d-WISE GENERATION OF SOME INFINITE GROUPS

ANDREA LUCCHINI, ATTILA MARÓTI, DARREN SEMMEN

Abstract. What is the largest possible size of a subset of $SL(n, \mathbb{Z})$ from which every pair of elements will be a generating set? We prove a general result on generation probabilities in profinite groups that suggests the cardinality of a maximal such subset equals that of the analogous subset of $SL(n, \mathbb{Z}/2\mathbb{Z})$.

Let d be a positive integer greater than or equal to 2, and let G be a discrete or profinite group that can be topologically generated by d elements. If there is a largest integer m with the property that there exists an m-tuple of elements of G such that any d entries together (topologically) generate G then denote this number by $\mu_d(G)$, and otherwise set $\mu_d(G)$ equal to ∞. If G cannot be generated by d elements then set $\mu_d(G) = 0$.

A motivation for studying $\mu_d(G)$ is given by Theorem 12.

Another reason why the function $\mu_d(G)$ may be interesting is that it can be computed explicitly for certain groups G. For if G is any of the groups S_n for sufficiently large odd n, or A_n for sufficiently large n congruent to 2 modulo 4, or $GL(n,q)$, $PGL(n,q)$, $SL(n,q)$, $PSL(n,q)$ for n at least 12 and not congruent to 2 modulo 4, or M_{11}, or M_{23}, then there is an explicit and exact formula for $\mu_d(G)$.

(For $d = 2$ this formula is found in [2], [3] and [4] respectively where it is also shown that $\mu_2(G) = \sigma(G)$ where $\sigma(G)$ is defined in the first paragraph of Section 2. Now apply Lemma 2 to conclude that $\mu_d(G) = (d-1)\mu_2(G)$.)

If n is a positive integer greater than or equal to 2 then the group $SL(n, \mathbb{Z})$ is 2-generated. Hence, it makes sense to investigate $\mu_d(SL(n, \mathbb{Z}))$. Since $SL(n, \mathbb{Z}/2\mathbb{Z})$ is a factor group of $SL(n, \mathbb{Z})$, we certainly have $\mu_d(SL(n, \mathbb{Z})) \leq \mu_d(SL(n, \mathbb{Z}/2\mathbb{Z}))$. This, Lemma 2, Fact 8 taken from [3], and a bit of computation yields that $\nu_d(G)$ defined by

$$(b \cdot \mu_d(G))/((d-1)(\prod_{i=1}^{n-1} (2^n - 2^i) + [N(b)/2]))$$

is less than $1 + 2^{-n+1}$ for $G = SL(n, \mathbb{Z})$ and $n \geq 12$ where b is the smallest prime divisor of n, the integer $N(b)$ is the number of subspaces of a fixed n-dimensional vector space over the field of 2 elements and $[x]$ denotes the largest integer less than or equal to x. Moreover, by Fact 8 taken from [3], if the answer to the following question is affirmative for $n \geq 12$, then we also have $\nu_d(SL(n, \mathbb{Z})) \geq 1$ for $n \geq 12$.

Question 1. Is it true that $\mu_d(SL(n, \mathbb{Z})) = \mu_d(SL(n, \mathbb{Z}/2\mathbb{Z}))$ for all integers n and d greater than or equal to 2?

Everything we do in this paper is intended to suggest that the answer should be “yes” rather than “no”. We prove that for $n \geq 12$ the answer is “yes” if we replace $SL(n, \mathbb{Z})$ by its profinite completion, and so $1 \leq \nu_d(SL(\widehat{\mathbb{Z}})) < 1 + 2^{-n+1}$

Research of the second author was partially supported by NSF Grant DMS 0140578 and by OTKA T049841.

Date: 1st of May 2008.
for \(n \geq 12 \) (with equality on the left-hand-side if (but not necessarily only if) \(n \) is not congruent to 2 modulo 4). Furthermore, when \(n \geq 3 \), the probability is positive that a random \(\mu_d(\hat{SL}(n, \mathbb{Z})) \)-tuple will have the property that any \(d \) entries will together generate \(SL(n, \mathbb{Z}) \). Since \(SL(n, \mathbb{Z}) \) is dense in its profinite completion, this suggests that the answer to our question is “yes”, though it hardly proves it.

1. Computing \(\mu_d(\hat{SL}(n, \mathbb{Z})) \)

For a group \(G \) let \(\sigma(G) \) denote the minimal cardinality of a covering of \(G \), i.e., a collection of proper subgroups whose union is \(G \). If \(G \) cannot be expressed as a union of proper subgroups, i.e., \(G \) is cyclic, then set \(\sigma(G) = \infty \).

