Borel hulls of Haar null sets

Zoltán Vidnyánszky

Eötvös Loránd University, Budapest

4th European Set Theory Conference, 2013

Nowhere differentiable functions

Theorem. (Banach, 1931) The set of nowhere differentiable functions is a comeager subset of C[0, 1].

Nowhere differentiable functions

Theorem. (Banach, 1931) The set of nowhere differentiable functions is a comeager subset of C[0, 1].

Existence

Corollary. There exists a nowhere differentiable continuous function.

Nowhere differentiable functions

Theorem. (Banach, 1931) The set of nowhere differentiable functions is a comeager subset of C[0, 1].

Existence

Corollary. There exists a nowhere differentiable continuous function.

Level sets

Theorem. (Bruckner, Garg, 1977) For comeager many $f \in C[a, b]$ there exists a countable dense $A \subset (min(f), max(f))$ such that for every $y \in (min(f), max(f)) \setminus A$ the set $f^{-1}(y)$ is perfect and for $y \in A$ the set $f^{-1}(y)$ is a perfect set and an isolated point.

Measure theoretic analogs

Question

What is the natural measure on C[0, 1]?

Measure theoretic analogs

Question

What is the natural measure on C[0,1]?

Invariance

Definition. Let (G, +) be a Polish abelian topological group and μ is a Borel measure on G. We say that μ is a *Haar measure* on G if

- for every $t \in G$ and $B \subset G$ Borel $\mu(B) = \mu(t + B)$.
- μ is Borel regular, for every K compact $\mu(K) < \infty$
- μ is continuous

Question

What is the natural measure on C[0,1]?

Invariance

Definition. Let (G, +) be a Polish abelian topological group and μ is a Borel measure on G. We say that μ is a *Haar measure* on G if

- for every $t \in G$ and $B \subset G$ Borel $\mu(B) = \mu(t + B)$.
- μ is Borel regular, for every K compact $\mu(K) < \infty$
- μ is continuous

Haar measure

Theorem. (Haar, Weil) Let (G, +) be a Polish abelian topological group. There exists a nontrivial Haar measure on G if and only if G is locally compact. Moreover, if μ exists then it is unique up to a multiplicative constant.

Shy sets

Definition. (Christensen, 1972) Let (G, +) be a Polish abelian group and $S \subset G$. We say that S is *Haar null (shy)* if there exists a universally measurable $U \supset S$ and a continuous Borel probability measure μ on G such that for every $t \in G$ we have $\mu(t + U) = 0$.

Shy sets

Definition. (Christensen, 1972) Let (G, +) be a Polish abelian group and $S \subset G$. We say that S is *Haar null (shy)* if there exists a universally measurable $U \supset S$ and a continuous Borel probability measure μ on G such that for every $t \in G$ we have $\mu(t + U) = 0$.

Relation to Haar measures

Proposition. Suppose G is locally compact. Then S is Haar null if and only if $\mu(S) = 0$, where μ is the Haar measure on G.

Shy sets

Definition. (Christensen, 1972) Let (G, +) be a Polish abelian group and $S \subset G$. We say that S is *Haar null (shy)* if there exists a universally measurable $U \supset S$ and a continuous Borel probability measure μ on G such that for every $t \in G$ we have $\mu(t + U) = 0$.

Relation to Haar measures

Proposition. Suppose G is locally compact. Then S is Haar null if and only if $\mu(S) = 0$, where μ is the Haar measure on G.

Further properties

Proposition. For any Polish abelian group *G* the Haar null subsets of *G* form a σ -ideal.

Let $S_{Naive} = \{A \subset G : (\exists \mu)(\forall t \in G)(\mu(A + t) = 0)\}.$

御 と くきと くきと

3

Let
$$S_{Naive} = \{A \subset G : (\exists \mu)(\forall t \in G)(\mu(A + t) = 0)\}.$$

In fact, S_{Naive} is not necessarily an ideal.

