Characterisation of order types representable by Baire class 1 functions

Zoltán Vidnyánszky

MTA Rényi Institute

Workshop in set theory, Będlewo, 2014

joint work with Márton Elekes

Zoltán Vidnyánszky Order types representable by Baire class 1 functions

The original question

Pointwise orderings of functions

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f: X \to \mathbb{R}$.

Pointwise orderings of functions

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f: X \to \mathbb{R}$. **Definition.** For $f, g \in \mathcal{F}$ we say that f < g if for every $x \in X$ we have $f(x) \leq g(x)$ and there exists an $x \in X$ so that f(x) < g(x).

Zoltán Vidnyánszky Order types representable by Baire class 1 functions

ヨトイヨト

Pointwise orderings of functions

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f : X \to \mathbb{R}$. **Definition.** For $f, g \in \mathcal{F}$ we say that f < g if for every $x \in X$ we

have $f(x) \le g(x)$ and there exists an $x \in X$ so that f(x) < g(x).

General question

Let $(\mathbb{L}, <)$ be an ordering. Does there exist an (order preserving) embedding $(\mathbb{L}, <) \hookrightarrow (\mathcal{F}, <)$?

• • = • • = •

Pointwise orderings of functions

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f: X \to \mathbb{R}$. **Definition.** For $f, g \in \mathcal{F}$ we say that f < g if for every $x \in X$ we

have $f(x) \le g(x)$ and there exists an $x \in X$ so that f(x) < g(x).

General question

Let $(\mathbb{L}, <)$ be an ordering. Does there exist an (order preserving) embedding $(\mathbb{L}, <) \hookrightarrow (\mathcal{F}, <)$? Terminology: we also say that \mathbb{L} is representable in \mathcal{F} .

伺下 イヨト イヨト

Theorem. (Folklore) If $\mathcal{F} = C(X, \mathbb{R})$ then $(\mathbb{L}, <)$ representable in $(\mathcal{F}, <)$ if and only if it is embeddable into ([0, 1], <).

A B F A B F

Theorem. (Folklore) If $\mathcal{F} = C(X, \mathbb{R})$ then $(\mathbb{L}, <)$ representable in $(\mathcal{F}, <)$ if and only if it is embeddable into ([0, 1], <). In fact, there exist embeddings $(C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <)$ and $([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <)$.

.

Theorem. (Folklore) If $\mathcal{F} = C(X, \mathbb{R})$ then $(\mathbb{L}, <)$ representable in $(\mathcal{F}, <)$ if and only if it is embeddable into ([0, 1], <). In fact, there exist embeddings $(C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <)$ and $([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <)$.

The proof

 $([0,1],<) \hookrightarrow (C(X,\mathbb{R}),<)$ is trivial.

< 同 > < 三 > < 三 > -

Theorem. (Folklore) If $\mathcal{F} = C(X, \mathbb{R})$ then $(\mathbb{L}, <)$ representable in $(\mathcal{F}, <)$ if and only if it is embeddable into ([0, 1], <). In fact, there exist embeddings $(C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <)$ and $([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <)$.

The proof

 $([0,1],<) \hookrightarrow (C(X,\mathbb{R}),<)$ is trivial. $(C(X,\mathbb{R}),<) \hookrightarrow ([0,1],<)$: The set of closed sets of a Polish space Y (denoted by $\Pi_1^0(Y)$) forms a poset with the strict inclusion.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem. (Folklore) If $\mathcal{F} = C(X, \mathbb{R})$ then $(\mathbb{L}, <)$ representable in $(\mathcal{F}, <)$ if and only if it is embeddable into ([0, 1], <). In fact, there exist embeddings $(C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <)$ and $([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <)$.

