Viktor Kiss

Eötvös Loránd University, Budapest

Joint work with Márton Elekes and Zoltán Vidnyánszky.

Viktor Kiss Ranks on Baire class ξ functions

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max{rk(f), rk(g)} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max{rk(f), rk(g)} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max{rk(f), rk(g)} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max{rk(f), rk(g)} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

• unboundedness in ω_1

- "linearity" i.e. $rk(cf + g) \le max\{rk(f), rk(g)\} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max\{rk(f), rk(g)\} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max\{rk(f), rk(g)\} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max\{rk(f), rk(g)\} \cdot \omega$
- translation invariance (if the space is a Polish group)

Let us denote the class of Baire- ξ functions by \mathcal{B}_{ξ} . By a rank on \mathcal{B}_{ξ} we mean a map $\mathcal{B}_{\xi} \to \omega_1$.

Kechris and Louveau investigated the case of Baire class 1 functions. Our aim is to generalise their results to Baire class ξ functions.

Question

Are there ranks on the class of Baire- ξ functions with nice properties?

Some of the important properties are:

- unboundedness in ω_1
- "linearity" i.e. $rk(cf + g) \le max\{rk(f), rk(g)\} \cdot \omega$
- translation invariance (if the space is a Polish group)

It is well-known that for every $H \in \Delta_2^0$ there exists a decreasing continuous sequence of closed sets $\{F_\eta\}_{\eta < \xi}$ such that

$$H = \bigcup_{\substack{\eta < \xi \\ \eta \text{ is even}}} F_{\eta} \setminus F_{\eta+1}.$$

Define $\operatorname{rk}_{\Delta_2^0}(H)$ as the minimal length of such a sequence. For $A, B \subset X$ disjoint G_{δ} sets define

$$\alpha(A,B) = \min\{ \operatorname{rk}_{\Delta_2^0}(H) : A \subset H, B \subset H^c, H \in \Delta_2^0 \}.$$

Finally,

Definition

$$\alpha(f) = \sup_{\substack{p,q \in \mathbb{Q} \\ p < q}} \alpha\left((f \le p), (f \ge q)\right).$$

It is well-known that for every $H \in \Delta_2^0$ there exists a decreasing continuous sequence of closed sets $\{F_\eta\}_{\eta < \xi}$ such that

$$H = \bigcup_{\substack{\eta < \xi \\ \eta \text{ is even}}} F_{\eta} \setminus F_{\eta+1}.$$

Define $\operatorname{rk}_{\Delta_2^0}(H)$ as the minimal length of such a sequence. For $A, B \subset X$ disjoint G_{δ} sets define $\alpha(A, B) = \min\{\operatorname{rk}_{\Delta_2^0}(H) : A \subset H, B \subset H^c, H \in \Delta_2^0\}.$

Finally,

Definition

$$\alpha(f) = \sup_{\substack{p,q \in \mathbb{Q} \\ p < q}} \alpha\left((f \le p), (f \ge q)\right).$$

It is well-known that for every $H \in \Delta_2^0$ there exists a decreasing continuous sequence of closed sets $\{F_\eta\}_{\eta < \xi}$ such that

$$H = \bigcup_{\substack{\eta < \xi \\ \eta \text{ is even}}} F_{\eta} \setminus F_{\eta+1}.$$

Define $\operatorname{rk}_{\Delta_2^0}(H)$ as the minimal length of such a sequence. For $A, B \subset X$ disjoint G_{δ} sets define

$$\alpha(\boldsymbol{A},\boldsymbol{B}) = \min\{\operatorname{rk}_{\Delta_2^0}(\boldsymbol{H}) : \boldsymbol{A} \subset \boldsymbol{H}, \boldsymbol{B} \subset \boldsymbol{H}^c, \boldsymbol{H} \in \Delta_2^0\}.$$

Finally,

Definition

$$\alpha(f) = \sup_{\substack{p,q \in \mathbb{Q} \\ p < q}} \alpha\left((f \le p), (f \ge q)\right).$$