< ∃ >

э

Let $S_{Naive} = \{A \subset G : (\exists \mu)(\forall t \in G)(\mu(A + t) = 0)\}.$

In fact, S_{Naive} is not necessarily an ideal. **Proposition.** (CH) If $E \subset (\mathbb{Z}^{\omega})^2$ is a well ordering of \mathbb{Z}^{ω} , then $E \cup E^c = (\mathbb{Z}^{\omega})^2$, but E is naively Haar null.

Let
$$S_{Naive} = \{A \subset G : (\exists \mu)(\forall t \in G)(\mu(A + t) = 0)\}.$$

In fact, S_{Naive} is not necessarily an ideal. **Proposition.** (CH) If $E \subset (\mathbb{Z}^{\omega})^2$ is a well ordering of \mathbb{Z}^{ω} , then $E \cup E^c = (\mathbb{Z}^{\omega})^2$, but E is naively Haar null. Under V = L it can be chosen $\mathbf{\Delta}_2^1$.

Let
$$S_{Naive} = \{A \subset G : (\exists \mu)(\forall t \in G)(\mu(A + t) = 0)\}.$$

In fact, S_{Naive} is not necessarily an ideal. **Proposition.** (CH) If $E \subset (\mathbb{Z}^{\omega})^2$ is a well ordering of \mathbb{Z}^{ω} , then $E \cup E^c = (\mathbb{Z}^{\omega})^2$, but E is naively Haar null. Under V = L it can be chosen $\mathbf{\Delta}_2^1$.

Negative results

Theorem. (Elekes, Steprans) There exists a non Lebesgue-null $H \subset \mathbb{R}$ and a continuous Borel probability measure μ such that $\forall t \in \mathbb{R}$ we have $\mu(t + H) = 0$.

Let G be a Polish abelian group, and $\Gamma \subset \mathcal{P}(G)$. We say that a set S is Haar null with a Γ -hull if

$$(\exists \mu)(\exists H\in \mathsf{\Gamma})(orall t\in G)(\mu(H+t)=0)\wedge S\subset H).$$

This family is denoted by \mathcal{S}_{Γ} .

Let G be a Polish abelian group, and $\Gamma \subset \mathcal{P}(G)$. We say that a set S is Haar null with a Γ -hull if

$$(\exists \mu)(\exists H\in \mathsf{\Gamma})(orall t\in G)(\mu(H+t)=0)\wedge S\subset H).$$

This family is denoted by \mathcal{S}_{Γ} .

In particular, $S_{Naive} = S_{\mathcal{P}(X)}$ and the original definition of Haar nullness gives $S_{\mathcal{UM}}$.

Let G be a Polish abelian group, and $\Gamma \subset \mathcal{P}(G)$. We say that a set S is Haar null with a Γ -hull if

$$(\exists \mu)(\exists H\in \mathsf{\Gamma})(orall t\in G)(\mu(H+t)=0)\wedge S\subset H).$$

This family is denoted by \mathcal{S}_{Γ} .

In particular, $S_{Naive} = S_{\mathcal{P}(X)}$ and the original definition of Haar nullness gives $S_{\mathcal{UM}}$. Obviously, $S_{\Pi^0_{\alpha}} \subset S_{\Delta^1_1} \subset S_{\Sigma^1_1} \subset S_{\mathcal{UM}} \subset S_{\mathcal{P}(X)}$.

Let G be a Polish abelian group, and $\Gamma \subset \mathcal{P}(G)$. We say that a set S is Haar null with a Γ -hull if

$$(\exists \mu)(\exists H\in \mathsf{\Gamma})(orall t\in G)(\mu(H+t)=0)\wedge S\subset H).$$

This family is denoted by \mathcal{S}_{Γ} .