The proof

 $([0,1],<) \hookrightarrow (C(X,\mathbb{R}),<)$ is trivial. $(C(X,\mathbb{R}),<) \hookrightarrow ([0,1],<)$: The set of closed sets of a Polish space Y (denoted by $\Pi_1^0(Y)$) forms a poset with the strict inclusion. Clearly, the map $f \mapsto \text{subgraph}(f) = \{(x,y) : y \le f(x)\}$ is an embedding $(C(X,\mathbb{R}),<) \hookrightarrow (\Pi_1^0(X \times \mathbb{R}),\subset)$.

ヘロト ヘ河ト ヘヨト ヘヨト

Theorem. (Folklore) If $\mathcal{F} = C(X, \mathbb{R})$ then $(\mathbb{L}, <)$ representable in $(\mathcal{F}, <)$ if and only if it is embeddable into ([0, 1], <). In fact, there exist embeddings $(C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <)$ and $([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <)$.

The proof

 $([0,1],<) \hookrightarrow (C(X,\mathbb{R}),<)$ is trivial. $(C(X,\mathbb{R}),<) \hookrightarrow ([0,1],<)$: The set of closed sets of a Polish space Y (denoted by $\Pi_1^0(Y)$) forms a poset with the strict inclusion. Clearly, the map $f \mapsto \text{subgraph}(f) = \{(x,y) : y \le f(x)\}$ is an embedding $(C(X,\mathbb{R}),<) \hookrightarrow (\Pi_1^0(X \times \mathbb{R}),\subset)$. Now let $\{U_n : n \in \omega\}$ be a basis of $X \times \mathbb{R}$.

イロト イポト イヨト イヨト

Theorem. (Folklore) If $\mathcal{F} = C(X, \mathbb{R})$ then $(\mathbb{L}, <)$ representable in $(\mathcal{F}, <)$ if and only if it is embeddable into ([0, 1], <). In fact, there exist embeddings $(C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <)$ and $([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <)$.

The proof

 $([0,1], <) \hookrightarrow (C(X, \mathbb{R}), <)$ is trivial. $(C(X, \mathbb{R}), <) \hookrightarrow ([0,1], <)$: The set of closed sets of a Polish space Y (denoted by $\Pi_1^0(Y)$) forms a poset with the strict inclusion. Clearly, the map $f \mapsto \text{subgraph}(f) = \{(x, y) : y \le f(x)\}$ is an embedding $(C(X, \mathbb{R}), <) \hookrightarrow (\Pi_1^0(X \times \mathbb{R}), \subset)$. Now let $\{U_n : n \in \omega\}$ be a basis of $X \times \mathbb{R}$. Map $F \in \Pi_1^0(X \times \mathbb{R})$ to $\sum_{U_n \cap F \ne \emptyset} 3^{-n-1}$.

< ロ > < 同 > < 回 > < 回 > .

Observe that we did not use the continuity, just that the sets subgraph(f) are closed.

A B M A B M

Observe that we did not use the continuity, just that the sets subgraph(f) are closed.

Baire class 1 functions

Definition. A function $f : X \to \mathbb{R}$ is *Baire class 1* if it is the pointwise limit of continuous functions. Notation: $\mathcal{B}_1(X)$.

A B M A B M

Observe that we did not use the continuity, just that the sets subgraph(f) are closed.

Baire class 1 functions

Definition. A function $f : X \to \mathbb{R}$ is *Baire class 1* if it is the pointwise limit of continuous functions. Notation: $\mathcal{B}_1(X)$.

Kuratowski's theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not representable in $(\mathcal{B}_1(X), <)$.

• • = • • = •

Observe that we did not use the continuity, just that the sets subgraph(f) are closed.

Baire class 1 functions

Definition. A function $f : X \to \mathbb{R}$ is *Baire class 1* if it is the pointwise limit of continuous functions. Notation: $\mathcal{B}_1(X)$.

Kuratowski's theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not representable in $(\mathcal{B}_1(X), <)$.

Is this a characterisation?

