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Dedicated to Bruno Bosbach

Abstract. A ubiquitous class of lattice ordered semigroups introduced by
Bosbach in 1991, which we will call Bezout monoids, seems to be the ap-
propriate structure for the study of divisibility in various classical rings like
GCD domains (including UFD’s), rings of low dimension (including semi-
hereditary rings), as well as certain subdirect products of such rings and cer-

tain factors of such subdirect products. A Bezout monoid is a commutative
monoid S with 0 such that under the natural partial order (for a, b ∈ S,
a ≤ b ∈ S ⇐⇒ bS ⊆ aS), S is a distributive lattice, multiplication is dis-
tributive over both meets and joins, and for any x, y ∈ S, if d = x∧ y and
dx1 = x, then there is a y1 ∈ S with dy1 = y and x1 ∧ y1 = 1. In the present
paper, Bezout monoids are investigated by using filters and m-prime filters.
We also prove analogues of the Pierce and the Grothendieck sheaf representa-
tions of rings for Bezout monoids. The question as to whether Bezout monoids
describe divisibility in Bezout rings (rings whose finitely generated ideals are
principal) is still open.

Introduction

Investigating divisibility in rings is as old as ring theory itself: the study of
semigroups of divisibility of commutative rings (i.e., multiplicative semigroups of
principal ideals partially ordered by reverse inclusion) originated from the factor-
ization problems of algebraic integers. This factorization problem led Dedekind to
introduce ‘ideal numbers’ and what we now call Dedekind rings. The next step
was Krull’s general valuation theory which established a dictionary between (the
positive cones of) totally ordered abelian groups and (valuation domains of) valued
fields. This was followed by the study of domains with varying degrees of ‘nice’
divisibility theories such as unique factorization domains or, more generally, great-
est common divisor domains, as well as Dedekind and Prüfer domains. Krull’s
dictionary was extended several decades later by Jaffard [23] and Ohm [33] to
lattice-ordered abelian groups and Bezout domains.
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All these domains, and indeed some of their subdirect products and factors, share
the property that certain ideals with respect to multiplication form a semigroup
admitting a natural distributive lattice structure. It is important to note that the
meet in this distributive lattice is, in general, not necessarily the sum of the ideals,
e.g., the GCD of x and y in a polynomial ring k[x, y] in two variables x, y over a
field k is 1, which generates the whole ring, and not the proper ideal generated by
x and y.

Now the question arises naturally: what is the class of rings and the appropriate
abstract framework for studying divisibility in rings?

In terms of semigroups, the starting point is the celebrated Jaffard–Ohm The-
orem (see [23], [24], [33]): the positive cone of every lattice-ordered abelian group
arises as the semigroup of divisibility of a Bezout domain. Since the divisibility
theory of any GCD domain or of any Prüfer domain is clearly the positive cone of a
lattice-ordered abelian group, the divisibility theory of these much wider classes of
rings reduces to the divisibility theory of Bezout domains, in which the divisibility
relation is restricted to principal ideals.

Leaving the somewhat restrictive class of domains, we encounter Bezout rings
(which may have zero-divisors) in Kaplansky’s treatment of elementary divisor rings
[27]. We will focus on general Bezout rings in our considerations. There are two
special cases of these which serve as examples we would like to generalize. The
case of a valuation ring (not necessarily a domain) is reasonably straightforward in
view of a result of Clifford [13] (see [35]) and likewise the other special case, von
Neumann regular rings, whose semigroups of divisibility are obviously the Boolean
algebras with product equal to join (see Proposition 1.16 below). In this paper we
wish to lay the foundations for a satisfactory characterization/representation for the
divisibility of Bezout rings, encompassing these two extreme cases. Indeed, there is
evidence for our hope: the divisibility structure of semihereditary Bezout rings is
exactly the semihereditary Bezout monoids (see below), where semihereditariness
in the second case is defined with one of the equivalent definitions in the ring case:
the set of annihilators of any element is the principal filter generated by some
idempotent. This result is presented in a subsequent paper [3], its proof is based
on the theory developed below.

Let us turn to the semigroup framework we are proposing. Divisibility in rings
means the study of multiplication up to units or, more generally, the study of
multiplication of (finitely generated) ideals. In the most general case, there seems
to be no tool for describing this. There is a notion, however, which works in all the
classical examples listed above: a class of lattice-ordered monoids introduced by
Bosbach in [9] – without a proper name – which we will call here Bezout monoids.
For the precise definition see Section 1 and ultimately Definition 1.5.

For the purpose of an abstract description of divisibility in Bezout rings, in
the present paper we initiate a careful study of Bezout monoids, with the aim of
moving from the axiomatization through main properties to representation theory.
Sheaf representation is a very powerful tool in commutative algebra, and we found
that Bezout monoids are amenable to this treatment. In fact, we were able to
find analogues of both the Pierce and the Grothendieck sheaf representations; see
Section 4 and in particular Theorems 4.5 and 4.10. We do not intend to present a full
account of results on Bezout monoids. Clearly, results for more general classes like
(distributive) lattice-ordered semigroups or D-monoids (Bosbach’s d-semigroups or
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divisibility semigroups) are valid for Bezout monoids. Here we present only results
which we think to be useful towards an abstract characterization of the divisibility
structure of Bezout rings. Among the results presented here, there are some, mostly
elementary in character, which can be found sometimes hidden and scattered in the
literature, many of them in Bosbach’s papers. For a related topic see Bosbach [11].
We were surprised to find how ubiquitous Bezout monoids are; see some of the
examples in Section 1.

The topic of our paper belongs to the wider field of Multiplicative Ideal Theory,
which is treated in the – by now – classical books of Larsen and McCarthy [30] and
Gilmer [19]. Note that the theory of arithmetical rings introduced by Fuchs [16]
also belongs to Multiplicative Ideal Theory: these rings arose as Fuchs generalized
the classical Lasker–Noether theory to the non-noetherian case. Within Multiplica-
tive Ideal Theory, axiomatic approaches without making reference to the additive
structure started in 1939. One branch of this direction, the study of multiplicative
lattices, goes back to the paper of Ward and Dilworth [40]; two major papers in
this line are those of Dilworth [14] and Anderson [1]. Another branch, that of ideal
systems, goes back to Lorenzen [31] and was continued by Jaffard [24] and Aubert
[4] among others. For a fairly up-to-date presentation see Halter-Koch [21]. Bos-
bach’s theory, on which our approach is based, also goes back to the line started
by Lorenzen. In spite of many connections with other directions, Bosbach’s work
has not yet been integrated into a general picture of Abstract Multiplicative Ideal
Theory.

A word about terminology. For several notions, we decided to use names differ-
ent from the ones introduced earlier (some of these notions had different names by
different authors). The names we use refer both to the order and the multiplica-
tive aspect, and they are intended to emphasize that the goal of this theory is an
abstract description of the divisibility structure of (Bezout) rings. In the earlier
terminologies, this background was not always clearly visible.

The authors are grateful to Bruno Bosbach and Klaus Keimel for many helpful
hints about earlier related work in this topic, as well as to those colleagues whose
criticisms on an earlier version of this paper was a great help in improving the
presentation.

1. Basic definitions and preliminary results

Notation.

• The extension of a semigroup S with an additional zero element is denoted
by S•.

• For subsets U, V of a semigroup or a ring, define the quotient U : V =
{x |xV ⊆ U} and write u : V, U : v, or u : v in the case of U or V having
just one element u or v, respectively.

Terminology.

• All structures are commutative, and rings have an identity element 1.
• A monoid is a semigroup with identity.
• A monoid with zero is called cancellative if its nonzero elements form a
cancellative monoid and 0-cancellative if xz = yz �= 0 implies x = y for all
x, y, z.
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• The natural quasi-order on a monoid S is the relation defined by divisibility:
a ≤ b ⇐⇒ aS ⊇ bS ⇐⇒ a | b. If this quasi-order is a partial order, then
we speak of natural partial order and call the monoid a naturally partially
ordered monoid. In such a monoid, 1 is the unique invertible element, or
equivalently, 1 is multiplicatively irreducible (i.e., ab = 1 iff a = 1 = b for
all a, b ∈ S).

• An element s of a partially ordered monoid S is said to be positive if s ≥ 1.
The set S+ of positive elements is a submonoid called the positive cone of S.
Clearly, every element is positive in a naturally partially ordered monoid.

• An l-monoid is a lattice-ordered monoid S in which multiplication dis-
tributes over the lattice operations: c(a∧ b) = ca∧ cb and c(a∨ b) = ca∨ cb
for all a, b, c ∈ S.

• A distributive l-monoid is an l-monoid whose underlying lattice is distribu-
tive.

• A D-monoid is a distributive l-monoid with a 0 element whose order is the
natural partial order.

It is obvious that the positive cone of an abelian lattice-ordered group together
with a zero element is a D-monoid. However, in contrast to lattice-ordered groups,
if we consider a lattice-ordered monoid with zero whose underlying lattice is dis-
tributive and in which multiplication distributes over the lattice operations, then
its positive elements need not form a D-monoid. In other words, the induced or-
der on positive elements is not necessarily the natural one, as was shown in [5,
Chapter XIV.4]. In order for this induced order to be the natural one, a mild but
decisive condition is needed (see the following proposition), which characterizes D-
monoids among m-semilattices (see [5, Chapter XIV.4]); this latter structure was
first studied in [15].

Proposition 1.1. If S is a distributive l-monoid, then S+ is a D-monoid if and
only if, for all a, b ∈ S+, a∧ b = a implies b = ax for some x ∈ S.

Proof. All we have to prove is that this element x can be chosen from S+. Indeed,
if both a, b ≥ 1 and a ∧ b = a, and b = ax for some x, then c = x ∨ 1 ≥ 1 and
ac = a(x ∨ 1) = ax ∨ a = b ∨ a = b. �

Note that our definition of D-monoids is redundant and is given in this form for
the sake of better readability. In fact, we have:

Proposition 1.2 (Bosbach [7, 2.7-2.11]). If a monoid S with 0 is a meet semilattice
under the natural order such that products are distributive over meets, then S is a
distributive lattice, multiplication also distributes over joins, and a∧ b = 1 implies
a ∨ b = ab.

For the reader’s sake we include the proof.