In particular, $S_{Naive} = S_{\mathcal{P}(X)}$ and the original definition of Haar nullness gives $S_{\mathcal{UM}}$. Obviously, $S_{\Pi^0_{\alpha}} \subset S_{\Delta^1_1} \subset S_{\Sigma^1_1} \subset S_{\mathcal{UM}} \subset S_{\mathcal{P}(X)}$. If *G* locally compact then $S_{G_{\delta}} = S_{\mathcal{UM}}$.

Let G be a Polish abelian group, and $\Gamma \subset \mathcal{P}(G)$. We say that a set S is Haar null with a Γ -hull if

$$(\exists \mu)(\exists H\in \mathsf{\Gamma})(orall t\in G)(\mu(H+t)=0)\wedge S\subset H).$$

This family is denoted by \mathcal{S}_{Γ} .

In particular, $S_{Naive} = S_{\mathcal{P}(X)}$ and the original definition of Haar nullness gives $S_{\mathcal{UM}}$. Obviously, $S_{\Pi^0_{\alpha}} \subset S_{\Delta^1_1} \subset S_{\Sigma^1_1} \subset S_{\mathcal{UM}} \subset S_{\mathcal{P}(X)}$. If *G* locally compact then $S_{G_{\delta}} = S_{\mathcal{UM}}$. Elekes and Steprans \Rightarrow in \mathbb{R} we have $S_{\Pi^0_2} = S_{\Delta^1_1} = S_{\Sigma^1_1} = S_{\mathcal{UM}} \subsetneqq S_{\mathcal{P}(X)}$.

Def:
$$S_{\Gamma} = \{ S : (\exists \mu) (\exists H \in \Gamma) (\forall t \in G) (\mu(H + t) = 0) \land S \subset H) \}.$$

 $S_{\Pi^0_{\alpha}} \subset S_{\Delta^1_1} \subset S_{\Sigma^1_1} \subset S_{\mathcal{UM}} \stackrel{\subseteq}{\neq} {}^{CH} S_{\mathcal{P}(X)}.$

Theorem. (Solecki, 1996) For every Σ_1^1 Haar null set there exists a Haar null Δ_1^1 hull.

Def:
$$S_{\Gamma} = \{ S : (\exists \mu) (\exists H \in \Gamma) (\forall t \in G) (\mu(H + t) = 0) \land S \subset H) \}.$$

 $S_{\Pi^0_{\alpha}} \subset S_{\Delta^1_1} \subset S_{\Sigma^1_1} \subset S_{\mathcal{UM}} \stackrel{\subseteq}{\neq} {}^{CH} S_{\mathcal{P}(X)}.$

Theorem. (Solecki, 1996) For every Σ_1^1 Haar null set there exists a Haar null Δ_1^1 hull.

Def:
$$S_{\Gamma} = \{ S : (\exists \mu) (\exists H \in \Gamma) (\forall t \in G) (\mu(H + t) = 0) \land S \subset H) \}.$$

$$S_{\Pi^{0}_{\alpha}} \subset S_{\Delta^{1}_{1}} = S_{\Sigma^{1}_{1}} \subset S_{\Pi^{1}_{1}} \subset S_{\mathcal{UM}} \stackrel{\subseteq}{=} {}^{CH} S_{\mathcal{P}(X)}.$$

Theorem. (Solecki, 1996) For every Σ_1^1 Haar null set there exists a Haar null Δ_1^1 hull. ($\iff S_{\Delta_1^1} = S_{\Sigma_1^1}$).

Def:
$$S_{\Gamma} = \{ S : (\exists \mu) (\exists H \in \Gamma) (\forall t \in G) (\mu(H + t) = 0) \land S \subset H) \}.$$

$$S_{\Pi^{0}_{\alpha}} \subset S_{\Delta^{1}_{1}} = S_{\Sigma^{1}_{1}} \subset S_{\Pi^{1}_{1}} \subset S_{\mathcal{UM}} \stackrel{\subseteq}{=} {}^{CH} S_{\mathcal{P}(X)}.$$

Theorem. (Solecki, 1996) For every Σ_1^1 Haar null set there exists a Haar null Δ_1^1 hull. ($\iff S_{\Delta_1^1} = S_{\Sigma_1^1}$).

