Transfinite constructions in V = L

Zoltán Vidnyánszky Supervisor: Márton Elekes

Eötvös Loránd University, Budapest

Trends in set theory, Warsaw, 2012

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel?

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel? **Theorem.** (Bouhjar, Dijkstra, and van Mill) It cannot be F_{σ} ! Inductive proof

Standard proof of the existence:

э

∃►

∃ >

Inductive proof

Standard proof of the existence: purely set theoretic construction, by transfinite induction.

Inductive proof

Standard proof of the existence: purely set theoretic construction, by transfinite induction.

Question

The freedom of choice is very large. Could it be done in a "nice" way?

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Regularity properties of a Π_1^1 set

• Lebesgue measurability

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Regularity properties of a Π_1^1 set

- \bullet Lebesgue measurability \implies a coanalytic set cannot be a Bernstein set
- Baire property

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Regularity properties of a Π_1^1 set

- \bullet Lebesgue measurability \implies a coanalytic set cannot be a Bernstein set
- Baire property

Irregularity properties

• $Con(\omega_1 < 2^{\omega} + \text{exists an } A \ \Pi_1^1$, such that $|A| = \omega_1)$

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Regularity properties of a Π_1^1 set

- \bullet Lebesgue measurability \implies a coanalytic set cannot be a Bernstein set
- Baire property

Irregularity properties

- $Con(\omega_1 < 2^{\omega} + \text{exists an } A \ \Pi^1_1, \text{ such that } |A| = \omega_1)$
- ⇒ Con(∃ an uncountable coanalytic set without a perfect subset)

Miller's theorem

Theorem. (A. W. Miller 91') (V = L) There is a Π_1^1 2-point set.

Miller's theorem

Theorem. (A. W. Miller 91') (V = L) There is a Π_1^1 2-point set. Furthermore $\exists \Pi_1^1$

- Hamel basis
- MAD family

Miller's theorem

Theorem. (A. W. Miller 91') (V = L) There is a Π_1^1 2-point set. Furthermore $\exists \Pi_1^1$

- Hamel basis
- MAD family

Method

Miller's method is frequently needed, but he does not give a general condition. The proof is hard, uses effective descriptive set theory and model theory.

$x \leq_T y$

Definition. Let $x, y \in \mathbb{R}$, $x \leq_T y$ iff there is a Turing machine computing x from y.

글 🖌 🖌 글 🕨

э

$x \leq_T y$

Definition. Let $x, y \in \mathbb{R}$, $x \leq_T y$ iff there is a Turing machine computing x from y.

Cofinality in the Turing degrees

Definition. A set $X \subset \mathbb{R}$ is cofinal in the Turing degrees if $(\forall z \in \mathbb{R})(\exists y \in X)(y \leq_T x).$

Compatibility

Definition. Let $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$, and $X \subset \mathbb{R}$. We say that X is compatible with F if there exist enumerations $P = \{p_{\alpha} : \alpha < \omega_1\}$, $X = \{x_{\alpha} : \alpha < \omega_1\}$ and for every $\alpha < \omega_1$ a sequence $A_{\alpha} \in \mathbb{R}^{\leq \omega}$ that is an enumeration of $\{x_{\beta} : \beta < \alpha\}$ in type $\leq \omega$ such that $(\forall \alpha < \omega_1)(x_{\alpha} \in F_{(A_{\alpha}, p_{\alpha})})$ holds.

Compatibility

Definition. Let $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$, and $X \subset \mathbb{R}$. We say that X is compatible with F if there exist enumerations $P = \{p_{\alpha} : \alpha < \omega_1\}$, $X = \{x_{\alpha} : \alpha < \omega_1\}$ and for every $\alpha < \omega_1$ a sequence $A_{\alpha} \in \mathbb{R}^{\leq \omega}$ that is an enumeration of $\{x_{\beta} : \beta < \alpha\}$ in type $\leq \omega$ such that $(\forall \alpha < \omega_1)(x_{\alpha} \in F_{(A_{\alpha}, p_{\alpha})})$ holds.

General method

Theorem 1. (V=L) Suppose that $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ is a coanalytic set and for all $p \in \mathbb{R}$, $A \in \mathbb{R}^{\leq \omega}$ the section $F_{(A,p)}$ is cofinal in the Turing degrees.

Compatibility

Definition. Let $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$, and $X \subset \mathbb{R}$. We say that X is compatible with F if there exist enumerations $P = \{p_{\alpha} : \alpha < \omega_1\}$, $X = \{x_{\alpha} : \alpha < \omega_1\}$ and for every $\alpha < \omega_1$ a sequence $A_{\alpha} \in \mathbb{R}^{\leq \omega}$ that is an enumeration of $\{x_{\beta} : \beta < \alpha\}$ in type $\leq \omega$ such that $(\forall \alpha < \omega_1)(x_{\alpha} \in F_{(A_{\alpha}, p_{\alpha})})$ holds.