Proof. Given any two elements a, b ∈ S, put d = a∧ b, a = da1, b = db1. We claim
that the element ab1 = da1b1 = a1b is the least upper bound a ∨ b of a and b. For,
if c ≥ a, b, then write c = ac1, and b = b∧ c∧ bc1 = b∧ ac1 ∧ bc1 = db1 ∧(a∧ b)c1 =
d(b1 ∧ c1) implies ba1 = da1(b1 ∧ c1) = a(b1 ∧ c1) ≤ ac1 = c. Thus S is a lattice,
and it is clear that multiplication distributes over this join. To show that S is
a distributive lattice, it is enough to check the inequality y = (a ∨ b)∧(a ∨ c) ≤
a ∨ (b∧ c) = x for arbitrary a, b, c ∈ S. Indeed, if d = a∧ b∧ c, a = da1 for some
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a1 ∈ S, then x = a1(b∧ c) = a1b∧ a1c ≥ y holds in view of a∨ b ≤ a1b, a∨ c ≤ a1c.
From the above presentation of the join it follows immediately that a∧ b = 1 implies
a ∨ b = ab. �

The implication a∧ b = 1 =⇒ a∨b = ab will often be used in the sequel, without
mentioning it explicitly.

There are several classes of semigroups modelled on divisibility in a domain.
One of these is the divisibility monoids introduced in Birkhoff’s book [5]. This is
a monoid equipped with the natural partial order. However, divisibility monoids
in this sense cannot, in general, be realized as monoids of principal ideals of a
commutative ring even if the order is total. Indeed, if the principal ideals of a
commutative ring form a chain, then their monoid is 0-cancellative, but a naturally
totally ordered monoid with 0 need not be 0-cancellative (see Clifford [13]). A
more satisfactory generalization of the positive cone of a lattice-ordered group was
introduced by Bosbach [7]. The notion we are going to use, namely Bezout monoid,
or simply B-monoid, evolved over the decades in his works and culminated in the
positive hyper-normal commutative divisibility semigroups with 0 and 1 (see in [9,
Section 4]).

Definition 1.3. A monoid S is said to be hyper-normal if for any a = ae ∈ S
and b ∈ aS there is z ∈ S such that b = az and S is the unique principal ideal
containing both e and z.

In a D-monoid S, hyper-normality has a formally stronger but equivalent form.
(In fact, this is how Bosbach defined hyper-normality, and he also showed the
equivalence of the two conditions in a D-monoid in [9, Lemma 4.2].) First of all
notice that, in a D-monoid, the fact that S is the unique principal ideal containing
both e and z is simply expressed by e∧ z = 1.

Proposition 1.4 (cf. Bosbach [9, Lemma 4.2]). A D-monoid S is hyper-normal
if and only if, for any x, y ∈ S, if d = x∧ y and dx1 = x, then there is a y1 ∈ S
with dy1 = y and x1 ∧ y1 = 1.

Proof. Definition 1.3 is the special case of the condition in our statement for d = x,
as seen by putting a = d = x, b = y, e = x1, z = y1. Conversely, if a D-monoid
S is hyper-normal in the sense of Definition 1.3 and d = x∧ y = d(x1 ∧ y2) ≤
b = dy2, x = dx1, then one has b = dz with 1 = (x1 ∧ y2)∧ z = x1 ∧(y2 ∧ z) and
b = dy2 = dz = d(y2 ∧ z), which implies hyper-normality in the above stronger form
with y1 = y2 ∧ z. �

This stronger form of hyper-normality corresponds formally to an elementary
result in number theory: one can take out the greatest common divisor to obtain
coprime natural numbers. However, one has to be very careful in dealing with this
idea. A Bezout ring satisfying hyper-normality for elements instead of principal
ideals is called Hermitian. But not every Bezout ring is Hermitian; see e.g. [18,
Example 3.4].

Notice that the semigroup of divisibility of an arbitrary ring is hyper-normal
even if the principal ideals do not form a lattice, in which case they do not form a
D-monoid. For, if R is an arbitrary ring, then aR · eR = aR implies a = aec for
some c ∈ R, and if aR ≤ bR, that is, b ∈ aR, then b = ax for some x ∈ R. Hence
ax = a(ec + ecx − 1), and therefore aR ⊇ bR = axR = aR · [e(c + cx) − 1]R and
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[e(c+ cx)− 1]R + eR = R. We do not know if the semigroup of finitely generated
ideals of an arbitrary commutative ring is hyper-normal.

Definition 1.5. A Bezout monoid, or B-monoid for short, is a hyper-normal D-
monoid.

It is obvious that the positive cone of an abelian lattice-ordered group together
with a zero element is a B-monoid. Another source of examples is arithmetical
rings, a notion introduced by Fuchs [16].

Recall that a ring is said to be arithmetical if its ideals form a distributive
lattice. Arithmetical rings are, among others, the subject of a series of exercises in
the books of Gilmer [19] (25.19) and Larsen and McCarthy [30] (IV.18). In fact,
most of these results go back to Jensen. In particular, Theorem 2 of Jensen [26]
says that a ring is arithmetical if and only if, for any pair of ideals A,B such that
A ⊆ B and B is finitely generated, there exists an ideal C for which A = BC.
Since every ideal is the union of the finitely generated ideals contained in it, this
characterization remains valid if A and C are also required to be finitely generated,
and thus an equivalent version of Jensen’s theorem states that a ring is arithmetical
if and only if the partial order in the monoid of finitely generated ideals ordered
by reverse inclusion is the natural one. As an easy consequence of this result, one
can obtain examples of B-monoids using the following assertion, which can be seen
immediately from results of Anderson [2] and Bosbach [9]. However, for the reader’s
sake we include a direct proof based on Jensen’s theorem.

Proposition 1.6. The semigroup S of finitely generated ideals in a ring R is a
B-monoid if and only if R is an arithmetical ring. In particular, the semigroup of
divisibility of a Bezout ring is a B-monoid.

Proof. Let S be the monoid of finitely generated ideals in a ring R. If S is a
B-monoid, then R is arithmetical by Jensen’s theorem. Conversely, if R is arith-
metical, then, under the partial order defined by reverse inclusion, A∧B = A+B
for any A,B ∈ S. Hence S is a meet semilattice, and C(A∧B) = (CA∧CB)
for all A,B,C ∈ S. By Proposition 1.2 it follows that S is a distributive lattice,
where the join also commutes with multiplication. To prove that it is a B-monoid,
we have to verify that S is hyper-normal. Let I, J, K be finitely generated ideals
with K ⊆ IJ = I. Again by Jensen’s theorem the equality K = I(K : I) holds.
Consequently, by Proposition 1.4 it suffices to show that R = J + (K : I). For
any maximal ideal M of R, the Nakayama Lemma implies JM = RM in the case
IM �= 0 in view of the equality IM = (IJ)M = IMJM . Therefore the equality
[J + (K : I)]M = JM + (KM : IM ) = RM holds because by using [26, Lemma on
p. 116] we have (K : I)M = (KM : IM ), hence R = J + (K : I). �

The following statement might be known to experts in commutative algebra,
although we could not find any explicit reference. The statement is known for Be-
zout rings (see Larsen, Lewis and Shores [29]), and then the more general statement
for arithmetical rings follows by Anderson [2, Corollary 8.1]. For Prüfer domains
and regular rings, which are semihereditary and hence coherent, it is an obvious
consequence of the characterization of coherent rings in [37, Proposition I.13.3].
Here we give a simple direct proof. Note that the procedure described in the proof
of Proposition 1.2 for getting the join of two elements in a B-monoid also gives
a way to find generators for the intersection of two finitely generated ideals in an
arithmetical ring.
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Proposition 1.7. The intersection of two finitely generated ideals in an arithmeti-
cal ring is again finitely generated.

Proof. Let R be an arithmetical ring, and consider the lattice of its finitely gen-
erated ideals. Since the natural order coincides with reverse inclusion, it follows
that, for any two finitely generated ideals A,B of R, A ∨ B is the greatest finitely
generated ideal contained in A ∩ B. However, this implies A ∨ B = A ∩ B since
A ∩B is the union of its finitely generated ideals. �

We continue with examples for B-monoids.

Examples 1.8.

(1) The best known examples for B-monoids are semigroups of divisibility of
Bezout rings; see Proposition 1.6. Examples for Bezout rings include valua-
tion rings as well as Bezout domains and their factor rings. Notice, however,
that not all Bezout rings can be obtained as factor rings of Bezout domains
– this fails even for valuation rings, as shown by the example constructed
by Fuchs and Salce [17]. To get more sophisticated examples of Bezout
rings we can use a pull-back construction. To this end let V be a valuation
ring (not necessarily a domain) with residue field K, and take a Bezout
subring C of K whose field of quotients is K. Then the inverse image of
C under the canonical surjection V → K is a Bezout ring, and so is any of
its factor rings. In this way one can obtain Bezout rings with interesting
properties, e.g., Bezout rings with a minimal prime ideal which is a direct
sum of (possibly infinitely many) valuation modules (see [36]) or elementary
divisor domains which are not adequate domains (cf. [22, Example 1]).

Bezout rings and their proper subclasses like those of Hermitian rings or
of elementary divisor rings, etc., appear naturally in Kaplansky’s treatment
of diagonalization of not necessarily square matrices and, in particular, of
elementary divisor rings. He left it open if they are in fact proper sub-
classes of Bezout rings. Gillman and Henriksen [18] defined subclasses of
completely regular Hausdorff spaces X by requiring that the corresponding
ring C(X) of all continuous real-valued functions defined on X be Be-
zout, Hermitian, von Neumann regular, or elementary divisor rings. In this
way they obtained the notions of F -, T -, P - and D-spaces, respectively,
and showed that these form pairwise different classes of topological spaces,
thereby answering positively the algebraic questions which have arisen in
the above-mentioned theory of Kaplansky. For more information and fur-
ther examples about Bezout rings, see e.g. [18], [27], [29].

(2) In the special case of a Prüfer domain (in particular, in a Dedekind domain)
the B-monoid of finitely generated ideals is cancellative.

(3) Semigroups of divisibility of unique factorization domains or, more gener-
ally, of greatest common divisor domains are also B-monoids with GCD
and LCM as ∧ and ∨, respectively. Such is, in particular, every polynomial
ring in an arbitrary number of indeterminates over a field. Thus, although
in all the examples listed above the join operation is given by the intersec-
tion of the corresponding ideals, meets need not be the generated ideals, as
we have seen in the introduction.
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(4) Several classes of D-monoids have been defined by means of their arith-
metics (calculation rules) and extensively investigated mainly for their de-
composition and extension properties by Bosbach. Among these, comple-
mentary semigroups [6] and bricks [8] are B-monoids. (Moreover, every
brick is isomorphic to the divisibility structure of some Bezout ring [8].)