It is well-known that for every $H \in \Delta_2^0$ there exists a decreasing continuous sequence of closed sets $\{F_\eta\}_{\eta < \xi}$ such that

$$H = \bigcup_{\substack{\eta < \xi \\ \eta \text{ is even}}} F_{\eta} \setminus F_{\eta+1}.$$

Define $\operatorname{rk}_{\Delta_2^0}(H)$ as the minimal length of such a sequence. For $A, B \subset X$ disjoint G_{δ} sets define

$$\alpha(\boldsymbol{A},\boldsymbol{B})=\min\{\operatorname{rk}_{\Delta_2^0}(\boldsymbol{H}):\boldsymbol{A}\subset\boldsymbol{H},\boldsymbol{B}\subset\boldsymbol{H}^c,\boldsymbol{H}\in\Delta_2^0\}.$$

Finally,

Definition

$$\alpha(f) = \sup_{\substack{p,q \in \mathbb{Q} \\ p < q}} \alpha\left((f \le p), (f \ge q)\right).$$

However, it is interesting to note that these three ranks are defined according to the three classical characterisations of the Baire class 1 functions.

Baire-1 ranks

separation rank (α) \longleftrightarrow level sets of the function oscillation rank (β) \longleftrightarrow continuity point restricted to every nonempty closed set convergence rank (γ) \longleftrightarrow pointwise limit of continuous functions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

However, it is interesting to note that these three ranks are defined according to the three classical characterisations of the Baire class 1 functions.

Baire-1 ranks

separation rank (α) \longleftrightarrow level sets of the function oscillation rank (β) \longleftrightarrow continuity point restricted to every nonempty closed set convergence rank (γ) \longleftrightarrow pointwise limit of continuous functions

<ロ> (四) (四) (三) (三) (三) (三)

However, it is interesting to note that these three ranks are defined according to the three classical characterisations of the Baire class 1 functions.

Baire-1 ranks

separation rank (α) \longleftrightarrow level sets of the function

oscillation rank (β) \longleftrightarrow continuity point restricted to every nonempty closed set convergence rank (γ) \longleftrightarrow pointwise limit of continuous functions

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

However, it is interesting to note that these three ranks are defined according to the three classical characterisations of the Baire class 1 functions.

Baire-1 ranks

separation rank (α) \longleftrightarrow level sets of the function oscillation rank (β) \longleftrightarrow continuity point restricted to every nonempty closed set

convergence rank $(\gamma) \longleftrightarrow$ pointwise limit of continuous functions

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

However, it is interesting to note that these three ranks are defined according to the three classical characterisations of the Baire class 1 functions.

Baire-1 ranks

separation rank (α) \longleftrightarrow level sets of the function oscillation rank (β) \longleftrightarrow continuity point restricted to every nonempty closed set convergence rank (γ) \longleftrightarrow pointwise limit of continuous functions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

- all three ranks are unbounded in ω₁ (it can be shown for α and α(f) ≤ β(f) ≤ γ(f) modulo some finite difference)
- β and γ are "linear", i.e.

 $\beta(cf + g) \le \max\{\beta(f), \beta(g)\} \cdot \omega$

(and the same stands for γ)

• all three ranks are translation invariant (on Polish groups)

<ロ> (四) (四) (三) (三) (三)

Properties of the ranks on Baire class 1 functions

These ranks more or less satisfy the properties we want.

all three ranks are unbounded in ω₁ (it can be shown for α and α(f) ≤ β(f) ≤ γ(f) modulo some finite difference)
β and γ are "linear", i.e.

$$\beta(cf + g) \le \max\{\beta(f), \beta(g)\} \cdot \omega$$

(and the same stands for γ)

• all three ranks are translation invariant (on Polish groups)

<ロ> (四) (四) (三) (三) (三)

 all three ranks are unbounded in ω₁ (it can be shown for α and α(f) ≤ β(f) ≤ γ(f) modulo some finite difference)

• β and γ are "linear", i.e.