General method

Theorem 1. (V=L) Suppose that $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ is a coanalytic set and for all $p \in \mathbb{R}$, $A \in \mathbb{R}^{\leq \omega}$ the section $F_{(A,p)}$ is cofinal in the Turing degrees. Then there exists a coanalytic set X that is compatible with F.

$\Sigma_1^0(y), \ \Pi_1^0(y)$

Definition. Let $\{I_n : n \in \omega\}$ be a recursive enumeration of the open intervals with rational endpoints. An open set *G* is called *recursive* in *y*, iff $\{n \in \omega : I_n \subset G\}$ (as an element of $2^{\omega}\} \leq_T y$. (denoted by $\Sigma_1^0(y)$). $\Pi_1^0(y) = \{G^c : G \in \Sigma_1^0(y)\}$

We can define these classes similarly for subsets of ω , $\omega \times \mathbb{R}$, \mathbb{R}^2 etc. using a recursive enumeration of $\{n\}$, $\{n\} \times I_m$, $I_n \times I_m$ etc.

The lightface classes

Let us define for $n \ge 2$

$$\begin{split} \Sigma^0_n(y) &= \{ \textit{proj}_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \omega, A \in \Pi^0_{n-1}(y) \}, \\ \Pi^0_n(y) &= \{ A^c : A \in \Sigma^0_n(y) \}. \end{split}$$

Furthermore:

$$\begin{split} \Sigma_1^1(y) &= \{ proj_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \mathbb{R}, A \in \Pi_2^0(y) \}, \\ \Pi_1^1(y) &= \{ A^c : A \in \Sigma_1^1(y) \}, \\ \Delta_1^1(y) &= \Sigma_1^1(y) \cap \Pi_1^1(y). \end{split}$$
For $x, y \subset \omega \; x \in \Delta_1^1(y)$ is denoted by $x \leq_h y$.

æ

The lightface classes

Let us define for $n \ge 2$

$$\Sigma_n^0(y) = \{ proj_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \omega, A \in \Pi_{n-1}^0(y) \},$$

 $\Pi_n^0(y) = \{ A^c : A \in \Sigma_n^0(y) \}.$

Furthermore:

$$\Sigma_1^1(y) = \{ proj_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \mathbb{R}, A \in \Pi_2^0(y) \},$$
$$\Pi_1^1(y) = \{ A^c : A \in \Sigma_1^1(y) \},$$
$$\Delta_1^1(y) = \Sigma_1^1(y) \cap \Pi_1^1(y).$$

For $x, y \subset \omega \ x \in \Delta_1^1(y)$ is denoted by $x \leq_h y$.

Lightface and boldface

 $\mathbf{\Sigma}_{\mathbf{j}}^{\mathbf{i}} = \cup_{y \in \mathbb{R}} \Sigma_{j}^{i}(y)$

Definition. A set $X \subset \mathbb{R}$ is called *cofinal in hyperdegrees* if $(\forall z \in \mathbb{R})(\exists y \in X)(z \leq_h y)$.

글 🕨 🔺 글 🕨 👘

э

Definition. A set $X \subset \mathbb{R}$ is called *cofinal in hyperdegrees* if $(\forall z \in \mathbb{R})(\exists y \in X)(z \leq_h y)$.

Stronger version

Theorem 2. (V=L) Let $t \in \mathbb{R}$, $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ be a $\Pi_1^1(t)$ set. Assume that for every $(A, p) \in \mathbb{R}^{\leq \omega} \times \mathbb{R}$ the section $F_{(A,p)}$ is cofinal in the hyperdegrees.

Definition. A set $X \subset \mathbb{R}$ is called *cofinal in hyperdegrees* if $(\forall z \in \mathbb{R})(\exists y \in X)(z \leq_h y)$.

Stronger version

Theorem 2. (V=L) Let $t \in \mathbb{R}$, $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ be a $\Pi_1^1(t)$ set. Assume that for every $(A, p) \in \mathbb{R}^{\leq \omega} \times \mathbb{R}$ the section $F_{(A,p)}$ is cofinal in the hyperdegrees. Then there exists a $\Pi_1^1(t)$ set X that is compatible with F.

Definition. A set $X \subset \mathbb{R}$ is called *cofinal in hyperdegrees* if $(\forall z \in \mathbb{R})(\exists y \in X)(z \leq_h y)$.

Stronger version

Theorem 2. (V=L) Let $t \in \mathbb{R}$, $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ be a $\Pi_1^1(t)$ set. Assume that for every $(A, p) \in \mathbb{R}^{\leq \omega} \times \mathbb{R}$ the section $F_{(A,p)}$ is cofinal in the hyperdegrees. Then there exists a $\Pi_1^1(t)$ set X that is compatible with F.

