
Continuous random variables

(A very sketchy overview)

Introduction to Probability Theory, BSM

Let (Ω,A,P) be a probability space. A function X : Ω → R is called a random variable,
if for every C ∈ R the set {ω : X(ω) < c} = {X < c} is an event, i.e. we can measure its
probability with P. If Ω is discrete then every function X : Ω → R is a random variable
which can only take values from a discrete set {x1, x2, . . . }. We have seen that in this case
the distribution of X may be described with the probabilities P(X = x1),P(X = x2), . . .

The distribution function

We would also like to describe random variables which are not necessary discrete. (The
simplest such r.v. may be the position of a uniformly chosen random point from [0, 1].)
Since for these random variables it may happen, that the actual probability of being equal
to a given number from their range is 0 (see the previous example), we need to find a new
way to describe them. It turns out that instead of considering the probabilities P(X = c),
the right thing is to look at P(X < c) for every c ∈ R. This is the motivation for the
following definition:
If X is a random variable defined on (Ω,A,P), then its distribution function is defined as

FX(x) := P({ω : X(ω) < x}) = P({X < x}) = P(X ∈ (∞, x)).

Since X is a random variable, the probability on the r.h.s. is defined. The subscript X
is sometimes omitted. The distribution function F (x) is sometimes called as cumulative
distribution function or c.d.f.

Basic properties of the distribution function:

0. F : R→ [0, 1],

1. monotone non-decreasing;

2. left continuous:
F (x) = F (x−) := lim

y→x−
F (y)

3. limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

(There are people who define F (x) as P(X ≤ x). In that case property 2 is changed to
right-continuity.)
The proof of 0. is trivial: F (x) is defined as a probability of an event. The next property
follows from the fact that if x1 < x2 then {X < x1} ⊂ {X < x2} and thus P(X < x1) ≤
P(X < x2). The other properties are simple consequences of the following lemma:

Lemma. Suppose that A1 ⊂ A2 ⊂ A3 ⊂ . . . are events on a probability space. Then
P(∪∞n=1An) = limn→∞P(An). Similarly, if A1 ⊃ A2 ⊃ A3 ⊃ . . . are events on a probability
space then P(∩∞n=1An) = limn→∞P(An).
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E.g. to prove the left-continuity, you need to consider the events {X < y} as y ↗ x.
These are increasing, the union of these is {X < x}, applying the lemma we get that
F (x = limy→x− F (y).

Some basic facts:

• If X is a discrete random variable, then its distribution function is a step function, i.e.
it has some (finite or countably infinite) jump points, but between those it is constant.

• If X is discrete then F (x) is not continuous. In general: F is continuous at x if and
only if P(X = x).

• Using F we may express the probability of the event that X falls into a specific interval.
E.g. F (b)− F (a) = P(X ∈ [a, b)), F (b)− F (a−) = P(X ∈ (a, b)), 1− F (a) = P(X ∈
[a,∞)) etc.

• If a function F (x) satisfies the properties 0.-3. then there exists a random variable
whose distribution function is exactly F .

The probability density function

Let F (x) be a distribution function. It is called absolutely continuous, if there exists a (nice)
function f such that

F (x) =
∫ x

−∞
f(y)dy.

In that case f is called the probability density function (p.d.f.).
Basic properties, facts:

• f ≥ 0,
∫∞
−∞ f(y)dy = 1.

• For almost every x ∈ R the derivative F ′(x) exists and almost everywhere F ′(x) =
f(x).

• f is not a probability!! (It may be larger than 1.) Its meaning is the following: if ε is
small, then P(X ∈ (x, x + ε)) ≈ εf(x).

• For any A ⊂ R he probability of the event that X falls into the set A is P(X ∈ A) =∫
A f(y)dy. In particular: P(X ∈ (a, b)) =

∫ b
a f(y)dy.

Examples

1. U(a, b): uniform distribution on the interval [a, b].

F (x) =





0 x ≤ a
x−a
b−a a < x ≤ b

1 b < x

f(x) =





0 x ≤ a
1

b−a a < x ≤ b

0 b < x

E.g. the position of a uniformly chosen random point from [a, b] is a random variable
with distribution U(a, b).
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2. EXP (λ): exponential distribution with parameter λ > 0.

