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A COUNTEREXAMPLE TO BORSUK'S CONJECTURE

JEFF KAHN AND GIL KALAI

Abstract. Let f(d) be the smallest number so that every set in Rd of diam-

eter 1 can be partitioned into f(d) sets of diameter smaller than 1. Borsuk's

conjecture was that f(d)=d+\ . We prove that f(d)>(\.2)^ for large d.

1. Introduction

Sixty years ago Borsuk [2] raised the following question.

Problem 1 (Borsuk). Is it true that every set of diameter one in Rd can be

partitioned into d + 1 closed sets of diameter smaller than one? The conjecture

that this is true has come to be called Borsuk's conjecture.

Let f(d) be the smallest number so that every set in Rd of diameter 1 can be

partitioned into f(d) sets of diameter smaller than 1. The vertices of the regular

simplex in Rd show that f(d) >d+l. (Another example showing this is, by

the Borsuk-Ulam theorem, the ¿-dimensional Euclidean ball.) The assertion of

Borsuk's conjecture was proved in dimensions 2 and 3 and in all dimensions for

centrally symmetric convex bodies and smooth convex bodies. See [9, 1, 4] and

references cited there. Lassak [14] proved that f(d) < 2d~x + 1, and Schramm

[16] showed that for every e , if d is sufficiently large, f(d) < (-^(3/2) + e)d .
A different proof of Schramm's bound was given by Bourgain and Lindenstrauss

[3]. See [9, 1, 4] for surveys and many references on Borsuk's problem.

Borsuk's conjecture seems to have been believed generally, and various
stronger conjectures have been proposed. The possibility of a counterexam-

ple based on combinatorial configurations was suggested by Erdös [6], Larman
[15], and perhaps others. In 1965 Danzer [5] showed that the finite set K C Rd
consisting of all {0, l}-vectors of an appropriate weight cannot be covered by

(1.003)rf balls of smaller diameter. Larman [13] observed that, for sets consist-

ing of 0-1 vectors with constant weight, Borsuk's conjecture reduces to:

Conjecture 1. Let A" be a family of ^-subsets of {1, 2, ..., n} such that every

two members of K have t elements in common. Then K can be partitioned

into n parts so that in each part every two members have (t + 1) elements in
common.

Here we prove

Theorem 1. For large enough d, f(d) > (1.2)^ by constructing an appropriate

family of sets.
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We need the following result of Frankl and Wilson [8].

Theorem 2 (Frankl and Wilson). Let k be a prime power and n = 4k. Let K

be a family of n/2-subsets of {1, 2, ..., n}, so that no two sets in the family

have intersection of size n/4. Then

This settled, in particular, a (much weaker) conjecture of Larman and Rogers

[12] and implies that, if g(d) is the smallest number so that Rd can be colored

by g(d) colors such that no two points of the same color are distance one apart,

then g(d)>(\.2)d.
Let us also mention the following related result conjectured by Erdös and

proved by Frankl and Rödl [7].

Theorem 3 (Frankl and Rödl). Let n be a positive integer divisible by four. Let

K be a family of n/2-subsets of {1, 2, ..., n} such that no two sets in the family

have intersection of size n/4. Then \K\ < (1.99)" .

2. The construction

However contracted, that definition is the result of expanded meditation.

—Herman Melville, Moby Dick

Let V = {1, 2, ..., m} , and m — 4k , and k is a prime power. Let W be

the set of pairs of elements in V . For every partition P = {A, B} of V let
S (A, B) be the sets of all pairs which contain one element from A and one

element from B . Let K be the family of all sets of pairs which correspond to

partitions of V into two equal parts, i.e., K = {S(A, B) : \A\ = 2k} . Thus, A"

is a family of ( w2/4)-subsets of an m(m - l)/2-set. The smallest intersection

between S(A, B) and S(C, D) occurs when \A n C\ = k, and by the Frankl-

Wilson theorem every subfamily of more than 2 • („T^i) sets in K contains

two sets which realize the minimal distance. Thus, A" cannot be partitioned

into fewer than

2 Km/2/
2- ( m~x )

parts so that the minimal intersection is not realized in any of the parts. This

expression is greater than (1.203)^ for sufficiently large d = (™) - 1, and

Theorem 1 for general (large) d follows via the prime number theorem.