Theorem. (Komjáth, 1990) Consistently no:

伺 ト イ ヨ ト イ ヨ ト

Observe that we did not use the continuity, just that the sets subgraph(f) are closed.

Baire class 1 functions

Definition. A function $f : X \to \mathbb{R}$ is *Baire class 1* if it is the pointwise limit of continuous functions. Notation: $\mathcal{B}_1(X)$.

Kuratowski's theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not representable in $(\mathcal{B}_1(X), <)$.

Is this a characterisation?

Theorem. (Komjáth, 1990) Consistently no: If $(\mathbb{S}, <)$ is a Suslin line, then $(\mathbb{S}, <) \not\hookrightarrow (\mathcal{B}_1(X), <)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

A non-characterisation result

Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering $(\mathbb{L}, <)$ so that neither ω_1 nor ω_1^* is embeddable into \mathbb{L} , but $(\mathbb{L}, <) \nleftrightarrow (\mathcal{B}_1(X), <).$

()

A non-characterisation result

Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering $(\mathbb{L}, <)$ so that neither ω_1 nor ω_1^* is embeddable into \mathbb{L} , but $(\mathbb{L}, <) \nleftrightarrow (\mathcal{B}_1(X), <).$

The positive direction

Theorem. (Elekes, Steprāns, 2006) (MA) If $|\mathbb{L}| < \mathfrak{c}$ and neither ω_1 nor ω_1^* is embeddable into $(\mathbb{L}, <)$ then $(\mathbb{L}, <) \hookrightarrow (\mathcal{B}_1(X), <)$.

• • = • • = •

A non-characterisation result

Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering $(\mathbb{L}, <)$ so that neither ω_1 nor ω_1^* is embeddable into \mathbb{L} , but $(\mathbb{L}, <) \nleftrightarrow (\mathcal{B}_1(X), <).$

The positive direction

Theorem. (Elekes, Steprāns, 2006) (MA) If $|\mathbb{L}| < \mathfrak{c}$ and neither ω_1 nor ω_1^* is embeddable into $(\mathbb{L}, <)$ then $(\mathbb{L}, <) \hookrightarrow (\mathcal{B}_1(X), <)$.

Remark on Baire class α

Theorem. (Komjáth, 1990) If $\alpha > 1$ the existence of $\omega_2 \hookrightarrow (\mathcal{B}_{\alpha}(X), <)$ is already independent of ZFC.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Question. (Laczkovich, 1984) Which are the linear orderings representable by Baire class 1 functions?

Question. (Laczkovich, 1984) Which are the linear orderings representable by Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering representable by Baire class 1 functions.

Question. (Laczkovich, 1984) Which are the linear orderings representable by Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering representable by Baire class 1 functions.

The universal ordering: $([0,1]_{sd}^{<\omega_1}, <_{altlex})$

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{sd}^{<\omega_1}$.

• • = • • = •

Question. (Laczkovich, 1984) Which are the linear orderings representable by Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering representable by Baire class 1 functions.

The universal ordering: $([0,1]_{sd}^{<\omega_1}, <_{altlex})$

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{sd}^{\leq \omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0, 1]_{sd}^{\leq \omega_1}$ and let δ be minimal so that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

伺 ト イヨ ト イヨト

Question. (Laczkovich, 1984) Which are the linear orderings representable by Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering representable by Baire class 1 functions.

The universal ordering: $([0,1]_{sd}^{<\omega_1}, <_{altlex})$

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{sd}^{<\omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0, 1]_{sd}^{<\omega_1}$ and let δ be minimal so that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

 $x_{\delta} < x_{\delta}'$ if δ is even or

伺 ト イヨト イヨト

Question. (Laczkovich, 1984) Which are the linear orderings representable by Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering representable by Baire class 1 functions.

The universal ordering: $([0,1]_{sd}^{<\omega_1}, <_{altlex})$

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{sd}^{<\omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0, 1]_{sd}^{<\omega_1}$ and let δ be minimal so that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

 $x_{\delta} < x'_{\delta}$ if δ is even or $x_{\delta} > x'_{\delta}$ if δ is odd.