Remarks 1.9.

(1) In view of Proposition 1.6 it is natural to ask if every B-monoid can be
obtained as the semigroup of finitely generated ideals of an arithmetical
ring partially ordered by reverse inclusion. By Anderson [2, Corollary 8.1],
this is equivalent to the seemingly stronger question as to whether every
B-monoid can be realized as the semigroup of divisibility of an appropriate
Bezout ring.

(2) The semigroup of finitely generated ideals in certain coherent rings, e.g.,
in non-Dedekind noetherian domains, shows that the order induced by re-
verse inclusion in the semigroup of finitely generated ideals is, in general,
not the natural partial order in view of [26] Theorem 2. In addition, in
the semigroup of ideals of a non-Dedekind noetherian domain, multiplica-
tion is distributive over meets (i.e., over sums of ideals) but not necessarily
over joins, i.e., over set-theoretic intersections of ideals; this lattice-ordered
semigroup is neither distributive nor cancellative. In fact, by Jensen [25,
Lemma 2], a domain is a Prüfer domain iff ideal multiplication is distribu-
tive over set-theoretic intersections (i.e., joins) of ideals. Moreover, there
are non-arithmetical rings (necessarily with non-zero nilpotent elements)
such that ideal multiplication is distributive over intersections of ideals.
See also [30, Theorem 10.18].

The following simple properties of B-monoids will be extremely important for
our investigations. The first of them is obtained by easy induction based on hyper-
normality, and we omit its proof.

Proposition 1.10. Let S be a B-monoid and let s = s1∧· · ·∧sn in S, n ≥ 2. Then
there exist elements t1, . . . , tn ∈ S such that t1 ∧ · · · ∧ tn = 1 and, for i = 1, . . . , n,
si = sti. �
Lemma 1.11. In a B-monoid S,

∧n
i=1 ai = 1 implies

∧n
i=1 a

mi
i = 1 for arbitrary

mi ∈ N. In particular, for any a, b it holds that (a ∧ b)n = an ∧ bn, (a ∨ b)n =
an ∨ bn. Likewise, given arbitrary a1, . . . , an, b1, . . . , bm, if ai ∧ bj = 1 for all i, j,
then a1 · · · an ∧ b1 · · · bm = 1.

Proof. If m is the maximum of the mi, then
n∧

i=1

ami

i ≤
n∧

i=1

ami ≤ (
n∧

i=1

ai)
n(m−1)+1 = 1

whence
∧n

i=1 a
mi
i = 1 follows. Next, for arbitrary a, b let d = a ∧ b, a = da1, b =

db1, a1∧b1 = 1 for appropriate a1, b1 ∈ S. By the foregoing we have an∧bn = dnan1∧
dnbn1 = dn(an1 ∧ bn1 ) = dn = (a∧ b)n and (a∨ b)n = dnan1 b

n
1 = dn(an1 ∨ bn1 ) = an ∨ bn.

The proof of the last claim is similar. �

Proposition 1.12. If 1 is a meet-irreducible element of a B-monoid S, i.e., s∧t =
1 implies s = 1 or t = 1, then S is a 0-cancellative chain.
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Proof. Take arbitrary elements s1, s2 ∈ S and put s = s1 ∧ s2. Then there exist
t1, t2 ∈ S such that s1 = st1 and s2 = st2 with t1 ∧ t2 = 1. Hence s = s1 or s = s2,
that is, s1 and s2 are comparable. Thus S is a chain.

Let ax = ay �= 0. Put d = x∧ y ≤ x ∨ y = db and c = ad. The equality
ad = a(x∧ y) = ax∧ ay = ax ∨ ay = a(x ∨ y) = adb �= 0 implies bc = c �= 0. By
hyper-normality there is an e with b∧ e = 1 and ce = 0. Thus e �= 1 and so b = 1,
i.e., x = y, because 1 is meet-irreducible. �
Remark 1.13. Notice the importance of hyper-normality here: the assertion does
not hold for D-monoids in place of B-monoids. For example, an infinite set and its
finite subsets form a D-monoid under set-theoretic intersection as multiplication
and set-theoretic union as meet, which is not a chain although 1 is obviously meet-
irreducible. Hence the class of B-monoids does not form a variety, being not closed
under subalgebras.

The following simple assertion underlines the importance of hyper-normality.

Proposition 1.14. If S is a B-monoid, then the set B(S) of all idempotents in S
is a Boolean algebra.

Proof. For e, f ∈ B(S) one easily checks that e∧ f, e ∨ f ∈ B(S), i.e, B(S) is a
(distributive) sublattice of S. For each e ∈ B(S), the equality e = e2 ≤ 0 implies
by hyper-normality the existence of an element f ∈ S with ef = 0, e∧ f = 1.
Therefore f2 = f ∈ B(S) and e ∨ f = 0. Thus f is the complement of e and B(S)
is indeed a Boolean algebra. �
Remark 1.15. In view of this result one can speak about the orthogonal complement
of an idempotent in a B-monoid.

Proposition 1.16. Let e, f be idempotents in a B-monoid S. Then e ∨ f = ef .

Proof. Let e, f ≤ g ∈ S. The natural order implies ge = g = gf . Hence ef ≤
gef = g, which completes the proof. �

2. Filters, m-prime filters and homomorphisms

In this section we develop the analogues of the ring concepts of ideal, prime
ideal, radical and localization for B-monoids, culminating in the description of
congruences and homomorphisms of B-monoids. The notion of ideals and prime
ideals in semigroup theory will not be subtle enough for this purpose in B-monoids.
For example, the semigroup N of non-negative integers under multiplication has
uncountably many ideals, but as a B-monoid, i.e., endowed with the natural partial
order, it has only countably many filters in the lattice theoretical sense – filters
correspond to the elements of N. This observation shows that filters may play a
more natural role in the theory of B-monoids than semigroup ideals or semigroup
prime ideals; it is filters which may complete the similarity between B-monoids
and the multiplicative theory (i.e., the division relation) of Bezout rings. Indeed,
finitely generated filters are principal in B-monoids.

In what follows, S will always stand for a B-monoid. Recall that a filter is a
subset F ⊆ S closed under meets and ‘greater’: if a, b ∈ F , then a ∧ b ∈ F , and
for c ∈ F , if a ≤ c, then c ∈ F also. Thus filters are also semigroup ideals of S.
Clearly, if F is a filter and x ∈ S, then xF and F : x are filters. Also recall that
a filter F is ∨-irreducible if a ∨ b ∈ F implies a ∈ F or b ∈ F . For our purposes
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we need a stronger combination of the lattice and the multiplicative structures: we
unify the notion of semigroup prime ideals and ∨-irreducible filters as follows.

Definition 2.1. A filter F of S is said to be m-prime if F �= S and if ab ∈ F
implies a ∈ F or b ∈ F . Since a ∨ b ≤ ab always holds in a B-monoid, an m-prime
filter is necessarily ∨-irreducible.

Note that in most textbooks on lattice theory ∨-irreducible filters are called
prime filters or sometimes dual prime ideals. However, these names would be less
appropriate for us because we shall need the multiplicative prime property. For
instance, all filters in a chain are ∨-irreducible, but in a totally ordered B-monoid
not all ∨-irreducible filters are prime ideals under multiplication (i.e., m-prime
filters).

If X ⊆ S, then the set

Xf = {x ∈ S | there exist r ∈ N and x1, . . . , xr ∈ X such that x ≥ x1 ∧ · · · ∧xr}
is the smallest filter containing X, and the map f = (X �→ Xf ) is an ideal system
(Aubert x-system) on S (as dealt with in Part A of Halter-Koch’s book [21]). The
m-prime filters are just the prime f -ideals. Several results proved in the sequel (in
particular those concerning m-prime filters) are in fact consequences of the general
theory of ideal systems. However, in order to be self-contained, we include their
easy proofs.

For arbitrary subsets U, V ⊆ S, set

U ∧ V = {u ∧ v |u ∈ U, v ∈ V }, U ∨ V = {u ∨ v |u ∈ U, v ∈ V },
U⊥ = {s ∈ S | sU = 0} ,

hence U∧V, U∨V are filters if U, V are filters. In particular, U⊥(= 0 : U) is a filter
for any subset U . For the sake of simplicity we write u∧V, u∨V and u⊥ in the case
U is a subset with just one element u. We shall need some easy folklore results,
which we nevertheless prove for the reader’s sake. Krull’s separation trick (well
known for both commutative rings and distributive lattices) gives immediately:

Proposition 2.2. Let P be a subset of S, F0 a filter such that F0 ∩ P = ∅ and Ω
the set of all filters F such that F0 ⊆ F and F ∩P = ∅. Then Ω possesses maximal
elements (with respect to inclusion), and if F is such a maximal element, then:

(1) If P is closed under ∨, then F is ∨-irreducible.
(2) If P is multiplicatively closed, then F is m-prime. In particular, every

maximal filter is m-prime.

Proof. Clearly, Ω has maximal elements by the Zorn Lemma. Notice that, for a
filter F and an element a ∈ S, the smallest filter containing F and a is aS ∧F .

(1) Assume that P is closed under ∨ and x ∨ y ∈ F, x, y /∈ F . Maximality
of F implies that there are a, b ∈ F and s, t ∈ S such that xs ∧ a, yt ∧ b ∈ P .
Consequently,

P � (xs ∧ a) ∨ (yt ∧ b) = (xs ∨ yt) ∧ (xs ∨ b) ∧ (a ∨ yt) ∧ (a ∨ b)

≥ (x ∨ y) ∧ (xs ∨ b) ∧ (a ∨ yt) ∧ (a ∨ b) ∈ F,

a contradiction.
(2) Assume that P is multiplicatively closed, ab ∈ F and both aS ∧ F, bS ∧ F

contain F properly. Then there are elements x, y ∈ S and u, v ∈ F such that
ax∧u, by∧ v ∈ P , and hence we have (ax∧u)(by∧ v) ∈ F ∩P , a contradiction. �
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As in the case of rings one can define the Jacobson radical of S as the (set-theore-
ical) intersection of all maximal filters and the nil radical as the (set-theoretical)
intersection of all m-prime filters. We call a B-monoid semiprime or reduced if
its nil radical is 0. More generally, the radical I(F ) of a filter F is defined as the
intersection of all m-prime filters containing F . In view of Proposition 2.2 we obtain
the following result in the same way as for rings.

