Probability Theory

Solutions \#5

5.4 It is clear that $A_{i, j}$ and $A_{k, l}$ are independent if $|\{i, j, k, l\}|=4$ (i.e. all indices are different). We only have to check the case when there is one common index, e.g. the independence of $A_{1,2}$ and $A_{1,3}$. This follows from $\mathbf{P}\left(A_{1,2}\right)=\mathbf{P}\left(A_{1,3}\right)=1 / 6$ and $\mathbf{P}\left(A_{1,2} \cap A_{1,3}\right)=\mathbf{P}$ (first three throws are the same) $=1 / 36$.
However, the events are not completely independent: if $A_{1,2}$ and $A_{1,3}$ occur then so will $A_{2,3}$.
5.7 The probability of getting the right answer for a given question is $p+r / 2$. The probability of getting 20 or 19 good answers (binomial distribution!): $(p+r / 2)^{20}+20(p+r / 2)^{19}(q+r / 2)$.
5.9 The probability of given configuration where there are x blocked routes, is $p^{x}(1-p)^{5-x}$. The probability in question may be computed by collecting all those configurations when there is a path from A to D, or by suitable conditioning. The answer is $1-2 p^{2}-2 p^{3}+5 p^{4}-2 p^{5}$ which gives $1 / 2$ in the case when $p=1 / 2$. (Can you prove this without the actual formula?)
5.10 By symmetry, we can fix the position of A to a given point. Then our sample space is $[0,2 \pi] \times[0,2 \pi]$ with uniform measure on it. The event in question is

$$
\left\{(x, y) \in[0,2 \pi]^{2}: \min (x, y)<\pi, \max (x, y)-\min (x, y)<\pi, 2 \pi-\max (x, y)<\pi\right\}
$$

Finding its area and dividing by $4 \pi^{2}$ we get that its probability is $1 / 4$
5.12 The probability of getting a given dart between 10 and 20 cm of the center is $\frac{20^{2}-10^{2}}{30^{2}}=$ $1 / 3$ (this is the ratio of the areas). Thus the probability of not getting a dart there in 3 tries is $(1-1 / 3)^{3}=8 / 27$.