Our first observation is what allows us to compute explicit formulae for \(\mu_d \).

Lemma 2. If the non-cyclic group \(G \) can be generated by 2 elements, then
\[
(d - 1)\mu_2(G) \leq \mu_d(G) \leq (d - 1)\sigma(G).
\]

Proof. The result is trivial if \(\mu_2(G) = \infty \). So suppose that \(\mu_2(G) \) is finite. Suppose \(g_1, \ldots, g_n \) pairwise generate \(G \). Let \(x \) be a \((dn-n)\)-tuple whose first \((d-1)\) entries equal \(g_1 \), whose second \((d-1)\) entries equal \(g_2 \), etc. Then, any \(d \) entries of \(x \) will generate \(G \). The second inequality follows from the fact that, for any \(d \) entries of a tuple \(\tau \) to generate \(G \), if \(C \) is a covering of \(G \) then at most \(d-1 \) entries of \(\tau \) can belong to any one element of \(C \). \(\square \)

The simplest case of the discrete general linear group is the only one we can handle.

Lemma 3. \(\mu_d(SL(2, \mathbb{Z})) = 4(d - 1) = \mu_d(SL(2, \mathbb{Z}/2\mathbb{Z})) \).

Proof. Because \(SL(2, \mathbb{Z}) \) is pairwise generated by the four matrices,
\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \text{ and } \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix},
\]
we have \(\mu_2(SL(2, \mathbb{Z}/2\mathbb{Z})) \geq \mu_2(SL(2, \mathbb{Z})) \geq 4 \). On the other hand, the group \(SL(2, \mathbb{Z}/2\mathbb{Z}) \) is isomorphic to the symmetric group on three letters and so has a minimal covering consisting of the Sylow 3-subgroup and the three Sylow 2-subgroups. Now apply Lemma 2. \(\square \)

For \(n \geq 3 \) we will move to the profinite completion \(\hat{SL}(n, \mathbb{Z}) \) of \(SL(n, \mathbb{Z}) \). Three of the easy observations can be stated for any profinite group.

Lemma 4. For any profinite group \(G \) that can be generated topologically by \(d \) elements,
\[\mu_d(G) = \min\{\mu_d(G/N) \mid N \text{ is an open normal subgroup of } G\} \]

Proof. Clearly, \(\mu_d(G) \leq \mu_d(G/N) \) for each open normal subgroup \(N \). Suppose that the positive integer \(\ell \) is such that \(\mu_d(G/N) \geq \ell \) for each open normal subgroup \(N \). Let \(X_N \) be the subset of \((G/N)^\ell \) whose elements are exactly those tuples from which any choice of \(d \) entries will form a set that generates \(G/N \). Let \(Y_N \) be the preimage of \(X_N \) in \(G^\ell \). Then each \(Y_N \) is closed and the intersection of any finite number of the \(Y_N \) is nonempty. Since \(G \) is compact, the intersection is non-empty and so \(\mu_d(G) \geq \ell \). \(\square \)
If G is a group that is the union of finitely many proper subgroups then

$$\sigma(G) = \min\{\sigma(G/N) \mid N \text{ is a finite-index normal subgroup of } G\}.$$

Lemma 6. For any group G we have both $\mu_d(G) = \mu_d(G/\Phi(G))$ and $\sigma(G) = \sigma(G/\Phi(G))$, where $\Phi(G)$ denotes the Frattini subgroup of G.

Note that $SL(n, \mathbb{Z})$ has the congruence subgroup property for $n \geq 3$ (cf. [1] or [7]). This is why we next consider groups of the form $SL(n, \mathbb{Z}/N\mathbb{Z})$, where N is a positive integer.

Let N be a positive integer with prime power decomposition $N = p_1^{i_1} \cdots p_t^{i_t}$. Then, by the Chinese Remainder Theorem, $SL(n, \mathbb{Z}/N\mathbb{Z}) = \prod_{i=1}^t SL(n, \mathbb{Z}/p_i^{i_i}\mathbb{Z})$. We also have $\Phi(SL(n, \mathbb{Z}/N\mathbb{Z})) = \prod_{i=1}^t \Phi(SL(n, \mathbb{Z}/p_i^{i_i}\mathbb{Z}))$.

Lemma 7. Let n and N be positive integers with $n \geq 5$. Let α denote μ_d or σ. Then, $\alpha(SL(n, \mathbb{Z}/N\mathbb{Z})) = \min_{1 \leq t \leq T} \{\alpha(PSL(n, \mathbb{Z}/p_i\mathbb{Z}))\}$, where p_1, \ldots, p_t are the distinct prime divisors of N.