Corollary 2.3. For any filter F of a B-monoid, its radical I(F ) consists of all
elements s ∈ S with sn ∈ F for some n ∈ N. In particular, the nil radical is just
the set of all nilpotent elements.

Definition 2.4. If the radical I(F ) of a filter F is an m-prime filter P , then F is
called a primary filter, or more precisely, a P -primary filter. If 0 is a primary filter,
then S is called a primary B-monoid. Clearly, S is a primary B-monoid iff I(0) is
the smallest m-prime filter of S.

Proposition 2.5. If F is a ∨-irreducible filter in a B-monoid S, then I(F ) is the
smallest m-prime filter containing F .

Proof. By Corollary 2.3 ab ∈ I(F ) means (ab)n ∈ F for some n ∈ N. Therefore
F � (ab)n ≤ (a ∨ b)2n = a2n ∨ b2n ∈ F , and hence either a2n ∈ F or b2n ∈ F , i.e.,
either a ∈ I(F ) or b ∈ I(F ). Thus I(F ) is an m-prime filter. The minimality of
I(F ) is clear. �

Proposition 2.6. If a multiplicative prime ideal I of S is not a filter, then every
element of S is a meet of (two) elements from I.

Proof. If I is not a filter, then it is not closed under ∧, and hence there exist
c1, c2 ∈ I such that c1 ∧ c2 = c /∈ I. Now, by hyper-normality, there exist elements
d1, d2 ∈ S with d1 ∧ d2 = 1 and ci = cdi, i = 1, 2. By our assumptions, d1 and
d2 and hence all their multiples must belong to I, and for every element x ∈ S we
have x = xd1 ∧ xd2 with xd1, xd2 ∈ I. �

Remark 2.7. The condition ab = 1 =⇒ a = 1 = b implies that S \ 1 is always a
prime ideal, but it is usually not closed under meets. The most obvious example is
the B-monoid of non-negative integers under multiplication.

Here we collect some basic, interesting results on B-monoids which are known
for finitely generated ideals of arithmetical rings (cf. [37], [12]).

Proposition 2.8. For arbitrary a, b ∈ S one has

(Sa : b) ∧ (Sb : a) = S.

Proof. Put d = a ∧ b = d(a1 ∧ b1), a = da1, b = db1, a1 ∧ b1 = 1 by using hyper-
normality. Then da1b1 = ab1 = ba1, and hence a1 ∈ (Sa : b), b1 ∈ (Sb : a)
satisfying a1 ∧ b1 = 1, and the assertion follows. �

Remark 2.9. This result is not true for D-monoids: consider the example defined
in Remark 1.13. Due to the lack of hyper-normality, several ‘nice’ properties of
arithmetical rings do not carry over to D-monoids, in contrast to B-monoids.

Corollary 2.10. If P and Q are m-prime filters of S, then either P ⊆ Q or Q ⊆ P
or P ∧ Q = S. In particular, every m-prime filter contains a unique minimal m-
prime filter. If P is an m-prime filter contained in the Jacobson radical, then
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for every element a ∈ S, either a ∈ P or P ⊆ Sa. Moreover, in this case S is
indecomposable, i.e., 1 and 0 are the only idempotents in S, and the nil radical of
S is the smallest m-prime filter of S.

Proof. Suppose that P � Q and Q � P . Then there exist p ∈ P \ Q, q ∈ Q \ P .
This implies (Sp : q) ⊆ P , (Sq : p) ⊆ Q, and hence P ∧Q = S.

Suppose that an m-prime filter P is contained in the Jacobson radical of S and
a /∈ P . Then for any p ∈ P we have the inclusion (Sp : a) ⊆ P , and hence
P ∧ (Sa : p) ⊇ (Sp : a) ∧ (Sa : p) = S, which implies (Sa : p) = S, i.e., p ∈ Sa.
Therefore in this case the prime ideals contained in the Jacobson radical form a
chain, from which the other statements follow. �

Proposition 2.2 provides ways to construct m-prime filters. The following result
emphasizes the importance of m-prime filters. We call a B-monoid S local if it has
a unique maximal filter (maximal filters are understood to be different from S), or,
equivalently, S\1 is a filter, or again, x∧ y = 1 if and only if x = 1 or y = 1. In view
of Proposition 1.12, local B-monoids are 0-cancellative chains. Homomorphisms or
congruences of B-monoids are meant in the sense of lattice-ordered semigroups or,
equivalently (in view of Proposition 1.2), of multiplicative meet semilattices. Recall
that, for a semigroup S and an ideal I of S, the Rees factor of S by I is the factor
semigroup of S by the congruence whose only non-singleton class is I.

Theorem 2.11. Let T be a local B-monoid and ϕ : S −→ T be a surjective
homomorphism from a B-monoid S onto T . Put F = {x ∈ S |ϕ(x) �= 1},
Q = {x ∈ S |ϕ(x) = 0}, and K = {x ∈ S | ∃ s /∈ F : sx = 0}. Then F ⊇ Q ⊇ K
are filters and F is m-prime. Moreover, we have for all x, y ∈ S:

ϕ(x) = ϕ(y) �= 0 if and only if

x, y /∈ Q and there is an s /∈ F with x ≤ ys and y ≤ xs.

Conversely, for every m-prime filter F the relation ∼= defined between the elements
x, y ∈ S by

(∗) x ∼= y ⇐⇒ ∃ s /∈ F : x ≤ ys and y ≤ xs

is a congruence relation whose corresponding factor semigroup SF is a totally or-
dered B-monoid, and the congruence class of 0 is K = {x ∈ S | ∃ s /∈ F : sx = 0}.
In particular, if ϕ : S −→ T is as above, then T is the Rees factor of SF by the
image QF of Q in SF , and every local B-monoid factor of S can be obtained in this
manner.

Proof. Clearly, F is an m-prime filter and Q, K are filters. Assume ϕ(x) = ϕ(y) �=
0. Then x, y are not in Q. Let d = x∧y = d(x1∧y1), x1∧y1 = 1, x = dx1, y = dy1.
The equalities ϕ(d) = ϕ(x) = ϕ(y) = ϕ(x ∨ y) = ϕ(dx1y1) = ϕ(d)ϕ(x1y1) �= 0
imply ϕ(x1y1) = 1, and hence for s = x1y1 /∈ F we have x ≤ x ∨ y = yx1 ≤
ys, y ≤ x ∨ y = xy1 ≤ xs, from which the first part of the theorem follows. For
the second part, it is straightforward to check that (∗) is a congruence of S, hence
SF is a distributive l-monoid. For the sake of convenience we will denote by zF the
image of z in SF . For any two a, b ∈ S let d = a∧ b, a = da1, b = db1, a1 ∧ b1 = 1
with appropriate a1, b1 ∈ S. Then at least one of a1, b1 is not contained in F ,
hence aF , bF are comparable, i.e., SF is totally ordered. An equality aF = aF ∧ bF
implies aF = dF and bF = (db1)F = dF (b1)F = aF (b1)F , that is, aF | bF . Likewise,
aF | bF , that is, aF cF = bF for some c ∈ S means that ac ≤ bs and b ≤ acs
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for some s /∈ F , whence a ≤ bs, which implies aF ≤ bF . This shows that the
induced order in SF is natural. Finally, for hyper-normality assume aF cF = bF
and aF eF = aF for some c and e in S. By definition we have ae ≤ as for some
s /∈ F . Then e ∧ s = d /∈ F holds by d ≤ s /∈ F and e = du for some u.
Moreover, adu = ae = ae ∧ as = a(e ∧ s) = ad. Thus, hyper-normality of S
implies the existence of an element t such that ad = adu = ae ≤ acs = adt and
u ∧ t = 1. Consequently we have bF = (ac)F = (acs)F = (adt)F = aF tF and
(e∧ t)F = (du∧ t)F ≤ dF (u∧ t)F = dF = 1, which shows that SF is hyper-normal.

The last claim is now obvious. �

Remarks 2.12. (1) For an m-prime filter F the factor of S by the congruence
(∗) is called the localization SF of S at F (sending S \ F to 1) after the
classical notion of localization at prime ideals in commutative algebra.

(2) This kind of localization or, equivalently, congruence can be defined in a
more general form; see [9, Proposition 0.9].

(3) One of the main aims of this section is a description of all homomorphisms
between B-semigroups. In doing this, we do not proceed directly. We
start from a distributive l-semigroup congruence on the given B-monoid
and then check that the resulting factor satisfies two conditions: naturality
of the induced partial order and hyper-normality. Some related results on
homomorphisms between distributive l-semigroups can be found in [7] and
[9]. A general description of homomorphisms between B-semigroups will
be given in Theorem 2.26 below.

Proposition 2.13. Localizations (i.e., congruences of the kind (∗)) on a B-monoid
S permute. That is, if we denote by ΦF the congruence (∗) belonging to an m-prime
filter F , and F, F ′ are m-prime filters on S, then we have ΦF ◦ ΦF ′ = ΦF ′ ◦ ΦF ,
where ◦ denotes the relational product.

Proof. Let xΦF y with s /∈ F such that x ≤ ys, y ≤ xs, and yΦF ′z with t /∈ F ′

such that y ≤ zt, z ≤ yt. Put u = xt ∧ zs; then xΦF ′u since u ≤ xt is clear and
ut = xt2 ∧ zst ≥ xt2 ∧ ys ≥ xt2 ∧ x = x, and uΦF z since u ≤ zs is clear and
usw = xts ∧ zs2 ≥ yt ∧ zs2 ≥ z ∧ zs2 = z. �

Remark 2.14. This shows that the congruences which we will use in the Grothen-
dieck-type sheaf representation of B-monoids (see Theorem 4.10) permute.

The following theorem stresses the importance of filters by marking the paral-
lelism of certain congruences of B-monoids with ideals in ring theory. Although
Rees factors are suitable for working with 0-cancellative naturally totally ordered
semigroups, i.e., with local B-monoids, they are not appropriate for dealing with
general B-monoids. Our next result makes this situation clear.

Theorem 2.15. Let S be a B-monoid and F be any filter. Then

(∗∗) x ∼= y ⇐⇒ ∃ s ∈ F : x ∧ s = y ∧ s, x, y,∈ S

defines a congruence of S whose factor S/F is again a B-semigroup, called the
factor B-monoid of S by the filter F .