 $\beta(cf + g) \leq \max\{\beta(f), \beta(g)\} \cdot \omega$

(and the same stands for γ)

• all three ranks are translation invariant (on Polish groups)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- all three ranks are unbounded in ω₁ (it can be shown for α and α(f) ≤ β(f) ≤ γ(f) modulo some finite difference)
- β and γ are "linear", i.e.

$$\beta(cf + g) \le \max\{\beta(f), \beta(g)\} \cdot \omega$$

(and the same stands for γ)

• all three ranks are translation invariant (on Polish groups)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- all three ranks are unbounded in ω₁ (it can be shown for α and α(f) ≤ β(f) ≤ γ(f) modulo some finite difference)
- β and γ are "linear", i.e.

$$\beta(cf + g) \leq \max\{\beta(f), \beta(g)\} \cdot \omega$$

(and the same stands for γ)

• all three ranks are translation invariant (on Polish groups)

< 回 > < 回 > < 回 > … 回

Replace $\mathbf{\Delta}_2^0$, closed and G_{δ} sets by $\mathbf{\Delta}_{\xi+1}^0$, $\mathbf{\Pi}_{\xi}^0$ and $\mathbf{\Pi}_{\xi+1}^0$ sets in the definition of the separation rank.

Let us denote this rank by

 $\alpha_{\xi}.$

It turns out that this rank is unbounded, but is not linear, since

 $\sup\{\alpha_{\xi}(f+g): f,g \in \mathcal{B}_{\xi}, \alpha_{\xi}(f) = \alpha_{\xi}(g) = 2\} = \omega_{1}.$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Replace $\mathbf{\Delta}_{2}^{0}$, closed and G_{δ} sets by $\mathbf{\Delta}_{\xi+1}^{0}$, $\mathbf{\Pi}_{\xi}^{0}$ and $\mathbf{\Pi}_{\xi+1}^{0}$ sets in the definition of the separation rank.

Let us denote this rank by

 $\alpha_{\xi}.$

It turns out that this rank is unbounded, but is not linear, since

 $\sup\{\alpha_{\xi}(f+g): f,g \in \mathcal{B}_{\xi}, \alpha_{\xi}(f) = \alpha_{\xi}(g) = 2\} = \omega_{1}.$

・ロト ・ 理 ト ・ ヨ ト ・

Replace Δ_2^0 , closed and G_{δ} sets by $\Delta_{\xi+1}^0$, Π_{ξ}^0 and $\Pi_{\xi+1}^0$ sets in the definition of the separation rank.

Let us denote this rank by

 $\alpha_{\xi}.$

It turns out that this rank is unbounded, but is not linear, since

 $\sup\{\alpha_{\xi}(f+g): f,g \in \mathcal{B}_{\xi}, \alpha_{\xi}(f) = \alpha_{\xi}(g) = 2\} = \omega_{1}.$

イロト 不得 とくほ とくほ とうほ

Replace Δ_2^0 , closed and G_{δ} sets by $\Delta_{\xi+1}^0$, Π_{ξ}^0 and $\Pi_{\xi+1}^0$ sets in the definition of the separation rank.

Let us denote this rank by

 $\alpha_{\xi}.$

It turns out that this rank is unbounded, but is not linear, since

 $\sup\{\alpha_{\xi}(f+g): f,g \in \mathcal{B}_{\xi}, \alpha_{\xi}(f) = \alpha_{\xi}(g) = 2\} = \omega_{1}.$

イロト 不得 とくほ とくほ とうほ

Replace Δ_2^0 , closed and G_{δ} sets by $\Delta_{\xi+1}^0$, Π_{ξ}^0 and $\Pi_{\xi+1}^0$ sets in the definition of the separation rank.

Let us denote this rank by

 α_{ξ} .