伺 ト イヨト イヨト

Question. (Laczkovich, 1984) Which are the linear orderings representable by Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering representable by Baire class 1 functions.

The universal ordering: $([0,1]_{sd}^{<\omega_1}, <_{altlex})$

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{sd}^{\leq \omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0, 1]_{sd}^{\leq \omega_1}$ and let δ be minimal so that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

 $x_{\delta} < x'_{\delta}$ if δ is even or $x_{\delta} > x'_{\delta}$ if δ is odd.

In fact, there exist $(\mathcal{B}_1(X), <) \hookrightarrow ([0, 1]_{sd}^{<\omega_1}, <_{altlex})$ and $([0, 1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathcal{B}_1(X), <).$

$(\mathcal{B}_1(X),<) \hookrightarrow ([0,1]^{<\omega_1}_{sd},<_{\mathit{altlex}})$

Ambiguous sets

Definition. A set $A \subset X$ is called ambiguous if it is F_{σ} and G_{δ} . The collection of ambigous subsets of X is denoted by $\mathbf{\Delta}_{2}^{0}(X)$.

• • = • • = •

$(\mathcal{B}_1(X),<) \hookrightarrow ([0,1]^{<\omega_1}_{sd},<_{\mathit{altlex}})$

Ambiguous sets

Definition. A set $A \subset X$ is called ambiguous if it is F_{σ} and G_{δ} . The collection of ambigous subsets of X is denoted by $\mathbf{\Delta}_{2}^{0}(X)$.

Remark

A characteristic function χ_A is Baire-1 if and only if $A \in \mathbf{\Delta}_2^0$.

ь « Эь « Эь

$(\mathcal{B}_1(X),<) \hookrightarrow ([0,1]^{<\omega_1}_{sd},<_{\mathit{altlex}})$

Ambiguous sets

Definition. A set $A \subset X$ is called ambiguous if it is F_{σ} and G_{δ} . The collection of ambigous subsets of X is denoted by $\mathbf{\Delta}_{2}^{0}(X)$.

Remark

A characteristic function χ_A is Baire-1 if and only if $A \in \mathbf{\Delta}_2^0$. However, for a Baire-1 function f the sets $\{(x, y) : y \le f(x)\}$ and $\{(x, y) : y < f(x)\}$ are typically not ambigous.

$$A = \bigcup_{\substack{\gamma < \alpha, \gamma \in Lim \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

$$A = \bigcup_{\substack{\gamma < \alpha, \gamma \in Lim \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

Let $A \subset X$ be arbitrary and $F \subset X$ closed.

$$A = \bigcup_{\substack{\gamma < \alpha, \gamma \in Lim \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

Let $A \subset X$ be arbitrary and $F \subset X$ closed. Let $\partial_F(A)$ be $\overline{A \cap F} \cap \overline{A^c \cap F}$ (= the boundary of A in F).

$$\mathsf{A} = \bigcup_{\substack{\gamma < \alpha, \gamma \in \mathsf{Lim} \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

Let $A \subset X$ be arbitrary and $F \subset X$ closed. Let $\partial_F(A)$ be

 $\overline{A \cap F} \cap \overline{A^c \cap F}$ (= the boundary of A in F).

Now let $F_0 = X$ and define for γ, γ' limit and $n \in \omega$ the closed set $F_{\gamma+n}$ by induction:

$$F_{\gamma+2n+2} = \partial_{F_{\gamma+2n}}(A),$$

$$\mathsf{A} = \bigcup_{\substack{\gamma < \alpha, \gamma \in \mathsf{Lim} \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

Let $A \subset X$ be arbitrary and $F \subset X$ closed. Let $\partial_F(A)$ be

 $\overline{A \cap F} \cap \overline{A^c \cap F}$ (= the boundary of A in F).