Proof. It is well known from lattice theory that (∗∗) is a lattice congruence. More-
over, it is straightforward to see that it is indeed a congruence of S. The image
of an arbitrary element a ∈ S in S/F will be denoted by ā. First, we show the
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naturality of the induced order on S/F . Let ā∧ b̄ = ā; then d̄ = ā for d = a∧ b and
hence b = dc for some c, so b̄ = dc = d̄c̄ = āc̄. Conversely, the equality b̄ = āc̄ = ac
for some a, b, c ∈ S means that b∧ s = ac∧ s for some s ∈ F . Consequently,
a∧ s ≤ b∧ s implies ā ≤ b̄. This verifies the naturality of the induced order in S/F .

Finally, assume that hyper-normality fails for S/F . Then there are a, b, e ∈ S
with ā = āē ≤ b̄ such that there is no x ∈ S with b̄ = āx̄ and ē∧ x̄ = 1. Since b̄ = āx̄
implies b̄ = ā(x ∧ y) for all y ∈ F : a, this shows that 1 /∈ X = [x ∧ (F : a)] ∧ e.
Therefore the filter generated by X is proper, and hence it is contained in an m-
prime filter P . Moreover, in the totally ordered localization SP of S at P we have
that aP is not an element of FP , the image of F in SP (where xP denotes the image
of x ∈ S in SP ). For, by the definition of localization, aP ∈ FP means as ∈ F
for some s /∈ P . But as ∈ F implies s ∈ F : a ⊆ P , a contradiction. Therefore
aP /∈ FP , and hence the image ãP of aP in the Rees factor T of SP by FP , which
is obviously a B-monoid, is not 0. However, in this T we have 0 �= ãP = ãP ẽP , but
ẽP �= 1 by e ∈ P , again a contradiction. Thus S/F is hyper-normal, whence it is a
B-monoid. �
Remarks 2.16.

(1) Let S be the semigroup of divisibility of a Bezout ring R and take any ideal
I of R. Then the semigroup of divisibility of R/I is just S/F , where F is
the filter consisting of the principal ideals contained in I.

(2) Such a kind of congruence can be defined for a larger class of distributive
l-semigroups; see [9, Proposition 0.9 ].

Proposition 2.17. Factors by filters (i.e., congruences of the kind (∗∗)) on a B-
monoid S permute. That is, if we denote by θF the congruence (∗∗) belonging to
a filter F , and F, F ′ are filters on S, then we have θF ◦ θF ′ = θF ′ ◦ θF , where ◦
denotes the relational product.

Proof. Let xθF y with s ∈ F be such that x ∧ s = y ∧ s and yθF ′z with t ∈ F ′

such that y ∧ t = z ∧ t. Put u = (x ∧ t) ∨ (z ∧ s). Then xθF ′u since u ∧ t =
(x∧ t)∨ (z∧s∧ t) = (x∧ t)∨ (y∧s∧ t) = (x∧ t)∨ (x∧s∧ t) = (x∧ t) and uθF z since
u∧ s = (x ∧ t∧ s)∨ (z ∧ s) = (y ∧ t∧ s)∨ (z ∧ s) = (z ∧ t∧ s)∨ (z ∧ s) = z ∧ s. �
Remark 2.18. This shows that the congruences which we will use in the Pierce-type
sheaf representation of B-monoids (see Theorem 4.5) permute.

We are now in a position to discuss the lifting of idempotents modulo the nil
radical. As an easy consequence of Lemma 1.11 one has:

Proposition 2.19. Let N be the nil radical of a B-monoid S and ē2 = ē be an
idempotent in the factor B-monoid S/N . Then there is an idempotent e2 = e ∈ S
whose image in S/N is ē. In particular, for any finite set of pairwise orthogonal
idempotents ēi ∈ S/N there are pairwise orthogonal idempotents ei ∈ S such that
each ēi is the image of ei.

Proof. Let f̄ ∈ S/N be the complement of ē in S/N , i.e., f̄2 = f̄ , ē∧ f̄ = 1, ēf̄ = 0
and a, b ∈ S such that ē, f̄ are images of a, b in S/N , respectively. Then we have
a∧ b∧ c = 1 for some nilpotent element c ∈ S and ab ∈ N . Thus there is an integer
n such that 0 = cn = (ab)n = anbn. By Lemma 1.11 one has 1 = an ∧ bn ∧ cn =
an ∧ bn and 0 = anbn = an ∨ bn. Therefore e = an is the required idempotent. The
other statement is now obvious. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DIVISIBILITY THEORY IN COMMUTATIVE RINGS: BEZOUT MONOIDS 3981

The next result can be compared with claim (iii) in [10, Proposition 7.7] and [32,
Proposition 3.7] for rings.

Proposition 2.20. A B-monoid is a finite direct product of primary B-monoids
iff it has only finitely many minimal m-prime filters.

Proof. It is enough to see only the sufficiency, which is essentially a simple case
of the Chinese Remainder Theorem. Let {P1, . . . , Pn} be the finite set of minimal
m-prime filters of S. By Corollary 2.10 one has Pn ∧Pj = S for all j < n. This

implies Pn ∧Qn = S with Qn =
n−1∏
i=1

Pi. Hence there are a ∈ Pn, an ∈ Qn with

a∧ an = 1 and aan nilpotent, say (aan)
l = 0. For e = al, en = aln one has een = 0,

e∧ en = 1, hence e2 = e ∈ Pn, e
2
n = en ∈ Qn. For Sn = enS, T = eS one can

see immediately that Sn is a primary B-monoid and T has n− 1 minimal m-prime
filters. Therefore the statement follows by induction. �

It follows from the above that an indecomposable B-monoid has either a smallest
m-prime filter or infinitely many minimal m-prime filters (in fact, both cases can
occur).

Localization of an arbitrary commutative ring by a (saturated multiplicatively
closed) subset induces a homomorphism between the semigroups of divisibility of
the considered rings. For B-monoids, the notion corresponding to a saturated
multiplicatively closed subset is an m-cofilter, that is, a multiplicatively closed
subset C such that a ≤ b and b ∈ C imply a ∈ C. Now we show that localization
by an m-cofilter is a surjective homomorphism.

Theorem 2.21. If C is an m-cofilter in a B-monoid S, then, for x, y ∈ S,

x ∼= y ⇐⇒ ∃ s ∈ C : x ≤ ys and y ≤ xs

defines a congruence on S whose factor is a B-monoid, called the localization SC

of S at C, and the congruence class containing 0 is K = {x ∈ S | ∃ s ∈ C : sx = 0}.

We omit the straightforward proof because one can see this in the same way as
in the second part of the proof of Theorem 2.11.

Remarks 2.22.

(1) Clearly, the congruence defined in Theorem 2.21 contains the congruence
(∗∗) defined in Theorem 2.15, and they need not be equal. See also Example
2.28.

(2) For any subset A of S, sending A to 1 results in the localization SC of S
at the m-cofilter C consisting of the divisors of finite products of elements
in A. If an m-cofilter C is the complement of an m-prime filter F , then, as
usual, we write SF instead of SC .

(3) Theorem 2.21 obviously generalizes the localization at m-prime filters de-
scribed in Theorem 2.11. We have separated the two constructions because
of the key role of Theorem 2.11. In addition, we think that this manner of
presentation is easier to follow.

Proposition 2.23. If a, x, y ∈ S in a B-monoid S, then xa = ya holds if and only
if there is an s ∈ a⊥ such that x ∧ s = y ∧ s.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Proof. Without loss of generality one can assume x ≤ y, i.e, y = tx for some t ∈ S
(we could consider x∧ y and y instead of x and y). Putting b = ax one obtains
bt = b. Therefore by hyper-normality there is s ∈ b⊥ = (ax)⊥ with t∧ s = 1.
Consequently, we have x ∧ sx = x = x(t ∧ s) = tx ∧ sx = y ∧ sx, from which the
statement follows in view of sx ∈ a⊥. �
Corollary 2.24. If 0 is an m-prime filter in a B-monoid S, then S is cancellative.
Consequently, if F is an m-prime filter of an arbitrary B-monoid S, then the factor
S/F is cancellative. �
Remark 2.25. It is at this point that we can see the importance of hyper-normality.
If we extend the complement of an m-prime filter of a B-monoid by a zero element,
then we obtain a D-monoid which has no zero-divisors but is not hyper-normal: the
condition of hyper-normality is satisfied for any triple a, b, e which are all different
from 0 but it does not hold if a �= 0 and b = 0.

B-monoids are modelled after the divisibility theory of Bezout rings, so they
are somewhat simpler structures than the latter. Hence there are, as one can
expect, “in some sense” more homomorphisms between them than the ones induced
by homomorphisms between rings. However, combining Theorems 2.15 and 2.21,
Remark 2.22, and Proposition 2.23 one can describe, as the main result of this
section, all homomorphisms between B-monoids as follows.

Theorem 2.26. Let ψ be a homomorphism of a B-monoid S onto a B-monoid.
Put C = {s ∈ S |ψ(s) = 1} and F = {s ∈ S |ψ(s) = 0}. Then C is an m-cofilter,
F is a filter, and for all a ∈ S, s ∈ F and c ∈ C, a∧ s ≤ c implies a ∈ C and
s ≤ ca implies a ∈ F . Now the equality ψ(x) = ψ(y) holds if and only if there are
s ∈ F, c ∈ C with y ∧ s ≤ cx and x∧ s ≤ cy. In particular, ψ(S) is a B-monoid,
isomorphic to the factor B-monoid Sψ of the localization SC of S by the image FC

of F in SC .
Conversely, given an m-cofilter C and a filter F in a B-monoid S such that, for

all a ∈ S, s ∈ F and c ∈ C, a∧ s ≤ c implies a ∈ C and s ≤ ca implies a ∈ F ,
then the relation

Ψ = {(x, y) ∈ S × S | ∃s ∈ F, c ∈ C : y ∧ s ≤ cx and x ∧ s ≤ cy}
is a congruence of lattice-ordered semigroups whose 1-class is C and 0-class is F ,
and the factor S/Ψ is a B-monoid.

Proof. Let ψ,C, F be as in the first part of the statement. The claims about
C and F are obvious. Next, let x, y ∈ S with ψ(x) = ψ(y). By the equality
ψ(x∧ y) = ψ(x ∨ y) one can assume without loss of generality that x ≤ y = dx
for some d ∈ S. Therefore ψ(x) = ψ(d)ψ(x) implies ψ(d)∧ψ(t) = 1 for some
t ∈ S with ψ(t) ∈ ψ(x)⊥ in view of Proposition 2.23. Consequently, tx ∈ F and
c = d∧ t ∈ C hold. Hence y ∧ tx = dx∧ tx = cx ≤ cx, which completes the proof
of the first part because x∧ tx ≤ x ≤ y ≤ cy is trivially satisfied.