F (x) =
{

0 x ≤ 0
1− e−λx 0 < x

f(x) =
{

0 x ≤ 0
λe−λx 0 < x

The exponential distribution is ‘everfresh’: if X has distribution EXP (λ) then for
any x, y > 0

P(X > x + y|X > x) = P(X > y).

This may be used to model the (random) life-length of a light bulb. The previous
equation means that if the light bulb is working after x units of time, then it is as
good as new: the probability that it will work for at least y more time units is the
same we would get for a brand new light bulb.

3. N(m,σ): normal or Gaussian distribution with parameters m ∈ R, σ > 0.

Only the density function has a closed form:

fm,σ(x) =
1√

2πσ2
e−

(x−m)2

2σ2 ,

its distribution function is Fm,σ(x) =
∫ x
∞ fm,σ(y)dy.

If m = 0, σ = 1 then the distribution is called standard normal distribution. In
that case we use the notations ϕ(x) = f0,1(x) = 1√

2π
e−x2/2 for the density and

Φ(x) = F0,1(x) =
∫ x
∞

1√
2π

e−y2/2dy for the distribution function. It is easy to check,
that we can get the general normal distribution from the standard one with the fol-
lowing transformations:

fm,σ(x) =
1
σ

ϕ

(
x−m

σ

)
, Fm,σ(x) = Φ

(
x−m

σ

)
.

This means that if X ∼ N(0, 1), then the random variable defined as σX + m has
distribution N(m, σ), and vice versa: if Y ∼ N(m,σ) then Y−m

σ is standard normal.
This is a very useful relation, this way when we have to work with general normal
distributions, we can always deduce the problem to one dealing with the standard
normal distribution.

Functions of random variables

Let X : Ω → R be a random variable with distribution function F (x) and density f(x).
Suppose Ψ : R → R is a ‘nice’ (usually differentiable) function. Then Y = Ψ(X) is also a
random variable on Ω, denote its distribution function with G(y), and its density (if exists)
by g(y). Our goal is to express G and g using F , f and the function Ψ.

Transformation of the distribution function: Clearly,

G(y) = P(Y < y) = P(Ψ(X) < y).

If Ψ is increasing and one-to-one then from the previous equation:

G(y) = P(X < Ψ−1(y)) = F (Ψ−1(y)).
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If Ψ is not invertible we have to be careful, and understand the structure of the event
{Ψ(X) < y}. E.g. if Ψ(y) = y2 then (if y > 0 and F is cont.):

G(y) = P(X2 < y) = P(−√y < X <
√

y) = F (
√

y)− F (−√y).

Transformation of the density function:
If we have an expression for G(y) then differentiating it (and hoping that the derivative

exists) we get g(y). If Ψ is monotone increasing and one-to-one then G(y) = F (Ψ−1(y)),
thus

g(y) =
d

dy
F (Ψ−1(y)) = F ′(Ψ−1(y))

d

dy
Ψ−1(y) =

f(Ψ−1(y))
Ψ′(Ψ−1(y))

.

If Ψ is not invertible then the formula is more complicated. If Ψ is differentiable and
doesn’t have horizontal line segments in its graph, then we have the following expression
for g(y):

g(y) =
∑

x∈Ψ−1(y)

x

|Ψ′(x)| .

IMPORTANT: in the formula Ψ−1(y) is the set of all numbers x for which Ψ(x) = y.

Expectation of abs. cont. random variables

If X is a random variable with density function f(x), then if the integral
∫∞
−∞ |x| f(x)dx is

finite, then its expectation is defined as

EX =
∫ ∞

−∞
xf(x)dx,

it is usually denoted by m. This definition is the natural extension of the one we used for
defining the expectation of a discrete random variable.

Examples:

• U(a, b) :

m =
∫ b

a
x

1
b− a

dx =
a + b

2

• EXP (λ) :

m =
∫ ∞

0
xλe−λxdx =

1
λ

.

(partial integration...)