Cardinal characteristics

Theorem. (Banakh, 2004) (MA) And G is not locally compact then $cof(S_{UM}) > \mathfrak{c}$.

Def:
$$S_{\Gamma} = \{ S : (\exists \mu) (\exists H \in \Gamma) (\forall t \in G) (\mu(H + t) = 0) \land S \subset H) \}.$$

 $S_{\Pi^{0}_{\alpha}} \subset S_{\Delta^{1}_{1}} = S_{\Sigma^{1}_{1}} \subset S_{\Pi^{1}_{1}} \stackrel{\subseteq}{=} {}^{MA} S_{\mathcal{UM}} \stackrel{\subseteq}{=} {}^{CH} S_{\mathcal{P}(X)}.$

Theorem. (Solecki, 1996) For every Σ_1^1 Haar null set there exists a Haar null Δ_1^1 hull. ($\iff S_{\Delta_1^1} = S_{\Sigma_1^1}$).

Cardinal characteristics

Theorem. (Banakh, 2004) (MA) And G is not locally compact then $cof(S_{UM}) > \mathfrak{c}$. $\Rightarrow S_{\Delta_1^1} \neq S_{UM}$.

Π_1^1 example in L

Theorem. (Z. V.) There exists a Π_1^1 set $\mathcal{H} \subset \mathbb{Z}^{\omega}$ such that \mathcal{H} is Haar null but there is no Σ_1^1 Haar null set containing it.

Π_1^1 example in L

Theorem. (Z. V.) There exists a Π_1^1 set $\mathcal{H} \subset \mathbb{Z}^{\omega}$ such that \mathcal{H} is Haar null but there is no Σ_1^1 Haar null set containing it.

Corollary. $(V = L) \mathcal{S}_{\Delta_1^1} \neq \mathcal{S}_{\Pi_1^1}$.

Π_1^1 example in L

Theorem. (Z. V.) There exists a Π_1^1 set $\mathcal{H} \subset \mathbb{Z}^{\omega}$ such that \mathcal{H} is Haar null but there is no Σ_1^1 Haar null set containing it.

Corollary. $(V = L) \mathcal{S}_{\Delta_1^1} \neq \mathcal{S}_{\Pi_1^1}$.

Proof

Take $\mathcal{H} = \{x : x \in L_{\omega_1^x}\}$. Then

Π_1^1 example in L

Theorem. (Z. V.) There exists a Π_1^1 set $\mathcal{H} \subset \mathbb{Z}^{\omega}$ such that \mathcal{H} is Haar null but there is no Σ_1^1 Haar null set containing it.

Corollary. $(V = L) \mathcal{S}_{\Delta_1^1} \neq \mathcal{S}_{\Pi_1^1}$.

Proof

Take $\mathcal{H} = \{x : x \in L_{\omega_1^x}\}$. Then

• \mathcal{H} is Π^1_1 and does not contain a perfect subset

Π_1^1 example in L

Theorem. (Z. V.) There exists a Π_1^1 set $\mathcal{H} \subset \mathbb{Z}^{\omega}$ such that \mathcal{H} is Haar null but there is no Σ_1^1 Haar null set containing it.

Corollary. $(V = L) \mathcal{S}_{\Delta_1^1} \neq \mathcal{S}_{\Pi_1^1}$.

Proof

Take
$$\mathcal{H} = \{x : x \in L_{\omega_1^x}\}$$
. Then

- ${\mathcal H}$ is Π^1_1 and does not contain a perfect subset
- intersects every \leq_h -cofinal $F \in \mathbf{\Pi}_1^1$

Π_1^1 example in L

Theorem. (Z. V.) There exists a Π_1^1 set $\mathcal{H} \subset \mathbb{Z}^{\omega}$ such that \mathcal{H} is Haar null but there is no Σ_1^1 Haar null set containing it.

