The size of conjugacy classes of automorphism groups

Zoltán Vidnyánszky

Alfréd Rényi Institute of Mathematics

Descriptive Set Theory in Paris December 2015

joint work with Udayan Darji, Márton Elekes, Kende Kalina, Viktor Kiss

Fraïssé limits

Let $\mathcal{A} = \langle A, (R_{i,n_i}^{\mathcal{A}})_{i \in I}, (f_{j,n_j}^{\mathcal{A}})_{j \in J} \rangle$ be a countable structure. **Definition.** The structure \mathcal{A} is called *ultrahomogeneous* if every isomorphism between its finitely generated substructures extends to an automorphism of \mathcal{A} .

Definition. The *age* of a structure A is the collection of the finitely generated substructures of A.

Theorem. (Fraïssé) For a countable class of structures $\mathcal{K} = age(\mathcal{A})$ for some ultrahomogeneous structure \mathcal{A} iff \mathcal{K} has HP, JEP and AP.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Automorphism groups

 S_{∞} is a Polish group with the pointwise convergence topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Automorphism groups

 S_{∞} is a Polish group with the pointwise convergence topology. **Theorem.** Let G be a Polish group. TFAE:

 G is isomorphic to an automorphism group of a Fraïssé limit of relational structures

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

 $\blacksquare \ G < S_{\infty} \text{ and } G \text{ is closed}$

Definition. A property *P* of elements of Aut(A) is said to *hold* generically if the set $\{f \in Aut(A) : P(f)\}$ is co-meagre.

Genericity

Definition. A property *P* of elements of Aut(A) is said to *hold generically* if the set $\{f \in Aut(A) : P(f)\}$ is co-meagre. **Definition.** If $f, g \in Aut(A)$ we say that *f* and *g* are *conjugate*, if there exists an $h \in Aut(A)$ such that $h^{-1}fh = g$. Note: if $f, g \in Aut(A)$ then

$$\langle \mathcal{A}, f \rangle \cong \langle \mathcal{A}, g \rangle \iff (\exists h \in Aut(\mathcal{A}))(h^{-1}fh = g).$$

Genericity

Definition. A property *P* of elements of Aut(A) is said to *hold generically* if the set $\{f \in Aut(A) : P(f)\}$ is co-meagre. **Definition.** If $f, g \in Aut(A)$ we say that *f* and *g* are *conjugate*, if there exists an $h \in Aut(A)$ such that $h^{-1}fh = g$. Note: if $f, g \in Aut(A)$ then

$$\langle \mathcal{A}, f \rangle \cong \langle \mathcal{A}, g \rangle \iff (\exists h \in Aut(\mathcal{A}))(h^{-1}fh = g).$$

Definition. An automorphism is called *generic* if its conjugacy class is co-meagre.

Examples of generic behaviour

Examples of generic behaviour

■ "there are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R),

Examples of generic behaviour

■ "there are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R), in particular, there is a generic element in S_∞

Examples of generic behaviour

- "there are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R), in particular, there is a generic element in S_∞
- (Kuske, Truss) There is a generic element in $Aut(\mathbb{Q})$ and $Aut(\mathcal{R})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples of generic behaviour

- "there are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R), in particular, there is a generic element in S_∞
- (Kuske, Truss) There is a generic element in $Aut(\mathbb{Q})$ and $Aut(\mathcal{R})$.

Kechris, Rosendal: Characterisation of the existence of generic and locally generic elements for a limit of a class \mathcal{K} , in terms of properties of the class \mathcal{K}_p , that is,

 $\{(\mathcal{A},\Psi)|\mathcal{A}\in\mathcal{K},\Psi:\mathcal{B}\rightarrow\mathcal{C}\text{ isomorphism and }\mathcal{B},\mathcal{C}<\mathcal{A}\}.$

Definition. Let (G, \cdot) be a Polish topological group and μ is a Borel measure on *G*. We say that λ is a *left Haar measure* on G if

• for every $g, h \in G$ and Borel set $B \subset G$

 $\lambda(B)=\lambda(gB),$

• for every *B* Borel and *V* open set $\lambda(B) = \inf\{\lambda(U) : B \subset U, U \text{ open}\}$ $\lambda(V) = \sup\{\lambda(K) : K \subset V, K \text{ compact}\},$

for every K compact set $\lambda(K) < \infty$ and $\lambda(G) > 0$.

