Probability Theory

Problem set #9

Continuous random variables: Distribution function, probability density function

Homework problems to be handed in: 9.2, 9.5, 9.6, 9.8, 9.9

Bonus problem for extra credit: 9.10

Due date: April 27

REMINDER:

DISTRIBUTION FUNCTION:

If X is a real-valued random variable, then its distribution function is defined as

$$F(x) := \mathbf{P}(X < x).$$

Properties:

 $0. F : \mathbb{R} \to [0, 1],$

1. monotone non-decreasing;

2. left continuous;

3. $\lim_{x\to-\infty} F(x)=0$, $\lim_{x\to\infty} F(x)=1$. Probability density function:

If the distribution function $F(\cdot)$ is equal to $F(x) = \int_{-\infty}^{x} f(y)dy$ for any $x \in \mathbb{R}$ with a 'nice' function $f(\cdot)$, then $F(\cdot)$ absolutely continuous and $f: \mathbb{R} \to [0, \infty)$ is the probability density function of $F(\cdot)$.

In that case F (almost everywhere) differentiable and (almost everywhere) F'(x) = f(x).

Properties:

- 1. measurable (i.e. 'nice');
- 2. non-negative;
- 3. $\int_{-\infty}^{\infty} f(y) dy = 1.$
- **9.1** Determine which of the following are probability distribution functions on \mathbb{R} :

(a)
$$F(x) := \frac{3}{4} + \frac{1}{2\pi} \arctan(x);$$

$$(b) \quad F(x) := \left\{ \begin{array}{rcl} 0, & \text{if} & -\infty < & x & \leq 0, \\ [x]/2, & \text{if} & 0 < & x & \leq 2, \\ 1, & \text{if} & 2 < & x & < \infty; \end{array} \right.$$

(c)
$$F(x) := \begin{cases} 0, & \text{if } -\infty < x \leq 0, \\ x/(1+x), & \text{if } 0 < x < \infty; \end{cases}$$

$$(d) \quad F(x) := \exp(-e^{-x})$$

(e)
$$F(x) := \begin{cases} 0, & \text{if } -\infty < x \le 0, \\ 1 - (1 - \exp\{-x\})/x, & \text{if } 0 < x < \infty. \end{cases}$$

9.2 For which values of α and c will the function F be a distribution function?

$$F(x) = \exp(-ce^{-\alpha x}).$$

9.3 Let F(x) be a continuous distribution function with F(0) = 0. Prove that

$$G(x) := \begin{cases} 0, & \text{if } -\infty < x \le 1, \\ F(x) - F(x^{-1}), & \text{if } 1 < x < \infty. \end{cases}$$

is also a distribution function. How can you interpret this result?

- **9.4** We break a stick of length 1 at a randomly chosen point. Find the distribution function of the length of the shorter piece obtained.
- **9.5** Choose three points at random on the interval [0, 1] (independently, with uniform distribution). Determine the distribution function of the coordinate of the central point.
- **9.6** Determine which of the following are probability density functions on \mathbb{R} :

(a)
$$f(x) := \begin{cases} 1/3 & \text{ha } 0 \le x \le 1, \\ 0 & \text{otherwise}; \end{cases}$$
 (b) $f(x) := \begin{cases} (\sin x)/2 & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise}; \end{cases}$ (c) $f(x) := \begin{cases} x^{-2} & \text{if } 1 \le x, \\ 0 & \text{otherwise}; \end{cases}$ (d) $f(x) := \begin{cases} x/(1+x) & \text{if } 0 \le x, \\ 0 & \text{otherwise}; \end{cases}$ (e) $f(x) := \frac{1}{\pi} \frac{1}{1+x^2}, \quad -\infty < x < \infty$ (f) $f(x) := \frac{1}{2} e^{-|x|}, \quad -\infty < x < \infty$

(c)
$$f(x) := \begin{cases} x^{-2} & \text{if } 1 \le x, \\ 0 & \text{otherwise;} \end{cases}$$
 (d) $f(x) := \begin{cases} x/(1+x) & \text{if } 0 \le x, \\ 0 & \text{otherwise;} \end{cases}$

$$(e) \quad f(x) := \tfrac{1}{\pi} \tfrac{1}{1+x^2}, \quad -\infty < x < \infty \qquad (f) \qquad f(x) := \tfrac{1}{2} e^{-|x|}, \quad -\infty < x < \infty$$

$$(g) \quad f(x) := \begin{cases} 4x^3 e^{-x^4} & \text{if } 0 \le x, \\ 0 & \text{otherwise;} \end{cases} \quad (h) \quad f(x) := \begin{cases} -\log x & \text{if } 0 < x \le 1, \\ 0 & \text{otherwise;} \end{cases}$$

- **9.7** Choose a point at random on the interval [0,1] of the x-axis. Denote by X the distance between this random point and the point in the plane with coordinates (0;1). Determine the density of the distribution of the random variable X.
- **9.8** Choose a point at random in the unit square. Denote by X its distance from the nearest side. Determine the density function of the distribution of X.
- **9.9** Choose a point at random in the unit square. Denote by X its distance from the nearest corner of the square. Determine the density function of the distribution of X.
- **9.10** Choose n points at random on the interval [0,1] (independently, with uniform distribution). Determine the distribution function of the coordinate of the k^{th} largest point.