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The Annals of Probability 
1975, Vol. 3, No. 4, 608-617 

ON SEQUENCES OF "PURE HEADS" 

BY J. KOML6S AND G. TUSNADY 

Hungarian Academy of Sciences 

Statistics connected with the maximum of moving averages of series 
of i.i.d. random variables are investigated. 

1. Introduction. If someone tries to produce (without much thinking) the 
results of a series of coin tossing, not using a coin or any other device generating 
random numbers, he will carefully check that the rate of "heads" be near to 2' 
and perhaps in short blocks the "heads" and "tails" will follow each other quite 
randomly. However, the maximal length of blocks of consecutive heads will 
surely be far less than would be expected in a real coin tossing situation. Let 
us denote by Len the length of the longest block of consecutive heads (a block of 
"pure heads") in the first n outcomes in an infinite series of coin tosses. In his 
book, Renyi (1970) proved that 

p (lim"n 0 = 1. 
log2 n / 

Generally, we may ask for the maximal length of blocks in which the frequency 
of heads exceeds a fixed x. In case x > I the maximal length i"(x) of such blocks 
is expected still to be around c log n, where c depends on x. 

Let 15' t2 . . . t'x . . . be i.i.d. nondegenerate random variables with distri- 
bution function F (left-continuous) having expectation 0. For a fixed m define 

'?m(i) by 

(1.1) ,7,n~~~~~i) = 1 Ei.+w-lt (i = ~~~~~1, 2, . . .) 

For x > 0, let i"(x) be the maximum of those m's for which there exists an 
i < n such that '?m(i) > x, and define C"(m) by 

(1.2) Q"(m) = maxl!i! 'M(i) . 

For a fixed x > 0, the elements of the process 

(1.3) 7m(x, 1), Zm(x, 2), ... , ?m(x, k), . . . 

are the indices i for which '?m(i) > x (in increasing order). The first term of this 
process will be denoted by rm(X): rm(X) = rm(X 1). 

Erdbs and Renyi (1970) proved that 

P(lim"O. C,([c log n]) = h(c)) = 1 . 
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ON SEQUENCES OF "PURE HEADS" 609 

The function h(c) is given in Section 4, which contains our main results. In 
Section 5 the asymptotic behaviour of the process zm(x, k) is investigated. 
Sections 2 and 3 deal with the necessary preliminaries. 

2. Theorems on large deviations. Theorems on large deviations state that 
the probability of the events 

(2.1) Ai = {m(O) < xi 

tends to 1 exponentially, where '?m(i) is defined by (1. 1). (The events Ai depend 
on x and on the length m of the blocks, too, but for the sake of simplicity, we 
do not indicate this dependence in our notations.) The first version of this 
statement was formulated by Chernoff (1956) in the form 

limme. 1-log P(A-) = log p, 

where p = p(x) is the so-called Chernoff function defined in (2.4). This theorem 
was extended by Bahadur and Ranga Rao (1960). They proved-roughly 
speaking-that mip-mP(A1) tends to some constant. Petrov (1965) proved that 
this convergences is uniform on closed intervals; we shall state his theorem 
later in detail. 

The finiteness of the moment generating function, 

(2.2) R(t) = Eetel - ??-. etyF(dy) 

at least for some point t > 0, is needed for proving such a theorem. Write a, 
and a2 for the endpoints (possibly infinite) of the domain of R(t); that is, 

(2.3) al = inf{t: R(t) < oo}; a2 = sup{t: R(t) < oo}. 

Denote the open interval (al, a2) by T. It is easy to prove the following three 
statements: 

i) R is differentiable over T. 
ii) The logarithmic derivative of R, 

0()=R1(t) 
R(t) 

is continuous and monotone increasing. Thus it has an inverse function: 

a(x) = t if 0(t) = x, t e T 

which is also continuous. Note that a(0) = 0b(0) = 0, since the expectation of 
tj is assumed to be 0. 

iii) Denote the interior of the range of sb by X: X = {(b(t); a, < t < a2}, and 
the set of positive elements of X by X+. For a given x e X+, the' function 

e-tR(t) (a1 < t < a2) 

takes its minimum at the point a = a(x). (We shall mostly use the shorter form 
a for a(x), thus not indicating the parameter x.) Denote this minimal value 
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610 J. KOML6S AND G. TUSNADY 

by p(x): 

(2.4) p(x) = e-aR(a) = infa<t<a e`tR(t) . 