Definition. Let (G, \cdot) be a Polish topological group and μ is a Borel measure on *G*. We say that λ is a *left Haar measure* on G if

• for every $g, h \in G$ and Borel set $B \subset G$

 $\lambda(B)=\lambda(gB),$

• for every B Borel and V open set

 $\lambda(B) = \inf\{\lambda(U) : B \subset U, U \text{ open}\}\$

 $\lambda(V) = \sup\{\lambda(K) : K \subset V, \ K \text{ compact}\},\$

for every *K* compact set $\lambda(K) < \infty$ and $\lambda(G) > 0$. **Theorem.** (Haar, Weil) Let (G, \cdot) be a Polish topological group. There exists a left Haar measure on *G* if and only if *G* is locally compact.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that B is *Haar null* if there exists Borel probability measure μ on G such that for every $g, h \in G$ we have $\mu(gBh) = 0$.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that B is *Haar null* if there exists Borel probability measure μ on G such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set S is called Haar null if $S \subset B$ for some Borel Haar null set B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• (Christensen) Haar null sets form a σ -ideal.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

- (Christensen) Haar null sets form a σ -ideal.
- (Christensen) Haar null sets coincide with measure zero sets w. r. t. left (and right) Haar measures in locally compact groups.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

- (Christensen) Haar null sets form a σ -ideal.
- (Christensen) Haar null sets coincide with measure zero sets w. r. t. left (and right) Haar measures in locally compact groups.
- (Solecki) In non-locally compact groups the ideal of Haar null sets is not ccc.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

- (Christensen) Haar null sets form a σ -ideal.
- (Christensen) Haar null sets coincide with measure zero sets w. r. t. left (and right) Haar measures in locally compact groups.
- (Solecki) In non-locally compact groups the ideal of Haar null sets is not ccc.
- If for every compact set K there exist g, h with $gKh \subset B$ then B is not Haar null.

Theorem. (Dougherty, Mycielski) Almost all elements of S_{∞} have infinitely many infinite cycles and only finitely many finite cycles.

Theorem. (Dougherty, Mycielski) Almost all elements of S_{∞} have infinitely many infinite cycles and only finitely many finite cycles.

Therefore, almost all permutations included in the union of countably many conjugacy classes.

Theorem. (Dougherty, Mycielski) Almost all elements of S_{∞} have infinitely many infinite cycles and only finitely many finite cycles.

Therefore, almost all permutations included in the union of countably many conjugacy classes.

Theorem. (Dougherty, Mycielski) All of these classes are Haar positive.

Definition. Let \mathcal{A} be a structure, $a \in A$ and $X \subset A$. We say that a *is algebraic over* X if $|\{f(a) : f \in Stab_p(X)\}| < \infty$. **Definition.** The structure \mathcal{A} has no algebraicity if for every $a \in A$ and finite $X \subset A \setminus \{a\}$ we have that a is not algebraic over X.

Definition. Let \mathcal{A} be a structure, $a \in A$ and $X \subset A$. We say that a *is algebraic over* X if $|\{f(a) : f \in Stab_p(X)\}| < \infty$. **Definition.** The structure \mathcal{A} has no algebraicity if for every $a \in A$ and finite $X \subset A \setminus \{a\}$ we have that a is not algebraic over X.

Theorem. Suppose that A is a Fraïssé limit with no algebraicity. Then almost all elements of Aut(A) have finitely many finite cycles and infinitely many infinite ones.

 $f \in Aut(\mathbb{Q})$ extends to a $\overline{f} \in Homeo^+(\mathbb{R})$. **Definition.** A + *orbital* (- *orbital*) of f is a maximal interval $I \subset \mathbb{R}$ such that for every $x \in I$ we have $\overline{f}(x) > x$ ($\overline{f}(x) < x$). Let $Fix(\overline{f}) = \{x \in \mathbb{R} : \overline{f}(x) = x\}$.

くしゃ 人間 マイボットボット 日 うんの

 $f \in Aut(\mathbb{Q})$ extends to a $\overline{f} \in Homeo^+(\mathbb{R})$. **Definition.** A + *orbital* (- *orbital*) of f is a maximal interval $I \subset \mathbb{R}$ such that for every $x \in I$ we have $\overline{f}(x) > x$ ($\overline{f}(x) < x$). Let $Fix(\overline{f}) = \{x \in \mathbb{R} : \overline{f}(x) = x\}$. **Proposition.** $f, g \in Aut(\mathbb{Q})$ are conjugate if and only if there exists an order and rationality preserving isomorphism between $Fix(\overline{f})$ and $Fix(\overline{g})$ so that the corresponding orbitals have the same sign.

Theorem. For almost every element of $Aut(\mathbb{Q})$

between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem. For almost every element of $Aut(\mathbb{Q})$

- between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point
- there are only finitely many rational fixed points.

▲ロト ▲ 理 ト ▲ ヨ ト - ヨ - シッペ

Theorem. For almost every element of $Aut(\mathbb{Q})$

- between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point
- there are only finitely many rational fixed points.