Now let $F_0 = X$ and define for γ, γ' limit and $n \in \omega$ the closed set $F_{\gamma+n}$ by induction:

$$F_{\gamma+2n+2} = \partial_{F_{\gamma+2n}}(A), \ F_{\gamma+2n+1} = \overline{A^c \cap F_{\gamma+2n}},$$

$$\mathsf{A} = \bigcup_{\substack{\gamma < \alpha, \gamma \in \mathsf{Lim} \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

Let $A \subset X$ be arbitrary and $F \subset X$ closed. Let $\partial_F(A)$ be

 $\overline{A \cap F} \cap \overline{A^c \cap F}$ (= the boundary of A in F).

Now let $F_0 = X$ and define for γ, γ' limit and $n \in \omega$ the closed set $F_{\gamma+n}$ by induction:

$$F_{\gamma+2n+2} = \partial_{F_{\gamma+2n}}(A), \ F_{\gamma+2n+1} = \overline{A^c \cap F_{\gamma+2n}},$$
$$F_{\gamma} = \bigcap_{\gamma'+2n < \gamma} F_{\gamma'+2n}.$$

$(\mathcal{B}_1(X),<) \hookrightarrow ([0,1]^{<\omega_1}_{sd},<_{\mathit{altlex}})$

Proposition. (Elekes, V.) There exists a function $\Psi : \mathbf{\Delta}_2^0(X) \to \mathbf{\Pi}_1^0(X)^{<\omega_1}$ with $\Psi(A) = (F_\beta)_{\beta < \alpha}$ with the following properties:

() $(F_{\beta})_{\beta < \alpha}$ is strictly decreasing and

$$A = \bigcup_{\substack{\gamma < \alpha, \gamma \in Lim \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

• • = • • = • = •

$(\mathcal{B}_1(X),<) \hookrightarrow ([0,1]^{<\omega_1}_{sd},<_{\mathit{altlex}})$

Proposition. (Elekes, V.) There exists a function $\Psi : \mathbf{\Delta}_2^0(X) \to \mathbf{\Pi}_1^0(X)^{<\omega_1}$ with $\Psi(A) = (F_\beta)_{\beta < \alpha}$ with the following properties:

() $(F_{\beta})_{\beta < \alpha}$ is strictly decreasing and

$$A = \bigcup_{\substack{\gamma < \alpha, \gamma \in Lim \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

$$F_{\delta} \subsetneqq F'_{\delta}$$
 if δ is even

and

伺 と く ヨ と く ヨ と 二 ヨ

$(\mathcal{B}_1(X),<) \hookrightarrow ([0,1]^{<\omega_1}_{sd},<_{\mathit{altlex}})$

Proposition. (Elekes, V.) There exists a function $\Psi : \mathbf{\Delta}_2^0(X) \to \mathbf{\Pi}_1^0(X)^{<\omega_1}$ with $\Psi(A) = (F_\beta)_{\beta < \alpha}$ with the following properties:

• $(F_{\beta})_{\beta < \alpha}$ is strictly decreasing and

$$A = \bigcup_{\substack{\gamma < \alpha, \gamma \in Lim \\ n \in \omega}} (F_{\gamma+2n} \setminus F_{\gamma+2n+1}).$$

 $F_{\delta} \subsetneqq F'_{\delta}$ if δ is even

and

$$F_{\delta} \supseteq_{\neq} F'_{\delta}$$
 if δ is odd.