The function p is differentiable. In fact, p'(x) = -ap(x), i.e. the logarithmic 
derivative of p is - a(x), and a(x) in turn is the inverse of the logarithmic 
derivative of R(t). 

The estimation of the probability 

P( 1~ ?i > mx + Y) 

for x e X+ is usually based on the so-called conjugate distribution. For a - 

a(x), define the distribution function Fax as 

Fa(i2) = IS uo. ectzF(dz), 
R(a) 

and let al t2 * * * be i.i.d. random variables with the common distri- 
bution Fa. Denote the distribution function of the sum T=1 di by Gm. 

With these definitions 

P(E=1 hi > mx + y) = Rm(a) Smx+y e-azGm(dz) 

- 

pm(x)e-ay 
j m+y 

e-a(ez-mxY-)Gm(dz) The distribution Gm is centered at mx, hence 

G.,(dz') dz 
m! a(27wm)* 

which yields the approximation 

P(5'U1 > mx + y) ~ pm(x) . e- c 1y 
9aa(27wm)i a 

where a_2 = Var t1. 
The only exception is the case when 5, is lattice-valued. Assume that A is 

the largest value such that 

T, - P($, = kA + o) = 1. 

A is called the width of the lattice. In this case the distribution G. is concen- 
trated on the lattice A.m = {kA + mo}wk= U 

THEOREM (V. V. Petrov). Let I c X+ be a closed interval. Then for any e > 0 
there exists a number mo such that 

|P(i > mx)p P (X) < m(x) 
bnp(X)M 

___ 

for all x e I whenever m > mo, where 

bm(x) = aaa(27)i if t is not lattice-valued 

1-e aA e-a&Xa(2w)i if t is lattice-valued. 
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ON SEQUENCES OF "PURE HEADS" 611 

Here A denotes the width of the lattice i9`of ai, and 

A X = 

inffe- 
?mvm(V 

- mx) 
is the distance between mx and the first element on the right-hand side of mx of the 
lattice 9?m of Tu In= 

COROLLARY. If I c X+ is a closed interval, then there is a constant K1 and an 
integer m0 such that 

P(zU1 a > mx + Iy > ? mx) < K, e-ay 

for all m > min0 x e I and arbitrary y. 

Note that strictly speaking only the case x + y/m e X+ is a corollary of the 
above theorem. The proof, however, is easily extended for arbitraryy. Actually, 
in case of non-lattice-valued distributions, K1 could be chosen arbitrarily near 
to 1. 

The fact that the rare event A1 = T > mx} occurred has a strong effect 
on the elements of the whole block {51, * * * ,mJ. Roughly speaking the 
elements of a block with a large average are forced to be as near to x as possible. 
The theoretical background of this phenomenon was investigated by Vincze 
(1972). It is expressed in the following theorems. 

THEOREM (Bartfai). If I c X+ is a closed interval, then 

limm SO P(t1 < z = > mx) = F.(z), 

uniformly in x e I, where Fa(z) is the conjugate distribution defined above. 

THEOREM 1. If I c X+ is a closed interval and k is fixed, then 

limm00 P(2! i < Lm(mx) + Yo, 1 < y *, Ek < Yk I > mx) 
= G(y0) fl1 F.(yj) 

uniformly for all x e I,, where Lm(u) = u and 

G(u) = 1-eau, (u > 0) 

if a, is non-lattice valued, otherwise 

Lm(u) = min{v i 9m;v > u}, 
and 

G(u) = 1-e-akA for (k-1)A < u _ kA (k =1, 2,...) 
= 0 for u < O. 

PROOF. This theorem is an extension of the theorem of Bartfai. Since his 
methods apply in our case, we only sketch the proof. 

