Probability Theory

Solutions

1.2 (d) Both sides equal to $(A \cap \bar{B} \cap \bar{C}) \cup(\bar{A} \cap B \cap \bar{C}) \cup(\bar{A} \cap \bar{B} \cap C) \cup(A \cap B \cap C)$
(e) Both sides equal to $A \cap \bar{B}$.
(h) Both sides equal to $(A \cap \bar{B} \cap \bar{C}) \cup(A \cap B \cap \bar{C}) \cup(A \cap \bar{B} \cap C)$.
(l) $(A \circ B) \cup(B \circ C)=(A \cup B \cup C) \backslash(A \cap B \cap C)=(A \circ C) \cup(B \circ C) \supset A \circ C$
(u) $[A \cap(B \cup C)] \cup[B \cap(C \cup A)] \cup[C \cap(A \cup B)]=$

$$
((A \cap B) \cap(C \cap A)) \cup((B \cap C) \cap(A \cap B)) \cup((C \cap A) \cup(B \cap C))
$$

1.3 We throw three dice at the same time. How many observable simple events do we have
(a) $\binom{6+3-1}{3}=56$,
(b) $\binom{6+2-1}{2} 6=126$
(c) $6^{3}=216$
(d) $\frac{1}{2}$, by the symmetry of the sample space.
1.5 Odd number of events occur from $A_{1}, A_{2}, \ldots, A_{n}$. Proof by induction: for $n=1$ and $n=2$ it holds. If it is true for n then it will hold for $n+1$: one only has to look at $\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n}\right) \circ A_{n+1}$ and use the induction hypothesis.
1.7 Sample space: sequences of H and T, where the last two symbols are equal and before that no two consecutive symbols are the same. For each $n \geq 2$ there are two such sequences with length n, each has a probability of 2^{-n}.
(a) the experiment ends before the sixth toss: $\sum_{n=2}^{5} 2 \times 2^{-n}=\frac{15}{16}$.
(b) an even number of tosses is required: $\sum_{n=1}^{\infty} 2 \times 2^{-2 n}=\frac{2}{3}$
$1.8 \quad$ (a) $\mathbf{P}(A \cap B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cup B) \geq \mathbf{P}(A)+\mathbf{P}(B)-1$.
(b) Use induction. For $n=2$ we just proved it. If it holds for n :

$$
\begin{aligned}
\mathbf{P}\left(\left(A_{1} \cap A_{2} \cap \ldots A_{n}\right) \cap A_{n+1}\right) & \geq \mathbf{P}\left(A_{1} \cap A_{2} \cap \ldots A_{n}\right)+\mathbf{P}\left(A_{n+1}\right)-1 \\
& \geq \mathbf{P}\left(A_{1}\right)+\mathbf{P}\left(A_{2}\right)+\ldots \mathbf{P}\left(A_{n}\right)-(n-1)+\mathbf{P}\left(A_{n+1}\right)-1 \\
& =\mathbf{P}\left(A_{1}\right)+\mathbf{P}\left(A_{2}\right)+\ldots \mathbf{P}\left(A_{n}\right)+\mathbf{P}\left(A_{n+1}\right)-n
\end{aligned}
$$

(First we used that the inequality holds for 2 events, the next line we used the induction hypothesis.)