Corollary. $(V = L) \mathcal{S}_{\Delta_1^1} \neq \mathcal{S}_{\Pi_1^1}$.

Proof

Take
$$\mathcal{H} = \{x : x \in L_{\omega_1^x}\}$$
. Then

- ${\mathcal H}$ is Π^1_1 and does not contain a perfect subset
- intersects every \leq_h -cofinal $F \in \mathbf{\Pi}_1^1$

⇒ enough to prove that every prevalent (co-Haar null) Π_1^1 is ≤_h-cofinal.

Solecki's $\mathcal{S}_{\mathbf{\Delta}_{1}^{1}} = \mathcal{S}_{\mathbf{\Sigma}_{1}^{1}}$

Theorem. (First reflection) Suppose that X is Polish and $\Phi \subset \mathcal{P}(X)$ is Π_1^1 on Σ_1^1 . If $A \in \Phi \cap \Sigma_1^1$ then $\exists B \in \Phi \cap \Delta_1^1$ such that $A \subset B$.

→ < ∃→

Solecki's $\mathcal{S}_{\mathbf{\Delta}_{1}^{1}} = \mathcal{S}_{\mathbf{\Sigma}_{1}^{1}}$

Theorem. (First reflection) Suppose that X is Polish and $\Phi \subset \mathcal{P}(X)$ is Π_1^1 on Σ_1^1 . If $A \in \Phi \cap \Sigma_1^1$ then $\exists B \in \Phi \cap \Delta_1^1$ such that $A \subset B$. Fix a μ measure on a Polish abelian group G and let $c_{\mu}(A) = \sup\{\mu(A + t) : t \in G\}, A \in \Phi_{\mu} \iff c_{\mu}(A) = 0.$

Solecki's $\mathcal{S}_{\mathbf{\Delta}_{1}^{1}} = \mathcal{S}_{\mathbf{\Sigma}_{1}^{1}}$

Theorem. (First reflection) Suppose that X is Polish and $\Phi \subset \mathcal{P}(X)$ is Π_1^1 on Σ_1^1 . If $A \in \Phi \cap \Sigma_1^1$ then $\exists B \in \Phi \cap \Delta_1^1$ such that $A \subset B$. Fix a μ measure on a Polish abelian group G and let $c_{\mu}(A) = \sup\{\mu(A + t) : t \in G\}, A \in \Phi_{\mu} \iff c_{\mu}(A) = 0.$

Bounded reflection

Definition. If $\Phi \subset \mathcal{P}(X)$ is a Π_1^1 on Σ_1^1 ideal, we say that it satisfies *bounded reflection*, if there exists an ordinal $\gamma < \omega_1$ such that for every $B \in \Phi \cap \Delta_1^1$ then $\exists D \in \Phi \cap \Pi_{\gamma}^0$ with $B \subset D$.

Solecki's $\mathcal{S}_{\mathbf{\Delta}_{1}^{1}} = \mathcal{S}_{\mathbf{\Sigma}_{1}^{1}}$

Theorem. (First reflection) Suppose that X is Polish and $\Phi \subset \mathcal{P}(X)$ is Π_1^1 on Σ_1^1 . If $A \in \Phi \cap \Sigma_1^1$ then $\exists B \in \Phi \cap \Delta_1^1$ such that $A \subset B$. Fix a μ measure on a Polish abelian group G and let $c_{\mu}(A) = \sup\{\mu(A + t) : t \in G\}, A \in \Phi_{\mu} \iff c_{\mu}(A) = 0.$

Bounded reflection

Definition. If $\Phi \subset \mathcal{P}(X)$ is a Π_1^1 on Σ_1^1 ideal, we say that it satisfies *bounded reflection*, if there exists an ordinal $\gamma < \omega_1$ such that for every $B \in \Phi \cap \Delta_1^1$ then $\exists D \in \Phi \cap \Pi_{\gamma}^0$ with $B \subset D$.