Remark

The previous theorem holds true replacing \mathbb{R} with \mathbb{R}^n , ω^{ω} or 2^{ω} .

Miller's results

Theorem 1. implies Miller's results: consistent existence of coanalytic MAD family, 2-point set and Hamel basis.

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

() there are no 3 collinear points in A

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

- there are no 3 collinear points in A
- $|A \cap I_p| < 2 \text{ and } I_p \neq \emptyset$

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

- **(**) there are no 3 collinear points in A
- $|A \cap I_p| < 2 \text{ and } I_p \neq \emptyset$
- **3** $x \in I_p \setminus A$, x is not collinear with any two distinct points of A

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

- **(**) there are no 3 collinear points in A
- $\ 2 \ \ |A \cap I_p| < 2 \ \text{and} \ \ I_p \neq \emptyset$

③ $x \in I_p \setminus A$, x is not collinear with any two distinct points of A OR 1 ∧ ¬2 holds and x is not collinear with two distinct points of A

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

- there are no 3 collinear points in A
- $\ 2 \ \ |A \cap I_p| < 2 \ \text{and} \ \ I_p \neq \emptyset$

③ $x \in I_p \setminus A$, x is not collinear with any two distinct points of A OR 1 ∧ ¬2 holds and x is not collinear with two distinct points of A OR ¬1.

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

- there are no 3 collinear points in A
- $\ 2 \ \ |A \cap I_p| < 2 \ \text{and} \ \ I_p \neq \emptyset$

③ $x \in I_p \setminus A$, x is not collinear with any two distinct points of A

OR $1 \land \neg 2$ holds and x is not collinear with two distinct points of A OR $\neg 1$.

Transfinite induction $\implies X$ is a 2-point set.

Recall Theorem 1.

(V=L) If F is Π_1^1 and every section $F_{(A,p)}$ is cofinal in the Turing degrees then there exists a Π_1^1 set X and enumerations $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}, X = \{x_\alpha : \alpha < \omega_1\}, A_\alpha \text{ of } \{x_\beta : \beta < \alpha\}, \text{ such that } (\forall \alpha < \omega_1)(x_\alpha \in F_{(A_\alpha, p_\alpha)}).$

Proof

 $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses is true

- there are no 3 collinear points in A
- $\ 2 \ \ |A \cap I_p| < 2 \ \text{and} \ \ I_p \neq \emptyset$

3 $x \in I_p \setminus A$, x is not collinear with any two distinct points of A

OR $1 \land \neg 2$ holds and x is not collinear with two distinct points of A OR $\neg 1$.

Transfinite induction $\implies X$ is a 2-point set.

Theorem 1.
$$\implies X$$
 is $\Pi^1_{1.}$

Existence

(CH) There exists an uncountable $X \subset \mathbb{R}^2$ intersecting every C^1 curve in countably many points.

Existence

(CH) There exists an uncountable $X \subset \mathbb{R}^2$ intersecting every C^1 curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable $X \subset \mathbb{R}^2$ there exists a C^1 curve intersecting it in uncountably many points.

General version

Theorem.(V=L) Suppose that $G \subset \mathbb{R} \times \mathbb{R}^n$ is a Borel set and for every countable $A \subset \mathbb{R}$ the complement of the set $\cup_{p \in A} G_p$ is cofinal in the Turing degrees. Then there exists an uncountable coanalytic set $X \subset \mathbb{R}^n$ which intersects every G_p in a countable set.

General version

Theorem.(V=L) Suppose that $G \subset \mathbb{R} \times \mathbb{R}^n$ is a Borel set and for every countable $A \subset \mathbb{R}$ the complement of the set $\cup_{p \in A} G_p$ is cofinal in the Turing degrees. Then there exists an uncountable coanalytic set $X \subset \mathbb{R}^n$ which intersects every G_p in a countable set.

Coanalytic in V=L

Theorem 1. implies that under (V=L) there exists an uncountable coanalytic $X \subset \mathbb{R}^2$ set intersecting every C^1 curve in countably many points.

General version

Theorem.(V=L) Suppose that $G \subset \mathbb{R} \times \mathbb{R}^n$ is a Borel set and for every countable $A \subset \mathbb{R}$ the complement of the set $\cup_{p \in A} G_p$ is cofinal in the Turing degrees. Then there exists an uncountable coanalytic set $X \subset \mathbb{R}^n$ which intersects every G_p in a countable set.

Coanalytic in V=L

Theorem 1. implies that under (V=L) there exists an uncountable coanalytic $X \subset \mathbb{R}^2$ set intersecting every C^1 curve in countably many points.

Remark

In almost every cases there are no Σ_1^1 sets.

Thank you!

æ

★ 문 ► ★ 문 ►