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2-point sets

Definition

A subset of the plane which intersects every line in exactly two
points is called a 2-point set.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel?
Theorem. (Bouhjar, Dijkstra, and van Mill) It cannot be Fσ!
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Zoltán Vidnyánszky Supervisor: Márton Elekes Transfinite constructions in V = L



2-point sets

Inductive proof

Standard proof of the existence:

purely set theoretic construction,
by transfinite induction.

Question

The freedom of choice is very large. Could it be done in a ”nice”
way?
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Coanalytic sets

Coanalytic sets

The projections of Gδ sets are called analytic (Σ1
1) (or equivalently

the continuous images of the Borel sets). The complements are
called coanalytic (Π1

1).

Regularity properties of a Π1
1 set

Lebesgue measurability =⇒ a coanalytic set cannot be a
Bernstein set

Baire property

Irregularity properties

Con(ω1 < 2ω+exists an A Π1
1, such that |A| = ω1)

⇒ Con(∃ an uncountable coanalytic set without a perfect
subset)

Zoltán Vidnyánszky Supervisor: Márton Elekes Transfinite constructions in V = L



Coanalytic sets

Coanalytic sets

The projections of Gδ sets are called analytic (Σ1
1) (or equivalently

the continuous images of the Borel sets). The complements are
called coanalytic (Π1

1).

Regularity properties of a Π1
1 set

Lebesgue measurability

=⇒ a coanalytic set cannot be a
Bernstein set

Baire property

Irregularity properties

Con(ω1 < 2ω+exists an A Π1
1, such that |A| = ω1)

⇒ Con(∃ an uncountable coanalytic set without a perfect
subset)
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Miller’s theorem

Miller’s theorem

Theorem. (A. W. Miller 91’) (V = L) There is a Π1
1 2-point set.

Furthermore ∃ Π1
1

Hamel basis

MAD family

Method

Miller’s method is frequently needed, but he does not give a
general condition. The proof is hard, uses effective descriptive set
theory and model theory.
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General method

x ≤T y

Definition. Let x , y ∈ R, x ≤T y iff there is a Turing machine
computing x from y .

Cofinality in the Turing degrees

Definition. A set X ⊂ R is cofinal in the Turing degrees if
(∀z ∈ R)(∃y ∈ X )(y ≤T x).
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General method

Compatibility

Definition. Let F ⊂ R≤ω × R× R, and X ⊂ R. We say that X is
compatible with F if there exist enumerations P = {pα : α < ω1},
X = {xα : α < ω1} and for every α < ω1 a sequence Aα ∈ R≤ω
that is an enumeration of {xβ : β < α} in type ≤ ω such that
(∀α < ω1)(xα ∈ F(Aα,pα)) holds.

General method

Theorem 1. (V=L) Suppose that F ⊂ R≤ω × R× R is a
coanalytic set and for all p ∈ R, A ∈ R≤ω the section F(A,p) is
cofinal in the Turing degrees. Then there exists a coanalytic set X
that is compatible with F .
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Effectiveness

Σ0
1(y), Π0

1(y)

Definition. Let {In : n ∈ ω} be a recursive enumeration of the open
intervals with rational endpoints. An open set G is called recursive
in y , iff {n ∈ ω : In ⊂ G} (as an element of 2ω) ≤T y . (denoted
by Σ0

1(y)).
Π0

1(y) = {G c : G ∈ Σ0
1(y)}

We can define these classes similarly for subsets of ω, ω × R, R2

etc. using a recursive enumeration of {n}, {n} × Im, In × Im etc.
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The lightface classes

Let us define for n ≥ 2

Σ0
n(y) = {projR(A) : A ⊂ R× ω,A ∈ Π0

n−1(y)},

Π0
n(y) = {Ac : A ∈ Σ0

n(y)}.

Furthermore:

Σ1
1(y) = {projR(A) : A ⊂ R× R,A ∈ Π0

2(y)},

Π1
1(y) = {Ac : A ∈ Σ1

1(y)},

∆1
1(y) = Σ1

1(y) ∩ Π1
1(y).

For x , y ⊂ ω x ∈ ∆1
1(y) is denoted by x ≤h y .

Lightface and boldface

Σi
j = ∪y∈RΣi

j(y)
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Strengthenigns

Cofinality in the hyperdegrees

Definition. A set X ⊂ R is called cofinal in hyperdegrees if
(∀z ∈ R)(∃y ∈ X )(z ≤h y).

Stronger version

Theorem 2. (V=L) Let t ∈ R, F ⊂ R≤ω × R× R be a Π1
1(t) set.