Preservation of category

Definition. A σ -ideal $\Phi \subset \mathcal{P}(X)$ preserves category if whenever $B \subset X \times Y$ is Borel then $\forall^* \forall^{\Phi} B(x, y) \Rightarrow \forall^{\Phi} \forall^* B(x, y)$.

Positive result

Theorem. (Clemens, Zapletal) ($\forall x(x^{\#} \text{ exists})$) Suppose that a σ -ideal Φ preserves category and Π_1^1 on Σ_1^1 . Then bounded reflection implies Π_1^1 -reflection (i.e. $A \in \Phi \cap \Pi_1^1$ then $\exists B \in \Phi \cap \Delta_1^1$ such that $A \subset B$.)

Preservation of measure

Theorem?? Suppose that a σ -ideal Φ preserves measure and Π_1^1 on Σ_1^1 . Then bounded reflection implies Π_1^1 -reflection (i.e. $A \in \Phi \cap \Pi_1^1$ then $\exists B \in \Phi \cap \Delta_1^1$ such that $A \subset B$.)

Remark

Proposition. For a fixed Borel measure μ the set Φ_{μ} is a measure preserving Π_1^1 on Σ_1^1 σ -ideal.

Corollary

If the previous theorem holds then we have:

Remark

Proposition. For a fixed Borel measure μ the set Φ_{μ} is a measure preserving Π_{1}^{1} on Σ_{1}^{1} σ -ideal.

Corollary

If the previous theorem holds then we have:

Suppose that for every fixed measure μ there exists a $\gamma < \omega_1$ such that every Borel Haar null set with witness μ is contained in a Π_{γ}^0 Haar null set with witness $\mu \Rightarrow$

Every Π_1^1 Haar null set is contained in a Borel Haar null set.

Towards $Con(\mathcal{S}_{\mathbf{\Delta}_{1}^{1}} = \mathcal{S}_{\mathbf{\Pi}_{1}^{1}})$

Capacities

Definition. Suppose that X is a Hausdorff space. A *capacity* on X is a map $c : \mathcal{P}(X) \to [0, \infty]$ such that

- $A \subset B$ implies $c(A) \leq c(B)$
- S for any compact K ⊂ X, c(K) < ∞ and if c(K) < r then there exists an open U ⊂ K such that c(U) < r.</p>

Towards $Con(\mathcal{S}_{\mathbf{\Delta}_1^1} = \mathcal{S}_{\mathbf{\Pi}_1^1})$

Capacities

Definition. Suppose that X is a Hausdorff space. A *capacity* on X is a map $c : \mathcal{P}(X) \to [0, \infty]$ such that

- $A \subset B$ implies $c(A) \leq c(B)$
- for any compact $K \subset X$, $c(K) < \infty$ and if c(K) < r then there exists an open $U \subset K$ such that c(U) < r.

Capacitability

Definition. A set A is *c*-capacitable if $c(A) = \sup\{c(K) : K \subset A \text{ compact}\}$.

Towards $Con(\mathcal{S}_{\mathbf{\Delta}_{1}^{1}} = \mathcal{S}_{\mathbf{\Pi}_{1}^{1}})$

Capacities

Definition. Suppose that X is a Hausdorff space. A *capacity* on X is a map $c : \mathcal{P}(X) \to [0, \infty]$ such that

- $A \subset B$ implies $c(A) \leq c(B)$
- for any compact $K \subset X$, $c(K) < \infty$ and if c(K) < r then there exists an open $U \subset K$ such that c(U) < r.

Capacitability

Definition. A set A is *c*-capacitable if $c(A) = \sup\{c(K) : K \subset A \text{ compact}\}$. **Theorem.** (Choquet) In a Polish space every Σ_1^1 set is *c*-capacitable for every *c* capacity.