Theorem. This characterises the positive conjugacy classes.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (>)

Theorem. For almost every element of $Aut(\mathbb{Q})$

between every two + orbitals (- orbitals) there is

a - orbital (+ orbital) or a rational fixed point

there are only finitely many rational fixed points.

Theorem. This characterises the positive conjugacy classes. In particular, there are c many Haar positive conjugacy classes, and their union is almost everything.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Theorem. For almost every element of $Aut(\mathbb{Q})$

- between every two + orbitals (- orbitals) there is
 - a orbital (+ orbital) or a rational fixed point
- there are only finitely many rational fixed points.

Theorem. This characterises the positive conjugacy classes. In particular, there are c many Haar positive conjugacy classes, and their union is almost everything.

Theorem.

■ There are \aleph_0 many Haar positive conjugacy classes in $Homeo^+([0,1])$ and their union is almost everything.

Theorem. For almost every element of $Aut(\mathbb{Q})$

■ between every two + orbitals (- orbitals) there is

a - orbital (+ orbital) or a rational fixed point

there are only finitely many rational fixed points.

Theorem. This characterises the positive conjugacy classes. In particular, there are c many Haar positive conjugacy classes, and their union is almost everything.

Theorem.

- There are \aleph_0 many Haar positive conjugacy classes in $Homeo^+([0,1])$ and their union is almost everything.
- There are \aleph_0 many Haar positive conjugacy classes in $Homeo^+(S^1)$.

Measure and graphs

Theorem. There are \mathfrak{c} many Haar positive conjugacy classes in $Aut(\mathcal{R})$ and in $Aut(\mathcal{R}_n)$, $Aut(\mathcal{T})$ and their union is almost everything.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Measure and graphs

Theorem. There are c many Haar positive conjugacy classes in $Aut(\mathcal{R})$ and in $Aut(\mathcal{R}_n)$, $Aut(\mathcal{T})$ and their union is almost everything. **Theorem.** There are \aleph_0 many Haar positive conjugacy classes in $Aut(\mathcal{E})$, $Aut(\mathcal{E}_n)$, $Aut(\mathcal{E}_n^*)$ and their union is co-Haar null.

- 1. How many Haar positive conjugacy classes are there?
- 2. Is the union of the Haar null conjugacy classes is Haar null?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Examples

	∪ of Haar null classes is Haar null				
	С	$LC \setminus C$	NLC		
0					
n					
\aleph_0					
c					
	\bigcup of Haar null classes is not Haar null				
	С	$LC \setminus C$	NLC		
0					
n					
\aleph_0					
c					

Examples

	igcup of Haar null classes is Haar null			
	С	$LC \setminus C$	NLC	
0	—	_	_	
n	\mathbb{Z}_n	HNN	???	
\aleph_0	???	Z	S_{∞}	
c	_	_	$Aut(\mathbb{Q}); Aut(\mathcal{R})$	
	\bigcup of Haar null classes is not Haar null			
	С	$LC \setminus C$	NLC	
0	2^{ω}	$\mathbb{Z} \times 2^{\omega}$	\mathbb{Z}^{ω}	
n	$\mathbb{Z}_n \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$	$HNN \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^\omega)$	$\mathbb{Z}_n \times (\mathbb{Z}_2 \ltimes \mathbb{Q}_d^{\omega})$	
\aleph_0	???	$\mathbb{Z} \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$	$S_{\infty} \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$	
c	_	—	$Aut(\mathbb{Q}) \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$	

Question. Does there exist a compact subgroup of S_{∞} (\iff profinite) with infinitely many positive conjugacy classes?

Question. Does there exist a compact subgroup of S_{∞} (\iff profinite) with infinitely many positive conjugacy classes? **Question.** Are there natural examples of automorphism groups with given cardinality of Haar positive conjugacy classes?

Open problems

Question. Does there exist a compact subgroup of S_{∞} (\iff profinite) with infinitely many positive conjugacy classes? **Question.** Are there natural examples of automorphism groups with given cardinality of Haar positive conjugacy classes? **Question.** Does there exist a Polish group such that it consistently has κ many Haar positive conjugacy classes with $\aleph_0 < \kappa < \mathfrak{c}$?

Open problems

Question. Does there exist a compact subgroup of S_{∞} (\iff profinite) with infinitely many positive conjugacy classes? **Question.** Are there natural examples of automorphism groups with given cardinality of Haar positive conjugacy classes? **Question.** Does there exist a Polish group such that it consistently has κ many Haar positive conjugacy classes with $\aleph_0 < \kappa < \mathfrak{c}$?

Problem. Formulate necessary and sufficient model theoretic conditions which characterise the measure theoretic behaviour of the conjugacy classes!

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで