Probability Theory

Solutions \#7

7.2 (a)

$$
\begin{gathered}
\mathbf{P}(X=Y)=\sum_{k=0}^{\infty} \mathbf{P}(X=k, Y=k)=\sum_{k=0}^{\infty} \mathbf{P}(X=k) \mathbf{P}(Y=k)=\sum_{k=0}^{\infty} p^{2} q^{2 k}=\frac{p}{1+q} \\
\mathbf{P}(X \geq 2 Y)=\sum_{k=0}^{\infty} \sum_{l=2 k}^{\infty} \mathbf{P}(Y=k) \mathbf{P}(X=l)=\sum_{k=0}^{\infty} \sum_{l=2 k}^{\infty} p^{2} q^{k+l}=\frac{1}{1+q+q^{2}} \\
\mathbf{P}(X+Y \leq Z)=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \sum_{l=0}^{j} \mathbf{P}(Z=k) \mathbf{P}(X=l) \mathbf{P}(Y=j-l)=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \sum_{l=0}^{j} p^{3} q^{k+j}=\frac{1}{(1+q)^{2}}
\end{gathered}
$$

(b) We need to prove $\mathbf{P}(U=k, V=l)=\mathbf{P}(U=k) \mathbf{P}(V=l)$ for every pair (k, l). This may be done the same way as we calculated the probabilities in part (a).
7.7 (a) $X=\#$ of hits on a lottery ticket $=I_{1}+I_{2}+\cdots+I_{5}$, where I_{i} is the indicator of the event that our $i^{\text {th }}$ number was chosen. Then by linearity

$$
\mathbf{E} X=\mathbf{E}\left(I_{1}+I_{2}+\cdots+I_{5}\right)=5 \mathbf{P}(\text { a fixed number is chosen })=\frac{5}{18} .
$$

$$
\mathbf{E} Y=\sum_{i=1}^{86}=\frac{\binom{91-i}{5}}{\binom{90}{5}}=\frac{91}{6}
$$

The expectation of the largest number is $91-\mathbf{E} Y$.
7.9

$$
\begin{gathered}
\mathbf{P}(\mathrm{A} \text { wins })=\sum_{l=1}^{\infty} p_{1} q_{1}^{l-1} q_{2}^{l-1}=\frac{p_{1}}{1-q_{1} q_{2}} . \\
\mathbf{E}(\text { length of game })=\sum_{l=1}^{\infty}(2 l-1) p_{1} q_{1}^{l-1} q_{2}^{l-1}+2 l p_{1} q_{1}^{l} q_{2}^{l-1}=\frac{2-p_{1}}{p_{1}+p_{2}-p_{1} p_{2}}
\end{gathered}
$$

One can get these result in a simpler way by conditioning on the outcomes of the first two shots.
7.11 Use $\mathbf{P}(\min (X, Y) \geq i)=\mathbf{P}(X \geq i) \mathbf{P}(Y \geq i)$ and problem 7.8, part (b) follows similarly. For the second part of (a): $\mathbf{P}(\max (X, Y) \geq i)=1-\mathbf{P}(\max (X, Y)<i)=1-\mathbf{P}(X<i) \mathbf{P}(Y<i)$.
7.13

$$
S:=\sum_{k=1}^{\infty} k \mathbf{P}(X \geq k)=\sum_{k=1}^{\infty} k \sum_{i=k}^{\infty} \mathbf{P}(X=i)=\sum_{i=1}^{\infty} \mathbf{P}(X=i) \sum_{k=1}^{i} k=\sum_{i=1}^{\infty} \mathbf{P}(X=i) \frac{i^{2}+i}{2}
$$

Thus $S=\frac{1}{2}\left(\mathbf{E} X^{2}+X\right)=\frac{1}{2}\left(\operatorname{Var} X+(\mathbf{E} X)^{2}+\mathbf{E} X\right)$.