Relation to Haar null sets

Proposition. Let $X = \mathbb{Z}^{\omega}$. Fix μ , there exists a capacity \overline{c}_{μ} such that $\overline{c}_{\mu}(B) = c_{\mu}(B) = \sup\{\mu(B+t) : t \in \mathbb{Z}^{\omega}\}$ for every Borel *B*.

Relation to Haar null sets

Proposition. Let $X = \mathbb{Z}^{\omega}$. Fix μ , there exists a capacity \bar{c}_{μ} such that $\bar{c}_{\mu}(B) = c_{\mu}(B) = \sup\{\mu(B+t) : t \in \mathbb{Z}^{\omega}\}$ for every Borel *B*.

Corollary

We have obtained again $\mathcal{S}_{\mathbf{\Delta}_{1}^{1}} = \mathcal{S}_{\mathbf{\Sigma}_{1}^{1}}$.

Relation to Haar null sets

Proposition. Let $X = \mathbb{Z}^{\omega}$. Fix μ , there exists a capacity \bar{c}_{μ} such that $\bar{c}_{\mu}(B) = c_{\mu}(B) = \sup\{\mu(B+t) : t \in \mathbb{Z}^{\omega}\}$ for every Borel *B*.

Corollary

We have obtained again $S_{\mathbf{\Delta}_{1}^{1}} = S_{\mathbf{\Sigma}_{1}^{1}}$.

Capacitability of Π_1^1 sets

Proposition. Π_1^1 sets are not universally capacitable.

/⊒ ▶ < ∃ ▶ <

Question. What are the exact relations in the following equation: $\mathcal{S}_{\Pi^0_{\alpha}} \subset \mathcal{S}_{\Delta^1_1} = \mathcal{S}_{\boldsymbol{\Sigma}^1_1} \stackrel{\subseteq}{=}^{V=L} \mathcal{S}_{\Pi^1_1} \stackrel{\subseteq}{=}^{MA} \mathcal{S}_{\mathcal{UM}} \stackrel{\subseteq}{=}^{CH} \mathcal{S}_{\mathcal{P}(X)}?$

• • = • • = •

Question. What are the exact relations in the following equation: $\mathcal{S}_{\Pi^0_{\alpha}} \subset \mathcal{S}_{\Delta^1_1} = \mathcal{S}_{\boldsymbol{\Sigma}^1_1} \stackrel{\subseteq}{=}^{V=L} \mathcal{S}_{\Pi^1_1} \stackrel{\subseteq}{=}^{MA} \mathcal{S}_{\mathcal{UM}} \stackrel{\subseteq}{=}^{CH} \mathcal{S}_{\mathcal{P}(X)}?$

Question. (PD) Does $S_{G_{\delta}} = S_{\Delta_{1}^{1}}$ directly imply $S_{\Delta_{1}^{1}} = S_{\Pi_{1}^{1}}$?

伺 と く ヨ と く ヨ と

Question. What are the exact relations in the following equation: $\mathcal{S}_{\Pi^0_{\alpha}} \subset \mathcal{S}_{\Delta^1_1} = \mathcal{S}_{\Sigma^1_1} \stackrel{\subseteq}{\underset{\neq}{\hookrightarrow}}^{V=L} \mathcal{S}_{\Pi^1_1} \stackrel{\subseteq}{\underset{\neq}{\hookrightarrow}}^{MA} \mathcal{S}_{\mathcal{UM}} \stackrel{\subseteq}{\underset{\neq}{\hookrightarrow}}^{CH} \mathcal{S}_{\mathcal{P}(X)}?$

Question. (PD) Does
$$S_{G_{\delta}} = S_{\Delta_{1}^{1}}$$
 directly imply $S_{\Delta_{1}^{1}} = S_{\Pi_{1}^{1}}$?

Complementary questions

Question. Is it true that every analytic non-Haar null set contains a Borel non-Haar null set?

Thank you!

÷,

æ

-∢ ≣⇒