Probability Theory

Problem set \#10

Continuous random variables: Expectation, normal random variables

Homework problems to be handed in: 10.4, 10.7, 10.12, 10.13, 10.14
Bonus problems for extra credit: 10.8, 10.11
Due date: May 9
10.1 Let X be uniformly distributed on $[0,1]$. Find the distribution and density functions of the random variables $Y:=X^{-1}$ and $Z:=X(1+X)^{-1}$.
10.2 Let X be a standard normal random variable. Find the distribution and density functions of the random variable $Y:=2+|X|$.
10.3 Let X be a $N(m, \sigma)$ normal random variable. Determine the density function of the random variable $Y:=e^{X}$. The distribution of Y is called log-normal with parameters (m, σ), it is denoted by $L N(m, \sigma)$.
10.4 Let X be a log-normal random variable with parameters (m, σ) (see the previous problem). Prove that if $C>0, \alpha$ are fixed real numbers then $C X^{\alpha}$ is also log-normal and find its parameters.
10.5 The momentum-generating function of a random variable X is defined as $H(t):=\mathbf{E} e^{t X}$ for those values of t where this is finite. Calculate the momentum-generating functions of the $U(0,1), N(m, \sigma)$ and $E X P(\lambda)$ distributions and find the intervals where they are defined.
10.6 Find the expectation and variance of a log-normal random variable with parameters (m, σ).
10.7 In the following exercises the random variable ξ is given (by its distribution or density function). You need to determine the densities of the random variables X, Y which are defined as functions of ξ.
(a) ξ is uniform on $[-1,1] ; X:=\xi^{2}, Y:=\tan \left(\frac{\pi}{2} \xi\right)$.
(b) ξ is exponential with parameter $\lambda ; X:=3 \xi+2, Y:=\sqrt{\xi}$.
(c) ξ is standard normal; $X:=\xi^{-2}$.
10.8 Let X be a standard Cauchy random variable with density function $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.

Clearly, $\mathbf{E}(|X|)=\infty$, but for every $1>\varepsilon>0$ the expectation $\mathbf{E}\left(|X|^{1-\varepsilon}\right)$ is finite. Prove, that the limit $\lim _{\varepsilon \rightarrow 0} \varepsilon \mathbf{E}\left(|X|^{1-\varepsilon}\right)$ exists and find its value.
10.9 Using the fact, that $\int_{-\infty}^{\infty} \exp \left(-x^{2} / 2\right) d x=\sqrt{2 \pi}$, calculate the value of the following integral:

$$
\int_{-\infty}^{\infty} \exp \left(-a x^{2}+b x+c\right) d x
$$

where a is a positive real and b, c are arbitrary real (or complex) constants.
10.10 Let X be a standard normal random variable. Calculate its absolute moments:

$$
A_{k}:=\mathbf{E}|X|^{k}=\int_{-\infty}^{\infty} \varphi(y)|y|^{k} d y, \quad k=1,2,3, \ldots
$$

where $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
Hint: For even $k=2 l$ evaluate and use the following expression:

$$
\left.\frac{d^{l}}{d \lambda^{l}} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\lambda y^{2} / 2} d y\right|_{\lambda=1}
$$

For odd $k=2 l+1$ use change of variables with $z=y^{2}$ in the defining integral of A_{k}.
10.11 Prove, that the following series expansions hold for every real x.

$$
\begin{aligned}
& \Phi(x)=\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \sum_{k=1}^{\infty} \frac{(k-1)!2^{k-1}}{(2 k-1)!} x^{2 k-1} \\
& \Phi(x)=\frac{1}{2}+\frac{1}{\sqrt{2 \pi}}\left(x-\frac{1}{2 \cdot 1!} \frac{x^{3}}{3}+\frac{1}{4 \cdot 2!} \frac{x^{5}}{5}-\frac{1}{8 \cdot 3!} \frac{x^{7}}{7}+\ldots\right) .
\end{aligned}
$$

10.12 Let X be an $N(0, \sigma)$ random variable. Prove that for every $x>0$ the following inequalities hold:

$$
\frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2} / 2 \sigma^{2}\right)}\left(\frac{\sigma}{x}-\frac{\sigma^{3}}{x^{3}}\right)<\mathbf{P}(X>x)<\frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2} / 2 \sigma^{2}\right)} \frac{\sigma}{x} .
$$

Remark: Although we do not have an explicit formula for $\mathbf{P}(X>x)=1-\Phi(x)$, for $x \gg 1$ this inequality gives a good approximation of its value.
Hint: Differentiate each side of the inequality and compare the result.
10.13 A certain group of people has average weight 60 kg , the standard deviation of the weights (the square root of the variance) is 3 kg . Find the probability that the difference of the weight of a randomly chosen individual and the average weight is less than 5 kg , in the following cases:
(a) the distribution of the weights is normal;
(b) the distribution of the weights is log-normal.

Hint: Try to deduce the probability in question to a probability concerning a standard normal random variable, then use the function Φ to express the result.
10.14 Let X be a standard normal random variable. Determine the following expectations and variances:
(a) $\mathbf{E}(X \cos (X)), \mathbf{E}\left(X /\left(1+X^{2}\right)\right), \mathbf{E}(\sin (X))$;
(b) $\mathbf{E}(\cos (X)), \operatorname{Var}(\cos (X)), \operatorname{Var}(\sin (X))$.

