Probability Theory

Problem set #7

Discrete random variables: expectation, variance, covariance

Homework problems to be handed in: 7.2, 7.7, 7.9, 7.11, 7.13

Bonus problem for extra credit: 7.12, 7.15, 7.16

Due date: April 11

7.1 Let X_1 and X_2 be independent random variables with Poisson distributions $p(k; \lambda_1)$, respectively, $p(k; \lambda_2)$. We have already proved that $X_1 + X_2$ has the Poisson distribution $p(k; \lambda_1 + \lambda_2)$. (Check problems 6.8 and 6.12.) Show that the *conditional distribution of* X_1 given $X_1 + X_2$ is binomial, namely:

$$\mathbf{P}(X_1 = k | X_1 + X_2 = n) = \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k}$$

- **7.2** Let X, Y and Z be independent random variables with the same geometric distribution $g(k;p) = q^k p$ with k = 0, 1, 2, ...
 - (a) Find the following probabilities:

$$\mathbf{P}(X = Y), \quad \mathbf{P}(X \ge 2Y), \quad \mathbf{P}(X + Y \le Z)$$

- (b) Let $U := \min\{X, Y\}$ and V := X Y. Show that U and V are independent.
- **7.3** Let X and Y be independent and have the common geometric distribution $g(k; p) = q^k p$ with k = 0, 1, 2, ...Show (preferably without calculation) that the conditional distribution of X given X + Y is uniform, that is,

$$\mathbf{P}(X = k | X + Y = n) = \frac{1}{n+1}, \qquad k = 0, 1, \dots, n.$$

7.4 (a) We toss a fair coin. If the result is H then we toss the coin two more times, otherwise we toss it only one more time. What is the expectation of the total number of heads during these coin-tosses?(b) We toss a fair coin until we get the same result twice in succession. What is the expectation of the number of tosses?

- **7.5** A man is given n keys of which only one fits his door. He tries them randomly until he finds the right one. Find the expectation of the number of his trials, if
 - (a) he doesn't discard the keys that didn't work: he always chooses out of n keys (sampling with replacement)
 - (b) he always tries a new key (sampling without replacement)
- 7.6 I throw two dice. What are the expectations of the maximum and minimum of the two numbers?
- **7.7** (a) Find the expectation of the number of hits on a lottery ticket (5 out of 90).
- (b) Find the expectations of the largest and smallest number drawn out at the lottery.
- **7.8** Let X denote a random variable which can only take values from the natural numbers. Assume $\mathbf{E}(X) < \infty$. Prove the following identity:

$$\mathbf{E}(X) = \sum_{i=1}^{\infty} \mathbf{P}(X \ge i).$$

7.9 A and B are shooting at a target, A hits it with probability p_1 , B hits it with probability p_2 ($p_1 < p_2$). A shoots first, they take turns until somebody hits the target, this person wins the game. Find the probability that A wins. Find the expectation of the number of shots taken in the game.

- 7.10 Determine the expectation of the random variable $(1 + X)^{-1}$ in the following two cases:
 - (a) if X is distributed according to binomial distribution b(k; p, n);
 - (b) if X is distributed according to Poisson distribution $p(k; \lambda)$.
- 7.11 (a) Let X and Y be two independent random variables with range in \mathbb{N} (the natural numbers). Assume $\mathbf{E}(X) < \infty, \ \mathbf{E}(Y) < \infty$. Prove that

$$\mathbf{E}(\min\{X,Y\}) = \sum_{i=1}^{\infty} \mathbf{P}(X \ge i) \mathbf{P}(Y \ge i),$$
$$\mathbf{E}(\max\{X,Y\}) = \sum_{i=0}^{\infty} [1 - \mathbf{P}(X \le i) \mathbf{P}(Y \le i)].$$

(b) Prove the following generalization of the first formula: consider k independent random variables with range in \mathbb{N} : X_1, X_2, \ldots, X_k , all with finite expectation, then

$$\mathbf{E}(\min\{X_1, X_2, \dots, X_k\}) = \sum_{i=1}^{\infty} \prod_{j=1}^{k} \mathbf{P}(X_j \ge i).$$

- 7.12 We toss several times a biased coin with $\mathbf{P}(\mathbf{H}) = p$, $\mathbf{P}(\mathbf{T}) = q$. Let X and Y denote the length of the first and second run of pure heads or pure tails. (E.g. in the case HHHTTH...X = 3, Y = 2; in the case THHT...X = 1, Y = 2.) Determine $\mathbf{E}(X), \mathbf{E}(Y), \mathbf{E}(X^2), \mathbf{E}(Y^2), \mathbf{Var}(X), \mathbf{Var}(Y), \mathbf{E}(XY), \mathbf{Cov}(XY).$
- 7.13 Let X be a non-negative integer valued random variable with finite second moment ($\mathbf{E}(X^2) < \infty$). Express $S := \sum_{k=1}^{\infty} k \mathbf{P}(X \ge k)$ in terms of $\mathbf{E}(X)$ és $\mathbf{Var}(X)$.
- 7.14 Let X be a non-negative random variable. Assume that both $\mathbf{E}(X)$ and $\mathbf{E}(X^{-1})$ are finite. Prove that $\mathbf{E}(X^{-1}) \geq 1$ $(\mathbf{E}(X))^{-1}$.
- 7.15 Consider the problem 6.13. Find the expectation of the number of games Peter plays until he wins 1000\$ or loses all his money. (He starts with 10n dollars and the probability that he wins a single game is p.)
- 7.16 (Weak Law of Large Numbers)

Let $p \in (0,1), 0 < \varepsilon$ be fixed real numbers and S_n be a binomially distributed random variable with parameters n, p. Using the outline below, prove

$$\lim_{n \to \infty} \mathbf{P}\left(\left| \frac{S_n}{n} - p \right| > \varepsilon \right) = 0.$$

(a) Let $r \ge np + p$ and $l \ge 0$ be arbitrary integers. Prove that

$$b(r+l) \le b(r)y^l,$$

where $b(r) = b(r, n, p), y = \frac{(n-r)p}{rq}$, and q = 1 - p. (b) Show that $\mathbf{P}(S_n \ge r) \le b(r) \frac{rq}{r-np}$.

- (c) Prove that $b(r) \leq \frac{1}{r-np}$.
- (d) Using the previous estimates show that

$$\mathbf{P}(S_n \ge n(p-\varepsilon)) < \frac{C}{n}$$

where C is a positive constant depending only on ε and p.

Further recommended exercises: Feller IX.9., pages 237-242