Proof. We have

$$\alpha(SL(n, \mathbb{Z}/N\mathbb{Z})) = \alpha(SL(n, \mathbb{Z}/N\mathbb{Z})/\Phi(SL(n, \mathbb{Z}/N\mathbb{Z})))$$

$$= \alpha\left(\prod_{i=1}^t SL(n, \mathbb{Z}/p_i^{i_i}\mathbb{Z})/\Phi(SL(n, \mathbb{Z}/p_i^{i_i}\mathbb{Z}))\right)$$

$$= \alpha\left(\prod_{i=1}^t PSL(n, \mathbb{Z}/p_i\mathbb{Z})\right)$$

$$= \min_{1 \leq t \leq T} \alpha(PSL(n, \mathbb{Z}/p_i\mathbb{Z})),$$

where the first equality follows from Lemma 6, the third equality follows from a result of Weigel [9, Theorem B], and the last equality follows from the fact that the direct summands are non-isomorphic simple groups.

Fact 5 (Neumann, [8]). If G is a group that is the union of finitely many proper subgroups then

$$\sigma(G) = \min\{\sigma(G/N) \mid N \text{ is a finite-index normal subgroup of } G\}.$$

Theorem 9. Let n be a positive integer greater than or equal to 12. Then, the following three statements are true.

1. $\mu_d(SL(n, \mathbb{Z})) = \mu_d(SL(n, \mathbb{Z}/2\mathbb{Z}))$.
2. $\sigma(SL(n, \mathbb{Z})) = \sigma(SL(n, \mathbb{Z})) = \sigma(SL(n, \mathbb{Z}/2\mathbb{Z}))$.
3. If n is not congruent to 2 modulo 4 then

$$\mu_d(SL(n, \mathbb{Z})) = (d - 1)\mu_d(SL(n, \mathbb{Z}/2\mathbb{Z})).$$
Proof. Remember that $SL(n, \mathbb{Z})$ has the congruence subgroup property when $n \geq 3$.

Fact 5 and Lemma 7 show that $\sigma(SL(n, \mathbb{Z}))$ and $\sigma(SL(n, \mathbb{Z}))$ both equal the minimum of $\sigma(PSL(n, \mathbb{Z}/p\mathbb{Z}))$, where p ranges over all prime natural numbers. By Fact 8, this minimum occurs when $p = 2$.

By Lemmas 4 and 7, $\mu_d(SL(n, \mathbb{Z}))$ will equal the minimum of $\mu_d(PSL(n, \mathbb{Z}/p\mathbb{Z}))$, where p ranges over all prime natural numbers. By Lemma 2 and Fact 8, this minimum occurs when $p = 2$.

When n is not congruent to 2 modulo 4, Fact 8 states that $\sigma(SL(n, \mathbb{Z}/2\mathbb{Z}))$ equals $\mu_2(SL(n, \mathbb{Z}/2\mathbb{Z}))$ and the rest of the third statement then follows from Lemma 2. □

2. Generation probabilities in profinite groups

Next we will show that, whenever $n \geq 3$ and $d \geq 2$, the probability is positive that a randomly chosen $\mu_d(SL(n, \mathbb{Z}))$-tuple with entries from $SL(n, \mathbb{Z})$ has the property that any d entries will together generate $SL(n, \mathbb{Z})$. This will follow from Theorem 12 and the fact (see page 442 of [5]) that whenever $n \geq 3$ and $d \geq 2$, the probability is positive that a randomly chosen d-tuple with entries from $SL(n, \mathbb{Z})$ will generate $SL(n, \mathbb{Z})$. (On the other hand, $SL(2, \mathbb{Z})$ is virtually profree and the probability is zero that a randomly chosen pair of elements will generate the group.)

Let G be a profinite group that can be generated by d elements. Let ν be the normalized Haar measure of G; abusing notation, we also denote by ν the corresponding measure on direct products of copies of G. For any $k \geq d$, let $\Omega(G, k, d)$ be the set of k-tuples of elements of G with the property that every d distinct entries together generate G. Let $P(G, k, d) = \nu(\Omega(G, k, d))$ and $P(G, d) = P(G, d, d)$.

For each open normal subgroup N of G, define $P(G, N, d)$ as follows. Let $\pi : G^d \to (G/N)^d$ be the canonical quotient map. For any $x \in \Omega(G/N, d, d)$, let $P(G, N, d) = \nu(\pi^{-1}(x) \cap \Omega(G, d, d))/\nu(\pi^{-1}(x))$. By Lemma 10, this is independent of the choice of x, so $P(G, d) = P(G, N, d)P(G, N, d)$.

