Probability Theory

Solutions \#4

4.1 Let $K>0$ and $A=$ \{exactly K in the first $\}, B=\{$ at least one in the first $\}$. Then $\mathbf{P}(B)=1-\left(\frac{n-1}{n}\right)^{N}, \mathbf{P}(A)=\binom{N}{K}\left(\frac{n-1}{n}\right)^{N-K}$ and

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{B}=\frac{\mathbf{P}(A)}{\mathbf{P}(B)}=\frac{\binom{N}{K}\left(\frac{n-1}{n}\right)^{N-K}}{1-\left(\frac{n-1}{n}\right)^{N}}
$$

4.4 Let D be the event that a randomly chosen bolt is defective and A, B, C the events that it was manufactured by the respective machines. Then, e.g.

$$
\begin{aligned}
\mathbf{P}(A \mid D) & =\frac{\mathbf{P}(A \cap D)}{\mathbf{P}(D)}=\frac{\mathbf{P}(D \mid A) \mathbf{P}(A)}{\mathbf{P}(D \mid A) \mathbf{P}(A)+\mathbf{P}(D \mid B) \mathbf{P}(B)+\mathbf{P}(D \mid C) \mathbf{P}(C)} \\
& =\frac{0.06 \times 0.25}{0.04 \times 0.3+0.0 \times 0.25+0.03 \times 0.45}
\end{aligned}
$$

4.5

$$
\begin{aligned}
\mathbf{P}(\text { exactly } k \text { boys }) & =\sum_{n=k}^{\infty} \mathbf{P}(k \text { boys } \mid n \text { children }) \mathbf{P}(n \text { children }) \\
& =\sum_{n=k}^{\infty}\binom{n}{k} \frac{1}{2^{n}} \alpha \rho^{n}=\frac{2 \alpha \rho^{k}}{(2-\rho)^{k+1}}
\end{aligned}
$$

The last equation may be proved with induction on $k(k=0$ is just the sum of an infinite geometric series). Or: we can start from the identity $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ (which holds if $|x|<1$) and differentiating it k times we get:

$$
\sum_{n=0}^{\infty} k!\binom{n}{k} x^{n}=\frac{k!}{(1-x)^{k+1}}
$$

4.7 The probability that the passport is in one of the first k drawers is $\frac{k}{n}$ (see $\mathbf{2 . 4}$). Thus the answer for (a) is $\frac{n-k}{n}+w \frac{k}{n}$. For part (b):

$$
\mathbf{P}(\text { not in first } k \mid \text { hasn't found it in first } k)=\frac{\frac{n-k}{n}}{\frac{n-k}{n}+w \frac{k}{n}} .
$$

4.8 Let A_{1}, A_{2}, A_{3} be the events that they start on the same corner, two neighboring corners, two opposing corners. Then $\mathbf{P}\left(A_{1}\right)=1 / 4, \mathbf{P}\left(A_{2}\right)=1 / 2, \mathbf{P}\left(A_{3}\right)=1 / 4$. It is easy to check, that \mathbf{P} (they don't meet in the first $3 n$ minutes $\left.\mid A_{2}\right)=\left(\frac{3}{4}\right)^{n}$ and \mathbf{P} (they don't meet in the first $3 n$ minutes $\left.\mid A_{3}\right)=\left(\frac{1}{2}\right)^{n}$. From this we get:

$$
\mathbf{P}(\text { they don't meet in the first } 3 n \text { minutes })=\frac{1}{2}\left(\frac{3}{4}\right)^{n}+\frac{1}{4}\left(\frac{1}{2}\right)^{n}
$$

and $p_{n}=1-\frac{1}{2}\left(\frac{3}{4}\right)^{n}+\frac{1}{4}\left(\frac{1}{2}\right)^{n}$. For r_{n} we need the probability of
$\{$ they meet in the first $3 n$ minutes $\} \backslash\{$ they meet in the first $3 n$ - 3 minutes $\}$ which is exactly $p_{n}-p_{n-1}$. To prove (e) we need to show $\sum_{n=0}^{\infty} r_{n}=1$ which is an easy exercise.

