Probability Theory

Problem set \#3

Sieve Formula

Homework problems to be handed in: 3.1, 3.4, 3.6, 3.8, 3.9

Bonus problems for extra credit: 3.10, 3.11

Due date: March 2

3.1 12 pair of shoes are in a closet. 5 shoes are selected at random. Find the probability that there will be at least one pair among the shoes selected.
3.2 We roll a die 10 times. What is the probability that all the results $1,2, \ldots 6$ will appear at least once?
3.3 We roll two dice 100 times. Find the probability that all the results $(1,1),(2,2), \ldots(6,6)$ will appear at least once.
3.4 We have 6 balls, one is marked with the number 1 , two are marked with the number 2 and three are marked with the number 3 . We also have three boxes numbered 1,2 and 3 . We choose 3 balls randomly and put one in each box. Find the probability that there is a ball with the same number as its box.
3.5 Find the probability that a bridge hand does not contain 4 cards of the same face value.
3.6 Find the probability that a bridge hand contains a card from each of the four suits. What is this probability in case of a poker hand?
3.7 We toss a coin 6 times. Find the probability that it will fall heads at least 4 times in succession.
3.8 A company of n men went out for dinner. At the restaurant they left their hats and coats at the cloakroom. After dining (and drinking some wine) they collected their hats and coats completely at random. What is the probability that somebody from the company went home with his own hat and own coat?
3.9 (a) We put k balls into n boxes at random. What is the probability that no box remains empty?
(b) Using the preceding result calculate

$$
\sum_{j=1}^{n}(-1)^{j-1} j^{k}\binom{n}{j}
$$

for $k \leq n$.
3.10 Prove the following generalization of the inclusion exclusion formula (due to Károly Jordán). Let $A_{1}, A_{2}, \ldots, A_{n}$ be arbitrary events, we use the notation

$$
S_{l}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{l} \leq n} \mathbf{P}\left(A_{i_{1}} \cap A_{i_{2}} \cap \ldots A_{i_{l}}\right) .
$$

Then for $0 \leq r \leq n$:

$$
\mathbf{P}(\text { exactly } r \text { of the } n \text { events occur })=\sum_{k=0}^{n-r}(-1)^{k}\binom{r+k}{k} S_{r+k} \text {. }
$$

(Taking $r=0$ and considering the complementary event we get back the original inclusion-exclusion formula.)
3.11 Consider again problem 3.8.
(a) What is the probability that exactly k persons from the company went home with their own hats $(k \leq n)$? What is the limit of this probability if k is kept fixed and $n \rightarrow \infty$?
(b) What is the probability that exactly k persons from the company went home with their own hats and own coats $(k \leq n)$? What is the limit of this probability if k is kept fixed and $n \rightarrow \infty$?
(It is possible to solve this without the result of 3.10.)

Further recommended exercises: Feller, IV. 6. pages 111-113 (some of them are already covered by the previous problems).