Conversely, suppose C and F are given as indicated. The given relation Ψ is
clearly reflexive and symmetric. It is also transitive because in case y ∧ s ≤ cx,
x ∧ s ≤ cy, y ∧ t ≤ dz, z ∧ t ≤ dy, putting u = s ∧ t and e = cd we have

x ∧ u = (x ∧ s) ∧ t ≤ cy ∧ t ≤ c(y ∧ t) ≤ cdz = ez,

and similarly z∧u ≤ ex. Using the distributivity laws in S, it is straightforward to
check that Ψ is a congruence relation of lattice-ordered semigroups. It is clear that
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cΨ1 for every c ∈ C and sΨ0 for every s ∈ F . Next, if aΨ1 for an a ∈ S, then there
exist c ∈ C, s ∈ F such that a∧ s ≤ c. Hence a ∈ C by assumption, and likewise,
aΨ0 implies a ∈ F . Proving that S/Ψ is a B-monoid proceeds in the same manner
as in Theorems 2.11 and 2.15. �

Remarks 2.27.

(1) As is easy to see, if C and F are as in the second part of Theorem 2.26,
then C ∩ F �= ∅ implies C = S = F .

(2) If C ⊆ S is a cofilter, then C̄ = {s ∈ S | ∃n ∈ N, c1, . . . , cn ∈ C : s ≤
c1 . . . cn} is the smallest m-cofilter containing C. If M is any multiplica-
tively closed subset of S, then C = {s ∈ S | ∃m ∈ M : s ≤ m} is the
smallest m-cofilter containing M . In fact, this smallest m-cofilter contain-
ing M is just the saturation of M , that is, the set of all divisors of elements
of M .

(3) Let C,F ⊆ S be an arbitrary cofilter or a multiplicatively closed subset and
a filter, respectively. We want to describe the smallest congruence for which
C and F are contained in the 1-class and the 0-class, respectively. Clearly,
the 1-class of this congruence contains the smallest m-cofilter containing
C, and by the first part of Theorem 2.26, the 0-class must contain the set
{s ∈ S | ∃c ∈ C and b ∈ F : b ≤ cs} ⊇ F , hence also the smallest filter
containing this set. Doing this extension first, if necessary, we can assume
that C is an m-cofilter and the filter F satisfies F ⊇ {s ∈ S | ∃c ∈ C and
b ∈ F : b ≤ cs}. Now, let C1 = {a ∈ S | ∃c ∈ C, s ∈ F : a∧ s ≤ c}. Then
C1 ⊇ C is also an m-cofilter. Let F1 = {b ∈ S | ∃s ∈ F, c ∈ C : s ≤ bc}.
Then F1 ⊇ F is also a filter. Put C2 = {a ∈ S | ∃c ∈ C1, s ∈ F1 : a∧ s ≤ c}
and F2 = {b ∈ S | ∃s ∈ F1, c ∈ C1 : s ≤ bc}. We show that C2 = C1 and
F2 = F1. Indeed, if a ∈ C2, then there exist c1 ∈ C1 and s1 ∈ F1 such that
a∧ s1 ≤ c1. For c1 ∈ C1 there are c̄ ∈ C and s̄ ∈ F with c1 ∧ s̄ ≤ c̄, and
for s1 ∈ F1 there are s̃ ∈ F and c̃ ∈ C with s̃ ≤ c̃s1. Therefore we obtain
a∧ s1 ∧ s̄ ≤ c1 ∧ s̄ ≤ c and hence c̃(a∧ s1 ∧ s̄) = c̃a∧ c̃s1 ∧ c̃s̄ ≥ c̃a∧ s̃∧ c̃s̄;
consequently, c̃a∧(s̃∧ c̃s̄) ≤ c̃c̄. Now s̄ ≤ (c̃s̄)1; hence c̃s̄ ∈ F by our
assumption, and c̃c̄ ∈ C, so c̃a ∈ C1 and thus, in view of a ≤ c̃a, we have
a ∈ C1. Similarly, if b ∈ F2, then there exist s1 ∈ F1 and c1 ∈ C1 such
that s1 ≤ bc1. For c1 there are c̄ ∈ C and s̄ ∈ F with c1 ∧ s̄ ≤ c̄ and
for s1 there are s̃ ∈ F and c̃ ∈ C with s̃ ≤ c̃s1. So we have s1 ∧ bs̄ ≤
bc1 ∧ bs̄ = b(c1 ∧ s̄) ≤ bc̄, and then s̃∧ c̃bs̄ ≤ c̃s1 ∧ c̃bs̄ ≤ bc̄c̃. Here c̄c̃ ∈ C
and s̃∧ c̃bs̄ ∈ F ; hence by the assumption b ∈ F1. So we have C2 = C1

and F2 = F1, as claimed. Thus the m-cofilter C1 and the filter F1 satisfy
the conditions in the converse part of Theorem 2.26. The congruence they
determine is clearly the smallest congruence for which C is in the 1-class
and F is in the 0-class.

(4) Contrary to the special cases of congruences of types (∗) and (∗∗) (see
Remarks 2.13 and 2.17), we are not able to prove that arbitrary congruences
(that is, those of type Ψ) permute.

Example 2.28. The following simple example shows that m-cofilters C are in
general necessary for describing homomorphisms between B-monoids. Let P be
the semigroup of divisibility of the Bezout ring R = Z�Q/Z, the trivial extension
of Z by the Abelian group Q/Z. Thus P is generated by sp, tp−n ; n ∈ N, p ∈
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P (= prime numbers) subject to sptp = tptq = 0 for all p, q ∈ P and sptp−n =
tpn−1 , sptq = tq for all p �= q ∈ P; n > 1. Then P is a B-monoid with one
minimal m-prime filter M generated by all tp−n , and every element of P different
from 0 and 1 is a zero-divisor. Thus, if we consider the homomorphism of P

into the (indecomposable) two-element Boolean algebra by sending M to 0 and its
complements to 1, then F = M and C = P \ M . Hence the factor of S by F is
just the multiplicative semigroup N of natural numbers, which is obviously not the
two-element Boolean algebra.

In what follows, we give a short description of classical localizations of B-monoids
where the localization is not a B-monoid. For any multiplicatively closed subset M
of a B-monoid S one can define the classical localization SM of S at M as follows.
SM is the set of equivalent classes of pairs (a, s) with a ∈ M, s ∈ S with respect to
the relation (a, s) ∼ (a1, s1) if there exists a2 ∈ M with a2a1s = a2as1. Then SM

will be a hyper-normal distributive l-monoid by putting

(a, s)(a1, s1) = (aa1, ss1)

and

(a, s)∧(a1, s1) = (aa1, sa1 ∧ as1), (a, s) ∨ (a1, s1) = (aa1, sa1 ∨ as1).

We write a−1s for the equivalence class of (a, s). It is a tedious but routine task to
check that this definition is independent of the choice of representatives and then to
verify all the axioms required by the definition of distributive l-monoids. Note that 1
is not, in general, multiplicatively irreducible, that is, SM need not be a B-monoid.
Hyper-normality of SM , however, follows immediately from the observation that
a−1s ≤ b−1t if and only if b−1t = a−1su for some u ∈ S. Indeed, the condition
implies a−1s = a−1s∧ b−1t = (ab)−1(sb∧ at). Hence there exists c ∈ M with
cabs = ca(sb∧ at) ≤ ca2t; consequently there is u ∈ S with cabsu = ca2t, whence
a−1su = (a2bc)−1cabsu = (ca2b)−1ca2t = b−1t. There is in addition a natural
homomorphism from S into SM , which takes all elements of S annihilated by some
a ∈ M to 0 ∈ SM . Therefore the filter K generated by these elements goes to
0 ∈ SM . The image of S in SM is precisely the factor of S by K described in
Theorem 2.15, hence it is a B-monoid. Moreover, the image of S in SM is exactly the
subsemigroup of the positive elements of SM . This leads to the following interesting
result.

Proposition 2.29. For an m-prime filter I of a B-monoid S, put K = {x ∈
S | ∃ s /∈ I : sx = 0}. Then K is a filter, and the factor S/K has a unique minimal
m-prime filter, which is the image of the smallest m-prime filter contained in I.

Proof. It is easy to see that K is a filter. We denote the image of x ∈ S in S/K by x̄.
To verify the statement it is enough to see that the nil radical is an m-prime filter.
For this aim, assume indirectly that, for some a, b ∈ S, the element ab is nilpotent
but ā and b̄ are not. This implies (ab)n ∈ K for some n ∈ N. Therefore aIbI is
nilpotent, where xI denotes the image of x ∈ S in the localization SI of S. Since
SI is a totally ordered B-monoid, its nil radical is an m-prime filter. Consequently,
one of aI and bI is nilpotent, hence, by the definition of K, so is one of ā and b̄, a
contradiction. �

This result has an interesting consequence for arithmetical rings, taking into
consideration that the (prime) ideals of an arithmetical ring R are exactly the
(m-prime) filters of the divisibility monoid of R.
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Corollary 2.30. Let I be a prime ideal in an arithmetical ring R and K be the set
of annihilators of elements not contained in I. Then K is an ideal and the factor
ring R/K has only one minimal prime ideal.

3. Semiprime B-monoids

In this section we describe the structure of semiprime B-monoids. Unusual
examples for semiprime B-monoids are semigroups of divisibility of certain rings of
continuous functions; see [18].

Proposition 3.1. If S is a semiprime B-monoid, then, for every element a ∈ S,

a⊥ = {x ∈ S |xa = 0} = {x ∈ S |x ∨ a = 0}.

Proof. 0 = x ∨ a ≤ xa trivially implies xa = 0. Conversely, 0 = xa ≤ (x ∨ a)2,
whence 0 = (x ∨ a)2 = x ∨ a by the semiprimeness of S. �

Proposition 3.2. If S is a semiprime B-monoid, then for every element a ∈ S,
a⊥ is an m-semiprime filter, i.e, a⊥ = I(a⊥).

Proof. If xn ∈ a⊥, then we have (ax)n = 0, whence ax = 0 and therefore x ∈ a⊥,
from which the statement follows. �

Proposition 3.3. If S is a semiprime B-monoid, then for any a, b ∈ S it holds
that

(ab)⊥ = (a ∨ b)⊥, (a ∧ b)⊥ = a⊥ ∩ b⊥.

