Probability Theory

Solutions \#3

3.1 $\mathbf{P}($ at least 1 pair $)=1-\mathbf{P}($ no pairs $)=1-\frac{\binom{12}{5} 2^{5}}{\binom{24}{5}}=\frac{65}{161}($ as in 2.7$)$

Or:

$$
\mathbf{P}(\text { at least } 1 \text { pair })=\mathbf{P}\left(\cup_{i=1}^{12} A_{i}\right)
$$

where A_{i} is the event that the $i^{\text {th }}$ pair is among the 5 chosen.

$$
\mathbf{P}\left(A_{i}\right)=\frac{\binom{22}{3}}{\binom{24}{5}}, \mathbf{P}\left(A_{i} \cap A_{j}\right)=\frac{\binom{20}{1}}{\binom{24}{5}}, \mathbf{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)=0
$$

and applying the sieve formula we get:

$$
\mathbf{P}\left(\cup_{i=1}^{12} A_{i}\right)=12 \frac{\binom{22}{3}}{\binom{24}{5}}-\binom{12}{2} \frac{\binom{20}{1}}{\binom{24}{5}}=\frac{65}{161}
$$

3.4 Let A be the event that the first box contains a ball marked $1, B$ the event that the second box contains a ball marked 2 and C that the third box contains a ball marked 3. Then the probability in question is:

$$
\begin{aligned}
\mathbf{P}(A \cup B \cup C)= & \mathbf{P}(A)+\mathbf{P}(B)+\mathbf{P}(C)-\mathbf{P}(A \cap B)-\mathbf{P}(A \cap C)-\mathbf{P}(B \cap C) \\
& +\mathbf{P}(A \cap B \cap C) \\
= & \frac{1}{6}+\frac{1}{3}+\frac{1}{2}-\frac{1}{6} \cdot \frac{2}{5}-\frac{1}{6} \cdot \frac{3}{5}-\frac{1}{3} \cdot \frac{3}{5}+\frac{1}{6} \cdot \frac{2}{5} \cdot \frac{3}{4}=\frac{41}{60}
\end{aligned}
$$

3.6 Let A_{1} be the event that the hand contains no $\boldsymbol{\&}$, and the events A_{2}, A_{3}, A_{4} that the hand does not contain $\diamond, \ominus, \boldsymbol{\uparrow}$ resp. Then we need $1-\mathbf{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right)$ which may be easily computed using the sieve formula. (The numerical answer is 0.949 for the bridge and 0.264 for the poker hand.)
3.8 Let A_{i} be the event that the $i^{\text {th }}$ person went home in his own hat and coat. Then we need $\mathbf{P}\left(\cup_{i=1}^{n} A_{i}\right)$ which may be computed by the sieve formula.

$$
\mathbf{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{i}\right)=\frac{(n-i)!^{2}}{n!^{2}}
$$

and

$$
\mathbf{P}\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} \frac{(n-i)!^{2}}{n!^{2}}=\sum_{i=1}^{n}(-1)^{i+1} \frac{(n-i)!}{i!n!}
$$

3.9 (a) Let A_{i} be the event that the $i^{\text {th }}$ box remains empty. Then we need $1-\mathbf{P}\left(\cup_{i=1}^{n} A_{i}\right)$. In general $\mathbf{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{i}\right)=\frac{(n-i)^{k}}{n^{k}}$ and we get

$$
1-\mathbf{P}\left(\cup_{i=1}^{n} A_{i}\right)=1-\sum_{i=1}^{n}\binom{n}{i} \frac{(n-i)^{k}}{n^{k}} .
$$

(b) If $k<n$ then the previous probability is 0 (since at least one box will be empty) and if $k=n$ then the resp. probability is $\frac{n!}{n^{n}}$. Comparing the sum in question with the formula we got for (a), we get that for $k<n$ it is 0 , while for $k=n$ it is $n!(-1)^{n+1}$.

