Probability Theory

Solutions \#10

10.4 If X is log-normal with parameters (m, σ) then it has the same distribution as $e^{\sigma Z+m}$ where Z is standard normal. Then $C X^{\alpha}$ has the same distribution as $e^{\alpha \sigma+\alpha m+\log C}$ thus it is \log-normal with parameters $(\alpha \sigma, \alpha m+\log C)$.
10.7 You can find the density functions by several methods. You can use the formula we had in class: $g(y)=\sum_{x \in \Psi^{-1}(y)} \frac{x}{\left|\Psi^{\prime}(x)\right|}$, but you have to remember that $\Psi^{-1}(y)$ is a set and if Ψ is not one-to-one then it will have more than one elements. (E.g. if $\Psi(x)=x^{2}$.) You can also find the density by first determining the distribution function and then differentiating it.
(a) We will calculate the distribution function of X for $x \in[0,1]$:

$$
F(x)=\mathbf{P}\left(\xi^{2}<x\right)=\mathbf{P}(-\sqrt{x}<\xi<\sqrt{x})=\sqrt{x}
$$

Thus $f(x)=\frac{1}{2 \sqrt{x}}$ for $x \in[0,1]$ and 0 otherwise.
For the density of Y it is easier to use the formula, since $\tan (\pi / 2 x)$ is invertible if $x \in(-1,1)$. The density will be $g(y)=\frac{1}{2} \frac{2}{\pi}(\arctan y)^{\prime}=\frac{1}{\pi} \frac{1}{1+y^{2}}$.
(b) Set $h(x)=\lambda e^{-\lambda x}$ for $x>0$ and 0 otherwise (this is the density of ξ). To get the density of X we only need a linear transformation: the density will be $\frac{1}{3} h\left(\frac{x-2}{3}\right)$.
Since the function \sqrt{y} is invertible for $y>0$ we get $g(y)=h\left(y^{2}\right) 2 y$ for the density of Y.
(c) If $x>0$ then the distribution function of X is

$$
\mathbf{P}\left(\xi^{-2}<x\right)=\mathbf{P}\left(\xi^{2}>1 / x\right)=\mathbf{P}(\xi>\sqrt{1 / x} \text { or } \mathbf{P}(\xi<-\sqrt{1 / x}))=2-2 \Phi(\sqrt{1 / x})
$$

By differentiation $f(x)=\phi(\sqrt{1 / x}) \sqrt{1 / x^{3}}=\frac{1}{2 \pi x^{3}} e^{-1 / 2 x}$ if $x>0$ and 0 otherwise.
10.12 It is enough to prove the inequality for $\sigma=1$, the general case follows from scaling. By differentiating all three terms, and also checking that there limits are 0 when $x \rightarrow \infty$ we get that

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2} / 2\right)}\left(\frac{1}{x}-\frac{1}{x^{3}}\right) & =\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(y^{2} / 2\right)}\left(1-\frac{3}{y^{4}}\right) d y \\
1-\Phi(x) & =\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(y^{2} / 2\right)} d y \\
\frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2} / 2\right)} \frac{1}{x} & =\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(y^{2} / 2\right)}\left(1+\frac{1}{y^{2}}\right) d y
\end{aligned}
$$

Comparing the functions under the integrals we get the needed inequalities.
10.13 We need to find $\mathbf{P}(55<X<65)$ in the cases where X is normal/log-normal with $\mathbf{E} X=60$ and $\operatorname{Var} X=3^{2}$.
(a) If X is normal then it has to be $N(60,3)$ which means that $\frac{X-60}{3}$ is standard normal. Thus

$$
\mathbf{P}(55<X<65)=\mathbf{P}\left(-5 / 3<\frac{X-60}{3}<5 / 3\right)=2 \Phi(5 / 3)-1
$$

(b) This needs a bit more calculation. If X is log-normal with parameters (m, σ), then $\mathbf{E} X=e^{\sigma^{2} / 2+m}$ and $\operatorname{Var} X=e^{2 \sigma^{2}+2 m}-e^{\sigma^{2}+2 m}$. From these the values of m and σ may be easily computed. (They will not be equal to 60 and $3!$) If X is \log-normal with parameters (m, σ) then $\frac{\log X-m}{\sigma}$ is standard normal. Then, by similar calculations as in the previous part, $\mathbf{P}(55<X<65)=\Phi\left(\frac{\log 65-m}{\sigma}\right)-\Phi\left(\frac{\log 55-m}{\sigma}\right)$.
10.14 (a) Observe that in all three cases we have to find the expectation of a $f(X)$ where $f(\cdot)$ is antisymmetric: $f(-x)=-f(x)$. Thus by the symmetry of the density function of the standard normal distribution all three expectations will be 0 .
(b) You need to use the identities $\cos x=\frac{e^{i x}+e^{-i x}}{2}, \sin x=\frac{e^{i x}-e^{-i x}}{2}($ where $i=\sqrt{-1})$, and also that the formula for the momentum-generating function of the standard normal also works for complex values: $\mathbf{E} e^{i t X}=e^{-t^{2} / 2}$ (you need some complex analysis to verify this properly). From these you can compute all these expectations and variances, e.g. $\mathbf{E} \cos X=\mathbf{E} \frac{e^{i X}+e^{-i X}}{2}=e^{-1 / 2}$ (the others may be computed similarly).

Since you needed complex analysis for this part, I gave full credit if you did part (a) of the problem.