Proof. s(ab) = 0 implies (s(a ∨ b))2 ≥ s(a ∨ b)2 ≥ sab = 0, whence s(a ∨ b) = 0,
i.e., (ab)⊥ = (a ∨ b)⊥. Since x(a ∧ b) = xa ∧ xb = 0 ⇔ xa = 0 = xb, we obtain
(a ∧ b)⊥ = a⊥ ∩ b⊥. �

For an element a ∈ S, put Sa = {b ∈ S | a⊥ = b⊥}.

Proposition 3.4. Let S be a semiprime B-monoid. For x, y ∈ Sa and b ∈ S with
b⊥ ⊆ a⊥ the equality 0 �= bx = by implies x = y.

Proof. The assumption implies a, b, x, y �= 0. One can assume, without loss of
generality, that x ≤ y = xd for some d ∈ S. Assume indirectly that d �= 1. We have
z = bx = by = bxd = zd �= 0. Moreover, if s(bx) = 0, then sx ∈ b⊥ ⊆ a⊥ = x⊥

implies (sx)2 = 0. Hence sx = 0, i.e., (bx)⊥ = x⊥ = a⊥. This implies that there
is no u ∈ z⊥ with d ∧ u = 1, otherwise we would have x = x(d ∧ u) = xd = y, a
contradiction. Hence there is an m-prime filter F containing d ∧ x⊥. Thus in the
localization SF we have dF �= 1 and 0 �= zF = zFdF , a contradiction. �

Theorem 3.5. If S is a semiprime B-monoid, then, for every element a ∈ S, the
subsemigroup Sa is a cancellative semigroup closed under meet and join. Recall
that the factor S/a⊥ of S comes from the congruence

x ∼=a y ⇐⇒ ∃ s ∈ a⊥ : x∧ s = y ∧ s, x, y ∈ S.

Then Sa maps injectively into (S/a⊥)1, and these two semigroups have the same
group of quotients. Moreover, S•

a is a B-monoid if and only if its induced order is
natural, i.e., b ≤ c in Sa implies c = bu for some u ∈ Sa.

Thus a semiprime B-monoid S is the disjoint union of cancellative semigroups
Sa, a ∈ S, where S0 = 0 and S1 is the semigroup of non-zero-divisors.
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Proof. Assume x, y ∈ Sa. Then (x ∧ y)⊥ = x⊥ ∩ y⊥ = a⊥. If t(x ∨ y) = 0, then
txy = 0. Hence tx ∈ y⊥ = x⊥, thus (tx)2 = 0 =⇒ tx = 0, i.e. t ∈ x⊥, and this also
shows that xy ∈ Sa. Thus Sa is a subsemigroup closed under both ∧ and ∨. If now
xz = yz with x, y, z ∈ Sa, then, in view of (x∨ y)z = xz ∨ yz = xz, one can assume
that y = dx, and hence we have zx = dzx. Thus x �= y would imply d �= 1. If there
is some c ∈ x⊥ = a⊥ with c ∧ d = 1, then we have x = x · 1 = x(c ∧ d) = xd = y,
a contradiction. Thus there is an m-prime filter F such that in the 0-cancellative
totally ordered localization SF we have dF �= 1, (xz)F �= 0 in spite of the equality
(xz)F = dF (xz)F , a contradiction. By Theorem 2.15, ∼=a is a lattice-ordered-
semigroup congruence.

By definition, any x ∈ Sa obviously maps to a non-zero-divisor in S/a⊥. Fur-
thermore, Sa is embedded in S/a⊥. For b, c ∈ Sa with b∧x = c∧x, x ∈ a⊥ we have
b2 = b(b ∧ x) = b(c ∧ x) = bc, and hence b = c by the previous argument. To show
that Sa and (S/a⊥)1 have the same group of quotients, it is enough to see that
(S/a⊥)1 is contained in the quotient group of Sa. For this aim, assume b ∈ S maps
to a non-zero-divisor in S/a⊥. This means precisely that bx ∈ a⊥ implies x ∈ a⊥.
Therefore ax ∈ a⊥ follows from the equality xab = 0 ∈ a⊥, hence (ax)2 = 0. Thus
ax = 0 holds because S is semiprime. Consequently x ∈ a⊥, whence we obtain
ab ∈ Sa. Thus the image of b in S/a⊥ is contained in the quotient group of Sa

because both a and ab are elements of Sa.
Now assume that S•

a is a B-monoid and b, c ∈ Sa, b ≤ c. Then Sa has an identity,
i.e, there is an idempotent e ∈ Sa and we have c = bd for some d ∈ S. This implies
c = bd = bed = bu with u = de ∈ Sa. Conversely, a ≤ a implies that a = ae for
some e ∈ Sa, and hence e = e2 is the identity of Sa, from which it follows easily
that S•

a is a B-monoid. �

Corollary 3.6. Let S be a semiprime B-monoid. For any two elements u, v ∈ Sa

and x, y ∈ Sb, where a, b ∈ S are arbitrary, we have (ux)⊥ = (vy)⊥.

Proof. We have

s ∈ (ux)⊥ ⇔ su ∈ x⊥ = y⊥ ⇔ s ∈ (uy)⊥,

and hence (ux)⊥ = (uy)⊥. Consequently we have

(ux)⊥ = (uy)⊥ = (yv)⊥.

�

4. Sheaf representations of Bezout monoids

For commutative rings there are two very important representation theorems in
terms of sheaves of ‘simpler’ rings:

• Pierce’s representation theorem of rings as sheaves of indecomposable rings
on the Boolean space of its idempotents [34]. (This result applies to non-
commutative rings as well using central idempotents, but then the stalks
may not remain indecomposable.)

• Grothendieck’s representation theorem of rings as sheaves of local rings on
the Zariski space of its prime ideals [20].

In this final section, we will show that, using the techniques and results developed
so far in this paper, both of these representations have analogues for B-monoids;
these are our Theorems 4.5 and 4.10.
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We will start with the Pierce sheaf. We note that Pierce’s construction has been
adapted to universal algebras by Keimel [28, Satz 1] and that this general result
applies to B-monoids. However, verifying that the conditions of Keimel’s theorem
are satisfied for B-monoids does not save much effort compared to the direct proof
presented below.

For the reader’s sake we reproduce here the definition of a sheaf, presented in
the case of a sheaf of B-monoids, together with some elementary properties. In
doing so, we follow the presentation for rings as described by Pierce [34].

Definition 4.1. For each element μ ∈ X of a topological space X let Sμ be a
B-monoid. Assume that Sμ ∩ Sν = ∅ for μ �= ν. Let S =

⋃
μ∈X Sμ. The “index

map” π : S −→ X is the canonical projection sending all elements of each Sμ to
μ. Assume that a topology is imposed on S such that the following axioms are
satisfied:

(1) If s ∈ S, there exist open sets U in S with s ∈ U and N in X such that π
maps U homeomorphically onto N .

(2) Let S + S denote {(s, t) |π(s) = π(t)}, with the topology induced by the
product topology in S × S. Then the mappings (s, t) �→ st, (s, t) �→ s ∧ t,
and (s, t) �→ s ∨ t are continuous on S + S to S.

(3) The mappings μ �→ 1μ and μ �→ 0μ are continuous on X to S.

With these conditions the pair (X,S), or just S for short, is called a sheaf of B-
monoids over X. The B-monoids Sμ are called the stalks of the sheaf S. For an
arbitrary subspace Y of X, a section of S over Y is a continuous map σ of Y to S
such that π(σ(μ)) = μ for all μ ∈ Y . The collection of all sections of S over Y is
denoted by Γ(Y, S).

Lemma 4.2. (1) The map π of S to X is open and continuous.
(2) Γ(Y, S) is a B-monoid with a multiplication defined by

(σ1σ2)(μ) = σ1(μ)σ2(μ), 0(μ) = 0μ, 1(μ) = 1μ

and with lattice operations defined by putting

(σ1 ∧σ2)(μ) = σ1(μ)∧σ2(μ), (σ1 ∨ σ2)(μ) = σ1(μ) ∨ σ2(μ).

(3) For any s ∈ Sμ there is a neighbourhood N of μ and σ ∈ Γ(N,S) such that
σ(μ) = s.

(4) The sets of the form σ(N), where N is open in X and σ ∈ Γ(N,S), form
a basis for the open sets in S.

(5) Let μ ∈ Y ⊆ X and σ1, σ2 ∈ Γ(Y, S) with σ1(μ) = σ2(μ). Then there is a
neighbourhood N of μ in X such that σ1(ν) = σ2(ν) for all ν ∈ N ∩ Y .

Proof. Claim (1) is obvious. The verification of claim (2) is routine, though tedious.
Claim (3) is an immediate consequence of Definition 4.1(1). For claim (4) it is
enough to see that for any element s of an open subset U of S there is an open
subset N of X and σ ∈ Γ(N,S) with s ∈ σ(N) ⊆ U , which is precisely the content
of claim (3). For claim (5) one observes that by Definition 4.1(1) there are open
subsets U � s = σ1(μ) = s2(μ) of S and N � μ of X such that π is homeomorphic
between U and N , in particular one-to-one between them. Hence claim (5) follows
in view of the equality π(σ1(ν)) = π(σ2(ν)) for all ν ∈ N ∩ Y . �

Let S be a B-monoid. Then, by Proposition 1.14, the idempotents of S form
a Boolean algebra B(S). Denote by X (S) the set of the maximal filters of B(S).
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Note that in B(S) maximal filters are precisely maximal ideals if we consider B(S)
as a ring, and Boolean rings are of dimension 1, i.e., maximal ideals are at the same
time minimal prime ideals, too. We shall denote the complement of an idempotent
e in B(S) by e′.

For every μ ∈ X (S), let Fμ be the filter generated by the idempotents contained
in μ and put S̄μ = S/Fμ. Then B(S̄μ) = {0, 1} since, for any idempotent e in S,
the pair {e, e′} is mapped onto {0, 1} when taking the factor by Fμ.

To avoid confusion, we shall denote by 0μ and 1μ the zero and the identity
elements of Sμ, respectively.

Proposition 4.3. The canonical map

S −→
∏

μ∈X (S)

S̄μ : s �→ σs ,

where σs(μ) = s̄μ for every μ, is injective. In other words, S is a subdirect product
of the S̄μ, μ ∈ X (S).