P~~ i> Lm(mx) + you t, < yll * k < Yk | i1 ti > mx) 

= 5V1 ... Sk P(ZE7='k+l {> ?> Lm(mx) + y- zik= zi) F(dzl) - F(dzk) 00 00 
P(En 1 ~i >mx) 
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612 J. KOMLOS AND G. TUSNADY 

where yo = inf {jA: j]A ? yo} for yo > 0, and yo = 0 for yo _ 0. The sequence 
of the integrands tends to R-k(a) exp{a rk. - ayo} and is dominated by 
K(yo, k, x) exp{a Y, 1 zi}. An application of the Lebesgue theorem completes 
the proof. 

3. A conditional large deviation theorem. Let the events Ai be defined by 
(2. 1) and let t0, t1 . .., .k . . . be random variables having the joint distribution 
given in Theorem 1: 

P(to < Yo, t1 < Y15 * * *k < Yk) = G(yo) flk=, F.(yj). 

Assume further that the systems {Ji} and {Ji} are independent. Denote the pro- 
bability P(,1 o > + +* + j; j= 1, 2, ... , i) by pi(x) and 
their limit by p(x) =P(e, + * * * + d i > t0 + t, + * + dj; j = 15 25 .. *). 

Note that the distribution function of the variables di continuously varies with 
the parameter x, and hence the function p is continuous. 

THEOREM 2. For any e > 0 and any closed interval I c X+ there exist nO = 

no(e, I) and mO = moi(e, I) such that 

] P(A, I Al * An-1) _p(x)| < 6 

P(An) 

if m > m0, n > no and x e I. 

PROOF. Note that 

P(AIA1 ... An-1) P(A1 A2 ... An) P(A2 . . . AIA1) 

P(Jn) P(A1)P(A2 ... An) P(A2. An) 

Introduce the following events: 

A = A1 

B = A2 .s ..k+1 

C = Ak+2 ... Am 

Di = Aim+, .. *A(i+l)m (i = 0, 1, ..., 1) 

Ei = Aim+, ... An (i 01 11 .. * *1) 5 

where 1 < n/m < 1 + 1, and k < mo < no will be defined later. 
In case n < 3m we use the inequalities 

P(B iA) ? P(A2 . . . An J Al) > P(BCD1D2 IA) 

> P(BIA) - P(CIA) - P(D1) - P(D2). 

In case n > 3m A2 . . . An - BCDE2 whence 

P(A2 * * A, A1) < P(BE2 | A) = P(B I J)P(E2) 

P(A2 ... AR I A1) = P(BE2 |A)- P(BE2CD1 IA ) 
> P(B I A)P(E2) - P(C I A)P(E2) - P(D,)P(E3). 

This content downloaded from 193.224.79.242 on Mon, 15 Jul 2013 03:33:51 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ON SEQUENCES OF "PURE HEADS" 613 

We shall prove that 

i) for fixed k P(BJA) tends to pk as m -? oo; 
ii) P(C ] A) is arbitrarily small if k and m are large enough; 
iii) P(E% | Ei+l) is arbitrarily near to 1 for 0 < i < 1 if m and n are large 

enough. 

It is easy to see that our theorem is a consequence of these statements. 
Part i) is a consequence of Theorem 1. fNow we prove ii). 

P(c IA) = P(U n=k+2 Ai I Al) ? P )7m(l) > x + k6 )7|m(l) > X 

+ Z=Ik+2 P(7j-l(1) < 261)7|m(l) > x) 
+ ZdT=k+2 P(7j l(m + 1)> >3) = U + V+ W. 

The theorem of Bartfai and the corollary of Petrov's theorem imply 

U ? Kle-ka 

m 2 -1 < Pi 
k+l 

W? <-iE =k+2 Pl~~6 
1 - pi 

where p, = p(6). The corollary of Petrov's theorem yields 

V ? Z-k+2 P(Zi=j i ? mx - 26(j - 1) | 2m(l) > x) 

< Pjr. P(P(1) X j e (m -j + 1)x + (x - 26)(j - 1)) 

? K2 E j=k+2 P- * e(28o-2l)1a .*pmi-j+l 

Fortunately e-xa < p(x) because 

S N. eazF(dz) > exp { r0AazF(dz)} = 1 

This inequality assures that V is small enough for a suitably chosen ( and for 
m and k large enough. This completes the proof of ii), and now we pass to the 
proof of iii). 