It turns out that this rank is unbounded, but is not linear, since

$$\sup\{\alpha_{\xi}(f+g): f, g \in \mathcal{B}_{\xi}, \alpha_{\xi}(f) = \alpha_{\xi}(g) = 2\} = \omega_{1}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

The natural remedy is the following.

Definition
For
$$f \in \mathcal{B}_{\xi}$$
 let
 $\overline{\alpha_{\xi}}(f) = \min\{\max\{\alpha_{\xi}(f_1), \dots, \alpha_{\xi}(f_n)\} : n \in \omega, f_1, \dots, f_n \in \mathcal{B}_{\xi}, f_{\xi}(f_1), \dots, f_{\xi}(f_n)\}\}$

This time we only have a partial result.

Theorem (Elekes-K-Vidnyánszky)

 $\overline{\alpha_{\xi}}$ is bounded on the **characteristic** Baire class ξ functions.

・ロト ・回ト ・ヨト ・ヨト

The natural remedy is the following.

Definition
For
$$f \in \mathcal{B}_{\xi}$$
 let
 $\overline{\alpha_{\xi}}(f) = \min\{\max\{\alpha_{\xi}(f_1), \dots, \alpha_{\xi}(f_n)\} : n \in \omega, f_1, \dots, f_n \in \mathcal{B}_{\xi}, f = f_1 + \dots + f_n\}.$

This time we only have a partial result.

Theorem (Elekes-K-Vidnyánszky)

 $\overline{\alpha_{\xi}}$ is bounded on the **characteristic** Baire class ξ functions.

A (1) > A (2) > A

Another way to construct \mathcal{B}_{ξ} ranks is the following.

Definition

For a rank ρ on \mathcal{B}_1 and $f \in \mathcal{B}_2$ let

$$\rho_2'(f) = \min_{\substack{f_n \to f \\ f_n \in \mathcal{B}_1}} \sup_n \rho(f_n).$$

However, to our great surprise, this does not work.

Theorem (Elekes-K-Vidnyánszky)

The ranks α'_2 , β'_2 and γ'_2 are all bounded in ω_1 ! Actually, bounded by ω .

ヘロト 人間 とくほとく ほとう

Another way to construct \mathcal{B}_{ξ} ranks is the following.

Definition

For a rank ρ on \mathcal{B}_1 and $f \in \mathcal{B}_2$ let

$$\rho_2'(f) = \min_{\substack{f_n \to f \\ f_n \in \mathcal{B}_1}} \sup_n \rho(f_n).$$

However, to our great surprise, this does not work.

Theorem (Elekes-K-Vidnyánszky)

The ranks α'_2 , β'_2 and γ'_2 are all bounded in ω_1 ! Actually, bounded by ω .

ヘロト 人間 とくほとくほとう

Another way to construct \mathcal{B}_{ξ} ranks is the following.

Definition

For a rank ρ on \mathcal{B}_1 and $f \in \mathcal{B}_2$ let

$$\rho_2'(f) = \min_{\substack{f_n \to f \\ f_n \in \mathcal{B}_1}} \sup_n \rho(f_n).$$

However, to our great surprise, this does not work.

Theorem (Elekes-K-Vidnyánszky)

The ranks α'_2 , β'_2 and γ'_2 are all bounded in ω_1 ! Actually, bounded by ω .

<ロト <回 > < 注 > < 注 > 、

Topology refinement

A bit less natural approach involves topology refinements. For an $f \in \mathcal{B}_{\xi}$ let

$$T_{f,\xi} = \{\tau' : \tau' \text{ is Polish}, f \in \mathcal{B}_1(\tau'), \tau' \subset \boldsymbol{\Sigma}_{\xi}^0(\tau)\}.$$

And now the definition of the rank is the following.

