Probability Theory

Solutions \#2

2.2 $\mathbf{P}(A$ wins $)=1-\mathbf{P}($ no ace from six throws $)=1-\left(\frac{5}{6}\right)^{6} \approx 0.665$

$$
\begin{aligned}
\mathbf{P}(B \text { wins }) & =1-\mathbf{P}(\text { no ace from twelve throws })-\mathbf{P}(\text { exactly one ace from twelve throws }) \\
& =1-\left(\frac{5}{6}\right)^{1} 2-12 \frac{1}{6}\left(\frac{5}{6}\right)^{1} 1 \approx 0.619
\end{aligned}
$$

2.4
$\mathbf{P}\left(k^{\text {th }}\right.$ trial works $)=\mathbf{P}$ (none of the trials $1,2, \ldots k-1$ work and trial k works)

$$
=\frac{n-1}{n} \frac{n-2}{n-1} \ldots \frac{n-k+1}{n-k} \frac{1}{n-k}=\frac{1}{n}
$$

Or
$\mathbf{P}\left(k^{\text {th }}\right.$ trial works $)$
$=\mathbf{P}\left(\right.$ in a random permutation of the first n numbers 1 stands at the $k^{\text {th }}$ position $)=\frac{1}{n}$.
2.7 In general:

$$
\mathbf{P} \text { (there will be exactly } k \text { pairs })=\frac{\binom{n}{k}\binom{n-k}{r-k} 2^{r-k}}{\binom{2 n}{2 r}}
$$

2.12 Number of ways to distribute the 52 cards into four hands of $13: \frac{52!}{(13!)^{4}}$.

Number of ways to distribute the 13 spades into four sets of size a, b, c and $d: \frac{13!}{a!b!c!d!}$. Number of ways to distribute the rest of the cards into four sets of size $13-a, 13-$ $b, 13-c$ and $13-d: \frac{39!}{(13-a)!(13-b)!(13-c)!(13-d)!}$.

The requested probability: \qquad

2.15

$$
\begin{gathered}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=(1-1)^{n}=0 \\
\sum_{k=0}^{n} k\binom{n}{k}=\sum_{k=0}^{n} n\binom{n-1}{k-1}=n(1+1)^{n}=n 2^{n}
\end{gathered}
$$

The third and fourth identities may be proved with the same tricks.

