a fractional colouring: all vertices get total weight t 1t = 1. If the number

of maximum independent sets is ` then we distributed altogether ` 1t = `
t total

weight, thus this is an upper bound on χf (G). Now we show that this upper

bound is equal to |V (G)|
α(G) .

To this end we calculate the number of pairs (v,A) where A is an independent
set of size α(G) and v ∈ A. We have ` such A each containing α(G) vertices, so
the number of such pairs is `α(G). On the other hand, we have |V (G)| vertices
and each is contained in t independent sets of size α(G), so the number of such
pairs is |V (G)|t. Thus

`α(G) = |V (G)|t,

that is we obtained

χf (G) ≤ `

t
=
|V (G)|
α(G)

.

By the two inequalities the statement χf (G) = |V (G)|
α(G) follows. QED
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