Definition For a rank ρ on \mathcal{B}_1 and $f \in \mathcal{B}_{\xi}$ let $\rho_{\xi}^*(f) = \inf_{\tau' \in T_{f,\xi}} \rho_{\tau'}(f),$

ヘロト 人間 とくほとくほとう

A bit less natural approach involves topology refinements. For an $f \in \mathcal{B}_{\xi}$ let

$$T_{f,\xi} = \{ \tau' : \tau' \text{ is Polish}, f \in \mathcal{B}_1(\tau'), \tau' \subset \Sigma^0_{\xi}(\tau) \}.$$

And now the definition of the rank is the following.

Definition

For a rank ρ on \mathcal{B}_1 and $f \in \mathcal{B}_{\xi}$ let

$$\rho_{\xi}^{*}(f) = \inf_{\tau' \in T_{f,\xi}} \rho_{\tau'}(f),$$

where $\rho_{\tau'}(f)$ is the ρ rank of f in the τ' topology.

・ロト ・同ト ・ヨト ・ヨト

This turns out to be good for our purposes.

Theorem (Elekes-K-Vidnyánszky)

The ranks β_{ε}^* and γ_{ε}^* are nice.

ヘロト ヘアト ヘビト ヘビト

ъ

An application to the solvability of systems of difference equations

Definition

 $D : \mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$ is said to be a **difference operator**, if there are real number a_i, b_i (i = 1, ..., n) such that for every $f \in \mathbb{R}^{\mathbb{R}}$

$$(Df)(x) = \sum_{i=1}^{n} a_i f(x+b_i).$$

Definition

A system of difference equations is

 $D_i(f) = g_i \quad (i \in I),$

where *I* is an arbitrary set of indices D_i is a difference operator and g_i is a given function for every $i \in I$.

3

An application to the solvability of systems of difference equations

Definition

 $D : \mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$ is said to be a **difference operator**, if there are real number a_i, b_i (i = 1, ..., n) such that for every $f \in \mathbb{R}^{\mathbb{R}}$

$$(Df)(x) = \sum_{i=1}^n a_i f(x+b_i).$$

Definition

A system of difference equations is

 $D_i(f) = g_i \quad (i \in I),$

where *I* is an arbitrary set of indices D_i is a difference operator and g_i is a given function for every $i \in I$.

(ロ) (四) (日) (日)

3

An application to the solvability of systems of difference equations

Definition

 $D : \mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$ is said to be a **difference operator**, if there are real number a_i, b_i (i = 1, ..., n) such that for every $f \in \mathbb{R}^{\mathbb{R}}$

$$(Df)(x) = \sum_{i=1}^n a_i f(x+b_i).$$

Definition

A system of difference equations is

$$D_i(f) = g_i \quad (i \in I),$$

where *I* is an arbitrary set of indices D_i is a difference operator and g_i is a given function for every $i \in I$.

< 🗇 🕨

Elekes and Laczkovich investigated the solvability cardinal of classes of functions.

Definition (Elekes-Laczkovich)

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ be a class of real functions. The solvability cardinal of \mathcal{F} is the minimal cardinal $sc(\mathcal{F})$ with the property that if every subsystem of size less than $sc(\mathcal{F})$ of a system of difference equations has a solution in \mathcal{F} , then the whole system has a solution in \mathcal{F} .

Corollary (Elekes-K-Vidnyánszky)

If $\xi \geq 2$, then $sc(\{f : f \in \mathcal{B}_{\xi}\}) \geq \omega_2$.

ヘロン ヘアン ヘビン ヘビン

Elekes and Laczkovich investigated the solvability cardinal of classes of functions.

Definition (Elekes-Laczkovich)

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ be a class of real functions. The solvability cardinal of \mathcal{F} is the minimal cardinal $sc(\mathcal{F})$ with the property that if every subsystem of size less than $sc(\mathcal{F})$ of a system of difference equations has a solution in \mathcal{F} , then the whole system has a solution in \mathcal{F} .

Corollary (Elekes-K-Vidnyánszky)

```
If \xi \geq 2, then sc(\{f : f \in \mathcal{B}_{\xi}\}) \geq \omega_2.
```

ヘロト ヘアト ヘヨト ヘ