Assume that for every (A, p) ∈ R≤ω × R the section F(A,p) is
cofinal in the hyperdegrees. Then there exists a Π1

1(t) set X that is
compatible with F .

Remark

The previous theorem holds true replacing R with Rn, ωω or 2ω.

Zoltán Vidnyánszky Supervisor: Márton Elekes Transfinite constructions in V = L



Strengthenigns

Cofinality in the hyperdegrees

Definition. A set X ⊂ R is called cofinal in hyperdegrees if
(∀z ∈ R)(∃y ∈ X )(z ≤h y).

Stronger version

Theorem 2. (V=L) Let t ∈ R, F ⊂ R≤ω × R× R be a Π1
1(t) set.

Assume that for every (A, p) ∈ R≤ω × R the section F(A,p) is
cofinal in the hyperdegrees.

Then there exists a Π1
1(t) set X that is

compatible with F .

Remark

The previous theorem holds true replacing R with Rn, ωω or 2ω.
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A tipical application

Miller’s results

Theorem 1. implies Miller’s results: consistent existence of
coanalytic MAD family, 2-point set and Hamel basis.
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2-point set

Recall Theorem 1.

(V=L) If F is Π1
1 and every section F(A,p) is cofinal in the Turing

degrees then there exists a Π1
1 set X and enumerations

R = {pα : α < ω1}, X = {xα : α < ω1}, Aα of {xβ : β < α}, such
that (∀α < ω1)(xα ∈ F(Aα,pα)).

Proof

(A, p, x) ∈ F ⇐⇒ EITHER the conjunction of the following
clauses is true

1 there are no 3 collinear points in A

2 |A ∩ lp| < 2 and lp 6= ∅
3 x ∈ lp \ A, x is not collinear with any two distinct points of A

OR 1∧¬2 holds and x is not collinear with two distinct points of A
OR ¬1.
Transfinite induction =⇒ X is a 2-point set.
Theorem 1. =⇒ X is Π1

1.

Zoltán Vidnyánszky Supervisor: Márton Elekes Transfinite constructions in V = L



2-point set

Recall Theorem 1.

(V=L) If F is Π1
1 and every section F(A,p) is cofinal in the Turing

degrees then there exists a Π1
1 set X and enumerations

R = {pα : α < ω1}, X = {xα : α < ω1}, Aα of {xβ : β < α}, such
that (∀α < ω1)(xα ∈ F(Aα,pα)).

Proof

(A, p, x) ∈ F ⇐⇒ EITHER the conjunction of the following
clauses is true

1 there are no 3 collinear points in A

2 |A ∩ lp| < 2 and lp 6= ∅
3 x ∈ lp \ A, x is not collinear with any two distinct points of A

OR 1∧¬2 holds and x is not collinear with two distinct points of A
OR ¬1.
Transfinite induction =⇒ X is a 2-point set.
Theorem 1. =⇒ X is Π1

1.
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Zoltán Vidnyánszky Supervisor: Márton Elekes Transfinite constructions in V = L



2-point set

Recall Theorem 1.

(V=L) If F is Π1
1 and every section F(A,p) is cofinal in the Turing

degrees then there exists a Π1
1 set X and enumerations

R = {pα : α < ω1}, X = {xα : α < ω1}, Aα of {xβ : β < α}, such
that (∀α < ω1)(xα ∈ F(Aα,pα)).

Proof

(A, p, x) ∈ F ⇐⇒ EITHER the conjunction of the following
clauses is true

1 there are no 3 collinear points in A

2 |A ∩ lp| < 2 and lp 6= ∅
3 x ∈ lp \ A, x is not collinear with any two distinct points of A

OR 1∧¬2 holds and x is not collinear with two distinct points of A

OR ¬1.
Transfinite induction =⇒ X is a 2-point set.
Theorem 1. =⇒ X is Π1

1.
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Consequences: C 1 curves

Existence

(CH) There exists an uncountable X ⊂ R2 intersecting every C 1

curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable
X ⊂ R2 there exists a C 1 curve intersecting it in uncountably
many points.
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Zoltán Vidnyánszky Supervisor: Márton Elekes Transfinite constructions in V = L



Consequences: C 1 curves

General version

Theorem.(V=L) Suppose that G ⊂ R× Rn is a Borel set and for
every countable A ⊂ R the complement of the set ∪p∈AGp is
cofinal in the Turing degrees. Then there exists an uncountable
coanalytic set X ⊂ Rn which intersects every Gp in a countable set.

Coanalytic in V=L

Theorem 1. implies that under (V=L) there exists an uncountable
coanalytic X ⊂ R2 set intersecting every C 1 curve in countably
many points.

Remark

In almost every cases there are no Σ1
1 sets.
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Thank you!
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