3. Remarks

1. In view of Theorem 1, the upper bounds on f(d) cited earlier seem

much more reasonable than formerly. It would be of considerable interest to
have a better understanding of the asymptotic behavior of log f(d). At the
moment, we cannot distinguish the asymptotic behavior of f(d) from that of

g(d). Also of interest would be counterexamples in small dimensions. Our

construction shows that Borsuk's conjecture is false for d = 1,325 and for

every d > 2,014.
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2. Larman's conjecture for t = 1 is open and still quite interesting, in part

because of its similarity to the Erdös-Faber-Lovasz conjecture. See [11, 10] for
some discussion and related results.

3. Intersection properties of edge-sets of graphs were first studied by Sos; see

[17] and references quoted therein.

References

1. V. Boltjansky and I. Gohberg, Results and problems in combinatorial geometry, Cambridge

Univ. Press, Cambridge, 1985.

2. K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 ( 1933),
177-190.

3. J. Bourgain and J. Lindenstrauss, On covering a set in Rd by balls of the same diameter,

Geometric Aspects of Functional Analysis (J. Lindenstrauss and V. Milman, eds.), Lecture

Notes in Math., vol. 1469, Springer-Verlag, Berlin, 1991, pp. 138-144.

4. H. Croft, K. Falconer, and R. Guy, Unsolved problems in geometry, Springer-Verlag, New

York, 1991, pp. 123-125.

5. L. Danzer, On the k-th diameter in Ed and a problem of Grünbaum, Proc. Colloq. on

Convexity 1965 (W. Fenchel, ed.), Kabenhavns Univ. Math. Inst., 1967.

6. P. Erdös, My Scottish book "problems", The Scottish Book, Mathematics from the Scottish

Café (R. D. Mauldin, ed.), Birkhäuser, 1981, pp. 35-43.

7. P. Frankl and V. Rödl, Forbidden intersections, Trans. Amer. Math. Soc. 300 (1987), 259-
286.

8. P. Frankl and R. Wilson, Intersection theorems with geometric consequences, Combinatorica
1 (1981), 357-368.

9. B. Grünbaum, Borsuk's problem and related questions, Proc. Sympos. Pure Math., vol. 7,

Amer. Math. Soc, Providence, RI, 1963.

10. J. Kahn and G. Kalai, A problem of Füredi and Seymour on covering intersecting families

by pairs (to appear).

11. J. Kahn and P. Seymour, A fractional version of the Erdös-Faber-Lovasz conjecture,

Combinatorica 12 (1992), 155-160.

12. D. Larman and C. Rogers, The realization of distances within sets in Euclidean space,

Mathematika 19 (1972), 1-24.

13. D. Larman, Open problem 6, Convexity and Graph Theory (M. Rozenfeld and J. Zaks,

eds.), Ann. Discrete Math., vol. 20, North-Holland, Amsterdam and New York, 1984,

p. 336.

14. M. Lassak, An estimate concerning Borsuk's partition problem, Bull. Acad. Polon. Sei. Ser.

Math. 30(1982),449-451.

15. C. A. Rogers, Some problems in the geometry of convex bodies, The Geometric Vein—The

Coxeter Festschrift (C. Davis, B. Grünbaum, and F. A. Sherk, eds.), Springer-Verlag, New
York, 1981, pp. 279-284.

16. O. Schramm, Illuminating sets of constant width, Mathematika 35 (1988), 180-199.

17. M. Simonovits and V. Sos, Graph intersection theorems. II, Combinatorics (A. Hajnal and

V. Sos, eds.), North-Holland, Amsterdam, 1978, pp. 1017-1030.

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

E-mail address: jkahn@math.rutgers.edu

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel

E-mail address: kalai%humus.huji.acil@relay.cs.net