From the inequality P(Ei+1) > P(Ej) > P(Ei+1) - P(Dj)P(Ej+2) we get 

1 > P(E I E +) > 1 P(Di) 
P(ilI Ei+2) 

If m is large enough P(E,), P(E1-,), P(D,-2) are close to 1, so we may assume 
P(EIl-lEl) > 1, P(DI_2 > 43 

Step by step we get P(E% I Ei+1) >- for all i = 0, 1, *, - 1 (note that the 
probabilites P(D3) are equal). Hence P(E% I Ei+) > 1- 2P(Di) > 1 -2mP(A). 
Thus P(Ej I E%+l) is arbitrarily close to 1 if m is large enough. 

4. The first large block. The investigation of the random variables an(x), 
zm(x) and C"(m) defined in Section 1 is based on the following theorem. 
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614 J. KOMLOS AND G. TUSNADY 

THEOREM 3. For an arbitrary closed interval I c X+ 

Pmn,(x) = P(rm(x) > n) = P(Cn(m) < x) 

= (i -(1 + Omn(1))P(Xp)PQ () 
n 

for all x e I, where Iomn(1)I is less than ; > 0 if m > m1, and n > n,. 

PROOF. The event indicated in the theorem means that there is no block of 
length m among the first n blocks with an average greater than or equal to x, hence 

Pmn,(x) = P(A1 .. An) = P(A1) fll2 P(A2 A* Ai-) 

= P(A1) HIi=2 (1 -P(Ai I A1 Ai-) 

Theorem 2 implies that P(Ai I Al ... Ai-,) is near to ppmbmn-lm-i if i and m 
are large enough: i > no, m > mn. Since p(x) is continuous and positive, it has 
a positive lower bound on I. Hence we could write 

P(Ai I A1 ... Ai-,) = (1 + on,n(l)) P(x)pm(X) 
bmn(X)in' 

for i > no, m > Mo. For i < no these probabilities tend to 0 as m o-> o, and so 
does the term ppmnbmnlm-i. Hence the given approximation is valid for the whole 
product. 

THEOREM 4. For arbitrary closed interval I c X+, andfor arbitrary Z > 0, 

P(p(x)P(X) <m(X) z= 1 -ez + oms(1) 

uniformly for all x e I, 0 < z < Z. and 

P(m(Cn(m) - x) < z) = exp - P() e-cz" + o., (1 ) 
dac,(27r)i 

m,(1 uniformly for all x e I, IzI ? Z. In the second formula om,,8(1) tends to 0 if m ->00 
and a ->0, where s = Inm-ipm4(x) - 1I; moreover in this formula 

i) if tj is non-lattice valued, then a = a and z is arbitrary; 
ii) if 2j is lattice-valued, then a = A-1(1 - e-a) and z has to be chosen in such 

a way that mx + z e Lm, 

THEOREM 5. For arbitrary x e X+, 

P (limm >001 _log0r9n(X) = -log P(X)= 1 

P(lim Vy(x) - - 
I 1, and 

log n log p(x) 

P(limnoo. Cn(m) X) = 1 

In the third case m = m(n) is an arbitrary sequence with the property 
lim% .0 1/rm log n = -log p(x). 
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ON SEQUENCES OF "PURE HEADS" 615 

The proof of Theorem 4 is straightforward. The proof of Theorem 5 is based 
on Theorem 3 and is similar to the proof given by Erdbs and Renyi (1970) so 
we omit the details. Actually the third statement of Theorem 5 is a slight generali- 
zation of their theorem. The second statement of Theorem 5 is a generalization 
of the original theorem of Renyi (1970) on the "pure heads" given in his book. 
Now the function h(c) mentioned in the introduction is the following: for 
1/c = -log p(x) the number h(c) is the same as our x. Note that we have no 
theorem on the limit distribution of >(x). 