• N(m,σ) :
We need to compute the integral

∫ ∞

−∞
x

1√
2πσ2

e−
(x−m)2

2σ2 dx

Since N(m,σ) may be written as a linear transformation of N(0, 1), it is enough to
compute the integral for m = 0, σ = 1, which is

∫ ∞

−∞
x

1√
2π

e−x2/2dx = 0
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by symmetry. (The integral on the positive side cancels out the integral on the neg-
ative side.) If X ∼ N(0, 1) then σX + m ∼ N(m,σ) thus using the linearity of the
expectation we have that the expectation of N(m,σ) is σ · 0 + m = m.

• Example of a distribution where expectation is not defined:
The standard Cauchy distribution is defined with its density function: f(x) = 1

π
1

1+x2 .
We need the finiteness of the integral

∫ ∞

−∞
|x| f(x)dx =

∫ ∞

−∞

1
π

|x|
1 + x2

dx.

But for large x |x|
1+x2 ≈ 1

x and the integral of 1
x is infinite on [c,∞] for every c > 0.

Thus for the Cauchy distribution the expectation is not defined.

Variance of abs. cont. random variables

If X is abs. cont. with density function f(x) then

VarX =
∫ ∞

−∞
(x−m)2f(x)dx =

∫ ∞

−∞
x2f(x)dx− (

∫ ∞

−∞
xf(x)dx)2.

This is defined only if
∫∞
−∞ x2f(x)dx is finite. The variance is usually denoted by σ2, σ is

the standard deviation.

• U(a, b) :

σ2 =
∫ b

a
x2 1

b− a
dx−m2 =

(b− a)3

12

(Check the calculations!)

• EXP (λ) :

σ2 =
∫ ∞

0
x2λe−λxdx−m2 =

1
λ2

(Check the calculations using partial integration...)

• N(m,σ) :
∫ ∞

−∞
(x−m)2

1√
2πσ2

e−
(x−m)2

2σ2 dx = σ2

(Try partial integration with (x−m) and (x−m)e−
(x−m)2

2σ2 as the two functions.) We
may simplify the problem by first calculating the integral for m = 0, σ = 1 and then
using the fact that we can get the general case by using linear transformation.
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Expectations of functions of random variables

If X is abs. cont. with density function f(x) and consider the random variable Y = Ψ(X).
It would be possible to compute EY by first determining g(y) (the density of Y ) and then
using the definition: EY =

∫∞
−∞ yg(y)dy. This would be quite messy, as g(y) may become

quite complicated.
Fortunately, there is a much easier way, as

EY =
∫ ∞

−∞
Ψ(x)f(x)dx.

Examples:

• Higher moments:
kth absolute moment: E |X|k =

∫∞
−∞ |x|k f(x)dx,

kth moment: EXk =
∫∞
−∞ xkf(x)dx.

(It is defined only if the respective absolute moment is finite.)

• Exponential moments or momentum-generating function:
This is a function H : R→ R defined as

H(t) = EetX =
∫ ∞

−∞
etxf(x)dx

if it is finite. It is useful because if it is defined in a non-empty interval around 0, then
we can obtain all moments by differentiation:

dkH

dtk

∣∣∣
t=0

= EXk.

• Characteristic function:
This is a complex function ψ : R→ C defined as

ψ(t) = EeitX =
∫ ∞

−∞
eitxf(x)dx

where i =
√−1. Since eitx is bounded (its absolute value is 1) thus the integral is

always defined for every t. This function is very useful because it has nice analytic
properties and it contains all information about the distribution of X.

Some tips for calculating expectations:

• Use the definition, maybe the integral is easy to calculate.

• Use symmetry, if you can, as in the expectation of the standard normal.

• Try to use integrals whose values we have already calculated.
E.g. Calculate EetX where X is standard normal. By the definition:

EetX =
∫ ∞

−∞
etx 1√

2π
e−x2/2dx.

Transforming the function under the integral (remember that t is a constant!):∫ ∞

−∞
etx 1√

2π
e−x2/2dx =

∫ ∞

−∞
et2/2 1√

2π
e−x2/2+tx−t2/2dx = et2/2

∫ ∞

−∞

1√
2π

e−(x−t)2/2dx

But the integral on the right side is 1, since it is the integral of a density function
(N(t, 1)) on the whole line. This means that EetX = et2/2 if X ∼ N(0, 1).
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