Proof. Take any two different elements s, t ∈ S; then F = {e ∈ B(S) | se = te} is a
proper filter in B(S). So F is contained in a maximal filter ν ∈ X (S). If s̄ν = t̄ν
in S̄ν , then there is an f ∈ ν such that sf ′ = tf ′, hence f ′ ∈ F ⊆ ν, and then
1 = f ∧ f ′ ∈ ν, a contradiction. Hence s̄ν �= t̄ν , whence σs �= σt. �

As usual, we endow X (S) with the hull-kernel topology introduced by Stone
[39]: the closure of a subset A ⊆ X (S) is {μ ∈ X (S) |μ ⊇

⋂
ν∈A ν}. This topology

makes X (S) a Boolean space, that is, a compact, totally disconnected Hausdorff
space. The sets N (e) = {μ ∈ X (S) | e /∈ μ}, for all e ∈ B(S), are exactly the open
and closed sets in X (S), and they form a basis for the topology.

We are now going to define a topology on the set S =
⋃

μ∈X (S) S̄μ associated to

a B-monoid S such that the functions σs : X (S) −→ S : μ �→ s̄μ ∈ S̄μ ⊆ S, s ∈ S,
will be exactly all those continuous maps from X (S) to S which satisfy π(σs(μ)) = μ
for all μ ∈ X (S), or equivalently, precisely all the global sections.

Lemma 4.4. Let s, t ∈ S and μ ∈ X (S) be such that σs(μ) = σt(μ), that is,
s̄μ = t̄μ. Then there is an e ∈ B(S) such that μ ∈ N (e) and σs(ν) = σt(ν) for all
ν ∈ N (e).

Proof. By s̄μ = t̄μ, there is an f ∈ μ such that sf ′ = tf ′. Put e = f ′; then e /∈ μ,
hence μ ∈ N (e), and for every ν ∈ N (e) we have e /∈ ν. Consequently, f = e′ ∈ ν,
and then sf ′ = tf ′ yields s̄ν = t̄ν , that is, σs(ν) = σt(ν). �

Theorem 4.5. Let the situation be as described above. Then the sets σs(N (e)),
s ∈ S, e ∈ B(S), form an open basis for a topology on S. If we endow S with this
topology, then (X (S),S) is a sheaf such that s �→ σs is an isomorphism between S
and Γ(X (S), S). Hence every B-monoid is isomorphic to the B-monoid of global
sections of a sheaf of directly indecomposable B-monoids.

Proof. Suppose that σt(N (e)) ∩ σu(N (f)) is not empty for some t, u ∈ S; e, f ∈
B(S), i.e., there are μ ∈ N (e) and ν ∈ N (f) with S̄μ � σt(μ) = σu(ν) ∈ S̄ν .
Therefore μ = ν ∈ N (e) ∩N (f) with t̄μ = ūμ. Then, by Lemma 4.4, there is a g ∈
B(S) such that σt(ν) = σu(ν) for all ν ∈ N (g). Now N (gef) ⊆ N (e)∩N (f)∩N (g)
and σt(ν) = σu(ν) for all ν ∈ N (gef), hence σt(N (gef)) ⊆ σt(N (e)) ∩ σu(N (f)).
Thus the σs(N (e)) form a basis for a topology on S, as claimed.
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Let s ∈ S, i.e., s = s̄μ for some μ ∈ X (S) and s ∈ S. This implies σs(μ) =
s̄μ = s ∈ S̄μ ⊆ S and π(s) = π(σs(μ)) = μ ∈ X (S). Let e ∈ B(S) \ μ. Then
s ∈ σs(N (e)). Next, for any ν ∈ N (e), π(σs(ν)) = ν, and therefore π maps
σs(N (e)) homeomorphically to N (e).

First we prove the continuity of the map 0: X (S) −→ S : μ �→ 0μ. Let σs(N (e))
be an open set containing 0μ in S homeomorphic to N (e). Then σs(μ) = 0μ implies
es = (e′)′s = 0. Consequently, s̄ν = 0̄ν for all ν ∈ N (e) by the definition of N (e)
because e′ ∈ ν and es = (e′)′s = 0. Thus 0: X (S) −→ S : μ �→ 0μ is a continuous
function.

Similarly, one can check as a routine exercise that (X (S),S) is indeed a sheaf. If
σ ∈ Γ(X (S),S), then by the continuity of σ as well as the partition of unity, there
are pairwise orthogonal idempotents ei ∈ S together with elements si ∈ S; i =
1, ..., n such that X (S) is the disjoint union of N (ei) and the restrictions of σ and
σsi agree on N (ei). This implies σ = σs for s =

∧n
i=1 siei = s ∈ S. �

In the second part of this section, we show that every B-monoid can be repre-
sented as a B-monoid of global sections of a sheaf of local B-monoids (which are
0-cancellative naturally totally ordered B-monoids by Proposition 1.12), transfer-
ring Grothendieck’s result [20] representing a ring as a ring of global sections of a
sheaf of local rings. The idea of the proof is essentially the same as that of the
standard proof for rings. Here again we note that this representation theorem may
conceivably follow from very general results of Wolf, formulated in a universal al-
gebraic language (cf. [41, Corollary 3.5], which is applicable in view of Proposition
2.17).

Denote by Y(S) the set of all m-prime filters of a B-monoid S. The so-called
Zariski topology of Y(S) has {F ∈ Y(S) |X ⊆ F} as closed subsets where X runs
over subsets of S. The sets N (s) = {F ∈ Y(S) | s /∈ F} for all s ∈ S form a basis
for this topology.

We denote by S̃ the disjoint union of the sets SF , F ∈ Y(S), defined in Theorem

2.11 and, as usual, π : S̃ −→ Y(S) is the “index map” sending all elements of each

SF to F , and, finally, for every s ∈ S, we denote by ρs the function ρs : Y(S) → S̃ :

F ∈ Y(S) �−→ ρs(F ) = sF ∈ SF ⊆ S̃.
As a preparation to our second sheaf representation, recall the following result

of Bosbach.

Proposition 4.6 (cf. Bosbach [9, Theorem 4.4]). The canonical map

S −→
∏

F∈Y(S)

SF : s �→ ρs ,

where ρs(F ) = sF for every F , is injective. In other words, S is a subdirect product
of the SF , F ∈ Y(S).

Remark 4.7. By Theorem 2.11, SF is a totally ordered B-monoid, and totally
ordered B-monoids can be represented as semigroups of divisibility of valuation
rings (see [35]). Therefore every B-monoid can be embedded into the semigroup of
divisibility of a product of valuation rings. This was already noted by Bosbach a
long time ago (oral communication).

We are going to define a topology on S̃ such that the above defined functions
ρs, s ∈ S, will be exactly the continuous maps from Y(S) to S̃ which satisfy
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π(ρs(F )) = F for all s ∈ S, F ∈ Y(S), or equivalently, all the global sections

of the sheaf Γ(Y(S), S̃).

Lemma 4.8. Let s, t ∈ S and F ∈ Y(S) be such that ρs(F ) = ρt(F ), that is,
sF = tF . Then there is a ∈ S such that F ∈ N (a), i.e., a /∈ F , and for all
G ∈ N (a) the equality ρs(G) = ρt(G) holds.

Proof. The equality sF = tF implies the existence of a /∈ F such that s ≤ at,
t ≤ as, from which the assertion follows. �

Lemma 4.9. Let the notation be as above. Then ρx = ρy on N (c), where x, y, c ∈ S
if and only if there is an n ∈ N with x ≤ cny, y ≤ cnx.

Proof. Put a = x ∧ y, b = x ∨ y. Then there is an element u ∈ S with b = au. The
equality ρx = ρy on N (c) implies ρa = ρb on N (c), and hence ρu = ρ1 on N (c). If
there is no n ∈ N with u ≤ cn, then the set I = {s ∈ S | ∃n ∈ N : s ≤ cn} is closed
under ∨ and is disjoint from the filter {x ∈ S | x ≥ u}. Therefore one can extend
this filter to an m-prime filter F disjoint from I. Since c /∈ F , F ∈ N (c) and u ∈ F
implies ρu(F ) �= 1 = ρ1(F ), a contradiction. Consequently, there is an n ∈ N with
u ≤ cn and hence x ≤ b = au ≤ yu ≤ ycn, and similarly y ≤ cnx. �

We are now able to present the second main result of this section.

Theorem 4.10. The sets ρs(N (a)), s ∈ S, a ∈ S, form an open basis for a topology

on S̃. If we endow S̃ with this topology, then (Y(S), S̃) is a sheaf such that s �→ ρs
is an isomorphism between S and Γ(Y(S), S̃). Hence every B-monoid is isomorphic
to the B-monoid of global sections of a sheaf of local B-monoids, that is to say, of
0-cancellative naturally totally ordered B-monoids.

Proof. One can check as a routine exercise that (Y(S), S̃) is indeed a sheaf. If

t ∈ Γ(Y(S), S̃), then by the continuity of t as well as the compactness of Y(S) there
are elements ai ∈ S together with elements si ∈ S, i = 1, . . . , n, such that X (S) is
the union of N (ai) and the restrictions of t and ρsi agree on N (ai). This implies∧n

i=1 ai = 1 and ρsi agrees with ρsj on N (ai) ∩N (aj) = N (aiaj) for all i, j. Now,
by Lemma 4.9, there is an integer n ∈ N such that, for all i, j = 1, ..., n,

si ≤ (aiaj)
nsj , sj ≤ (aiaj)

nsi.

By Proposition 1.11,
∧n

i=1 a
n
i = 1, and hence we have for s =

∧n
i=1 a

n
i si ∈ S that

t = ρs in view of the inequalities

sj ≤ anj s = anj (
n∧

i=1

ani si) =
n∧

i=1

(aiaj)
nsi, s ≤ anj sj .

�
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[36] T. S. Shores and R. Wiegand, Rings whose finitely generated modules are direct sums of
cyclics, J. Algebra 32 (1974), 152–172. MR0352080 (50:4568)

[37] Bo Stenström, Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen, 217, Springer, 1975. MR0389953 (52:10782)

[38] W. Stephenson, Modules whose lattice of submodules is distributive, Proc. London Math.
Soc. 27 (1974), 291–310. MR0338082 (49:2849)

[39] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer.

Math. Soc. 41 (1937), 375–481. MR1501905
[40] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335-

354. MR1501995
[41] A. Wolf, Sheaf representations of arithmetical algebras, In: Recent Advances in the Repre-

sentation Theory of Rings and C∗-Algebras by Continuous Sections, Memoirs Amer. Math.
Soc. 148 (1974), 87–93. MR0369223 (51:5458)
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