Lemma 10. Let N be an open normal subgroup of G and let $\pi : G^d \to (G/N)^d$ be the canonical quotient map. For any elements x and y of $\Omega(G/N, d, d)$, $\nu(\pi^{-1}(x) \cap \Omega(G, d, d)) = \nu(\pi^{-1}(y) \cap \Omega(G, d, d))$.

Proof. Once this is proven for all finite groups G, the result for profinite G will pass through the inverse limit.

For finite G, we proceed by induction on the cardinality of N. Let \mathcal{C} be the collection of proper subgroups H of G that satisfy $HN = G$. By induction, for each $H \in \mathcal{C}$, $|H \cap N|^d P(H, H \cap N, d)$ equals the number of elements of $\pi^{-1}(x)$ with the property that every d distinct entries together generate H. Thus,

$$\frac{\nu(\pi^{-1}(x) \cap \Omega(G, d, d))}{\nu(\pi^{-1}(x))} = 1 - \sum_{H \in \mathcal{C}} \left(\frac{|H \cap N|^d}{N^d} \right) P(H, H \cap N, d),$$

and the latter value is independent of the choice of x. □

The following technical lemma will make short work of the main theorem:

Lemma 11. If N is an open normal subgroup of G then

$$P(G, k, d) \geq P(G/N, k, d) \left(1 - (1 - P(G, N, d)) \binom{k}{d} \right).$$
Proof. Clearly, if \((g_1, \ldots, g_k) \in \Omega(G, k, d)\), then \((g_1N, \ldots, g_kN) \in \Omega(G/N, k, d)\). So, assume \((g_1N, \ldots, g_kN) \in \Omega(G/N, k, d)\) and let
\[
\Lambda = \{(n_1, \ldots, n_k) \in N^k \mid \langle g_1n_1, \ldots, g_kn_k \rangle \notin \Omega(G, k, d)\}.
\]
To prove the lemma it suffices to show that \(\nu(\Lambda)/\nu(N^k) \leq (1 - P(G, N, d))(\binom{k}{d})\).

For each subset \(I = \{i_1, \ldots, i_d\}\) of \(\{1, \ldots, k\}\) with cardinality \(d\), let \(\Lambda_I\) equal
\[
\{(n_1, \ldots, n_k) \in N^k \mid \langle g_{i_1}n_{i_1}, \ldots, g_{i_d}n_{i_d} \rangle \neq G\}.
\]
The lemma then follows from the fact that \(\nu(\Lambda_I)/\nu(N^k) = 1 - P(G, N, d)\) and \(\Lambda = \bigcup_I \Lambda_I\).

\begin{theorem}
For a profinite group \(G\) and a positive integer \(d\), the following two conditions are equivalent.

1. \(P(G, d) > 0\).
2. \(P(G, \mu_d(G), d) > 0\).
\end{theorem}

The condition that \(P(G, d) > 0\) for some positive integer \(d\) is equivalent to \(G\) having polynomial maximal subgroup growth. This is a theorem of Mann [5] and Mann and Shalev [6].

Proof. Projection from \(\Omega(G, \mu_d(G), d)\) to \(\Omega(G, d, d)\) yields the implication of (1) from (2). We only show that (1) implies (2).

We want to prove that if \(P(G, d) > 0\) and \(\Omega(G, k, d) = \emptyset\) then \(P(G, k, d) > 0\).

Because \(G\) can be topologically generated by a finite number of elements, it possesses a countable descending chain of open normal subgroups, \(N_i\), that has trivial intersection. Since \(\lim_{i \to \infty} P(G/N_i, d) = P(G, d) > 0\) and, for all \(i\), \(P(G, d) = P(G/N_i, d)\), we see that \(\lim_{i \to \infty} P(G, N_i, d) = 1\). Therefore there exists a natural number \(i\) such that \((1 - P(G, N_i, d))(\binom{k}{d}) < 1\). Setting \(N\) equal to \(N_i\) in Lemma 11, we conclude that \(P(G, k, d) > 0\). \(\square\)

References

Andrea Lucchini, Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy.
E-mail address: lucchini@math.unipd.it

Attila Marót. Current address: The Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA 94720-5070, USA. Previous address: Department
of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA.
E-mail addresses: attilam@msri.org and maroti@usc.edu

Darren Semmen, Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA.
E-mail address: semmen@usc.edu