伺 とう きょう とう うう

Recall the definition of the universal ordering: We denote the set of *strictly* monotone decreasing continuous transfinite sequences of reals in [0,1] by $[0,1]_{sd}^{<\omega_1}$. Let $\bar{x} = (x_\beta)_{\beta < \alpha}, \bar{x}' = (x'_\beta)_{\beta < \alpha'} \in [0,1]_{sd}^{<\omega_1}$ and let δ be minimal so that $x_\delta \neq x'_\delta$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$ $x_\delta < x'_\delta$ if δ is even or $x_\delta > x'_\delta$ if δ is odd. Recall the definition of the universal ordering: We denote the set of *strictly* monotone decreasing continuous transfinite sequences of reals in [0,1] by $[0,1]_{sd}^{<\omega_1}$. Let $\bar{x} = (x_\beta)_{\beta < \alpha}, \bar{x}' = (x'_\beta)_{\beta < \alpha'} \in [0,1]_{sd}^{<\omega_1}$ and let δ be minimal so that $x_\delta \neq x'_\delta$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$ $x_\delta < x'_\delta$ if δ is even or $x_\delta > x'_\delta$ if δ is odd.

Using the embedding $(\Pi_1^0(X), \subset) \hookrightarrow ([0, 1], <)$ we obtain:

Recall the definition of the universal ordering: We denote the set of *strictly* monotone decreasing continuous transfinite sequences of reals in [0,1] by $[0,1]_{sd}^{<\omega_1}$. Let $\bar{x} = (x_\beta)_{\beta < \alpha}, \bar{x}' = (x'_\beta)_{\beta < \alpha'} \in [0,1]_{sd}^{<\omega_1}$ and let δ be minimal so that $x_\delta \neq x'_\delta$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

 $x_{\delta} < x'_{\delta}$ if δ is even or $x_{\delta} > x'_{\delta}$ if δ is odd.

Using the embedding $(\mathbf{\Pi}_1^0(X), \subset) \hookrightarrow ([0, 1], <)$ we obtain:

Concluding result

Theorem. $(\mathbf{\Delta}_2^0(X), \subset) \hookrightarrow ([0, 1]_{sd}^{\omega_1}, <_{altlex}).$

b 4 3 b 4 3 b

Hausdorff analysis for Baire class 1 functions

Theorem. (Kechris, Louveau, 1990) Suppose that f is a bounded nonnegative Baire class 1 function. Then there exists a transfinite, strictly decreasing sequence of nonnegative, upper semi-continuous functions $(f_{\beta})_{\beta < \alpha}$ so that

$$f = \sum_{eta < lpha} {}^* (-1)^eta f_eta.$$

Where \sum^* is the generalized alternating sum.

Hausdorff analysis for Baire class 1 functions

Theorem. (Kechris, Louveau, 1990) Suppose that f is a bounded nonnegative Baire class 1 function. Then there exists a transfinite, strictly decreasing sequence of nonnegative, upper semi-continuous functions $(f_{\beta})_{\beta < \alpha}$ so that

$$f = \sum_{eta < lpha} {}^* (-1)^eta f_eta.$$

Where \sum^* is the generalized alternating sum.

Embedding for Baire class 1

Theorem.
$$(\mathcal{B}_1(X), <) \hookrightarrow ([0, 1]_{sd}^{<\omega_1}, <_{altlex}).$$

.

The other direction: $([0,1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathcal{B}_1(X), <)$

Theorem. (Elekes, V.) The converse is also true, in fact $([0,1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$

.

The other direction: $([0,1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathcal{B}_1(X), <)$

Theorem. (Elekes, V.) The converse is also true, in fact $([0,1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$

About the proof

For X and X' uncountable σ -compact spaces it was proved by Elekes that $(\mathcal{B}_1(X), <) \hookrightarrow (\mathcal{B}_1(X'), <).$

The other direction: $([0,1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathcal{B}_1(X), <)$

Theorem. (Elekes, V.) The converse is also true, in fact $([0,1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$

About the proof

For X and X' uncountable σ -compact spaces it was proved by Elekes that $(\mathcal{B}_1(X), <) \hookrightarrow (\mathcal{B}_1(X'), <)$. So it was enough to prove that $([0,1]_{sd}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathbf{\Delta}_2^0(\mathcal{K}([0,1]^2)), \subset).$

• Kuratowski: ω_1 and ω_1^* are not representable.

