Probability Theory

Problem set \#9

Continuous random variables:
 Distribution function, probability density function

Homework problems to be handed in: 9.2, 9.5, 9.6, 9.8, 9.9
Bonus problem for extra credit: 9.10
Due date: April 27

REMINDER:

Distribution function:
If X is a real-valued random variable, then its distribution function is defined as

$$
F(x):=\mathbf{P}(X<x)
$$

Properties:
0. $F: \mathbb{R} \rightarrow[0,1]$,

1. monotone non-decreasing;
2. left continuous;
3. $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1$. Probability density function:

If the distribution function $F(\cdot)$ is equal to $F(x)=\int_{-\infty}^{x} f(y) d y$ for any $x \in \mathbb{R}$ with a 'nice' function $f(\cdot)$, then $F(\cdot)$ absolutely continuous and $f: \mathbb{R} \rightarrow[0, \infty)$ is the probability density function of $F(\cdot)$.
In that case F (almost everywhere) differentiable and (almost everywhere) $F^{\prime}(x)=f(x)$.
Properties:

1. measurable (i.e. 'nice');
2. non-negative;
3. $\int_{-\infty}^{\infty} f(y) d y=1$.
9.1 Determine which of the following are probability distribution functions on \mathbb{R} :
(a) $\quad F(x):=\frac{3}{4}+\frac{1}{2 \pi} \operatorname{arctg}(x) ;$
(b) $\quad F(x):=\left\{\begin{array}{clrl}0, & \text { if } & -\infty<x \leq 0, \\ {[x] / 2,} & \text { if } & 0<x \leq 2, \\ 1, & \text { if } & 2<x<\infty ;\end{array}\right.$
(c) $\quad F(x):=\left\{\begin{array}{clr}0, & \text { if } & -\infty<x \leq 0, \\ x /(1+x), & \text { if } & 0<x<\infty ;\end{array}\right.$
(d) $\quad F(x):=\exp \left(-e^{-x}\right)$
(e) $\quad F(x):=\left\{\begin{array}{clrl}0, & \text { if } & -\infty<x \leq 0, \\ 1-(1-\exp \{-x\}) / x, & \text { if } & 0<x<\infty .\end{array}\right.$
9.2 For which values of α and c will the function F be a distribution function?

$$
F(x)=\exp \left(-c e^{-\alpha x}\right)
$$

9.3 Let $F(x)$ be a continuous distribution function with $F(0)=0$. Prove that

$$
G(x):=\left\{\begin{array}{ccr}
0, & \text { if } & -\infty<x \leq 1 \\
F(x)-F\left(x^{-1}\right), & \text { if } & 1<x<\infty
\end{array}\right.
$$

is also a distribution function. How can you interpret this result?
9.4 We break a stick of length 1 at a randomly chosen point. Find the distribution function of the length of the shorter piece obtained.
9.5 Choose three points at random on the interval $[0,1]$ (independently, with uniform distribution). Determine the distribution function of the coordinate of the central point.
9.6 Determine which of the following are probability density functions on \mathbb{R} :
(a) $f(x):=\left\{\begin{array}{cl}1 / 3 & \text { ha } 0 \leq x \leq 1, \\ 0 & \text { otherwise; }\end{array}\right.$
(b) $f(x):=\left\{\begin{array}{cl}(\sin x) / 2 & \text { if } 0 \leq x \leq 1, \\ 0 & \text { otherwise } ;\end{array}\right.$
(c) $f(x):=\left\{\begin{array}{cl}x^{-2} & \text { if } 1 \leq x, \\ 0 & \text { otherwise } ;\end{array}\right.$
(d) $\quad f(x):=\left\{\begin{array}{cl}x /(1+x) & \text { if } 0 \leq x, \\ 0 & \text { otherwise; }\end{array}\right.$
(e) $\quad f(x):=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad-\infty<x<\infty$
(f) $\quad f(x):=\frac{1}{2} e^{-|x|}, \quad-\infty<x<\infty$
(g) $f(x):=\left\{\begin{array}{cl}4 x^{3} e^{-x^{4}} & \text { if } 0 \leq x, \\ 0 & \text { otherwise } ;\end{array}\right.$
$(h) \quad f(x):=\left\{\begin{array}{cl}-\log x & \text { if } 0<x \leq 1, \\ 0 & \text { otherwise }\end{array}\right.$
9.7 Choose a point at random on the interval $[0,1]$ of the x-axis. Denote by X the distance between this random point and the point in the plane with coordinates $(0 ; 1)$. Determine the density of the distribution of the random variable X.
9.8 Choose a point at random in the unit square. Denote by X its distance from the nearest side. Determine the density function of the distribution of X.
9.9 Choose a point at random in the unit square. Denote by X its distance from the nearest corner of the square. Determine the density function of the distribution of X.
9.10 Choose n points at random on the interval $[0,1]$ (independently, with uniform distribution). Determine the distribution function of the coordinate of the $k^{\text {th }}$ largest point.