э

★ ∃ ► < ∃ ►</p>

- Kuratowski: ω_1 and ω_1^* are not representable.
- Elekes-Steprāns: under MA every order of cardinality less then c is representable if and only if ω_1 or ω_1^* is not embeddable into it.

- Kuratowski: ω_1 and ω_1^* are not representable.
- Elekes-Steprāns: under MA every order of cardinality less then c is representable if and only if ω_1 or ω_1^* is not embeddable into it.
- Komjáth: a forcing-free proof of the non-representability of Suslin lines.

- Kuratowski: ω_1 and ω_1^* are not representable.
- Elekes-Steprāns: under MA every order of cardinality less then c is representable if and only if ω_1 or ω_1^* is not embeddable into it.
- Komjáth: a forcing-free proof of the non-representability of Suslin lines.
- The linear orders representable by Baire class 1 functions are the same in all Polish spaces.

- Kuratowski: ω_1 and ω_1^* are not representable.
- Elekes-Steprāns: under MA every order of cardinality less then c is representable if and only if ω_1 or ω_1^* is not embeddable into it.
- Komjáth: a forcing-free proof of the non-representability of Suslin lines.
- The linear orders representable by Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is representable is also representable by characteristic functions,

B N A B N

- Kuratowski: ω_1 and ω_1^* are not representable.
- Elekes-Steprāns: under MA every order of cardinality less then c is representable if and only if ω_1 or ω_1^* is not embeddable into it.
- Komjáth: a forcing-free proof of the non-representability of Suslin lines.
- The linear orders representable by Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is representable is also representable by characteristic functions, in fact $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$

- 3 b - 4 3 b

- Kuratowski: ω_1 and ω_1^* are not representable.
- Elekes-Steprāns: under MA every order of cardinality less then c is representable if and only if ω_1 or ω_1^* is not embeddable into it.
- Komjáth: a forcing-free proof of the non-representability of Suslin lines.
- The linear orders representable by Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is representable is also representable by characteristic functions, in fact $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$
- Lexicographical countable products of representable linearly ordered sets are also representable.

• • = • • = •

- Kuratowski: ω_1 and ω_1^* are not representable.
- Elekes-Steprāns: under MA every order of cardinality less then c is representable if and only if ω_1 or ω_1^* is not embeddable into it.
- Komjáth: a forcing-free proof of the non-representability of Suslin lines.
- The linear orders representable by Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is representable is also representable by characteristic functions, in fact (B₁(X), <) → (**Δ**⁰₂(X), ⊂).
- Lexicographical countable products of representable linearly ordered sets are also representable.
- Completions of a representable linearly ordered sets are not necessarily representable.

- 4 周 ト 4 戸 ト 4 戸 ト

Question. What can we say about linear orderings representable in higher Baire classes in terms of universal orderings? What if we consider the poset ($\Sigma_{\alpha}^{0}(X), \subset$) for some $\alpha \geq 2$?

ヨトイヨト

Question. What can we say about linear orderings representable in higher Baire classes in terms of universal orderings? What if we consider the poset ($\Sigma_{\alpha}^{0}(X), \subset$) for some $\alpha \geq 2$?

Question. Does there exist an embedding $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset)$ so that $(\mathcal{B}_1(X), <)$ is (as a poset) isomorphic to its image?

Question. What can we say about linear orderings representable in higher Baire classes in terms of universal orderings? What if we consider the poset ($\Sigma_{\alpha}^{0}(X), \subset$) for some $\alpha \geq 2$?

Question. Does there exist an embedding $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset)$ so that $(\mathcal{B}_1(X), <)$ is (as a poset) isomorphic to its image?

Question. Does there exist a universal linearly ordered set if *X* is only separable metrizable?

- **3 b** - **3**

Thank you for your attention!

э