According to Theorem 4 the order of .m(x) is p-wmi, which is also reflected 
in Theorem 5. This approximation can be refined as follows: 

i (lim sup, G, supzI logrm(x) + m log p(x) - -logm ? 1)= up, er - log log m 

(lim infrm~ infZ eIlog Wr(X) + m log p(x) - logm > _2)=1 
log m 

Note that the term log rm(x) +- m log p(x) - 1 log m is stochastically bounded 
by Theorem 4 and hence after division by an arbitrary function tending to 
infinity, the ratio tends to 0 stochastically. 

5. The sequence of indices of large blocks. Fix x e I c X+ and write rm(x, k) 
for the first index of the kth large block, i.e. rm(x, k) is the first index of the 
kth of those blocks which have an average greater than or equal to x: 

'?m(i) > x for i = rm(x, 1), rm(x, 2), * * . 

m(I) < X for rm(x, i - 1) < j < rm(x, i); i = 1, 2, ... 

where .m(x, 0) = 0. In particular .m(x, 1) = rm(x). 
Divide the i's into groups in the following way. Starting with 7l = 1 we 

define a sequence of random variables recursively, as follows: rk(k > 2) is the 
smallest integer for which rm(x, c)- - m(X, Tk-1) ? m. Denote the set of differ- 
ences {Zm(x, j) - rm(X, Tk);] = Tk + 1, Tk + 2, ..., Tk+ -11 by rm(x, k)(rm(x, k) 
is empty if Tk+1 = Tik + 1), and, for the sake of brevity, denote rm(x, 1) by rm(x). 
The set rm(x) is a random subset of the set of the first m - 1 integers: rm(x) c 
{1, 2, *.., m - 1}. In other words, starting from the first large block and 
going j(j < m) steps forward we get at a large block if and only if ] e rm(x). For 
determining the limit distribution of the random set Fm(x) first we present a 
modification of Theorem 1, in which we investigate the joint distribution of the 
first variables and the "surplus variable" in the first large block, rather than in 
an arbitrary large block as done in Theorem 1. 

THEOREM 6. If I c X+ is a closed interval, and k is fixed, then 

limnmo P(2 m )x < Lm(mx) + You rnm(X) < Y1i * tzm(x)+k-1 < Yk) 

= G*(yo) 1 Fa(Yi) 
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616 J. KOMLOS AND G. TUSNADY 

uniformly for x e I, where Lm(u) is the same as in Theorem 1, and for u > 0 

G*(u) = 1 -beau. P(LE1=l > u + + Z~1ti;]= 1,2, ...) P(Z =1 tj > to + ?=+ i1 ds; j = 1, 2, * 

If 2j is lattice-valued, then we have to replace yo in G*(yo) by yo = inf {jA: jA > y0}. 

The proof of this theorem is a combination of the methods used in proving 
Theorems 1 and 2 and so is omitted. 

Let 2o* be a random variable with distribution function G*(u) and let 20* be 
independent of the random variables {fi}, and {j}. Define the random subset 
r of the natural numbers as follows: j e r if and only if the inequality 

j < Cd + I2=lE % 
holds. 

COROLLARY. If I c X+ is a closed interval and H is an arbitrary subset of natural 
numbers, then 

limm >c0 P(rF(x) = H) = P(r = H) 

uniformly for x e I. 

THEOREM 7. If x e I c X+ and k is fixed, then the random sets rm(x, 1), 
rm(x, 2), * * *, rm(x, k) have the same asymptotic distribution and they are asymp- 
totically independent. The limit distribution of the normed differences 

p(X)pn(x) [Im(X Tk) 
- Tm(X Ti-1)] 

bm(x)mb 

is an exponential distribution with parameter i = 1. 

PROOF. The random variables nm(X, 1) + m -1, m(X, 2) - zm(x, 1), 

z m(x, TIck) - zm(x, TIck-) are independent and indentically distributed. Applying 
Theorem 4 we get the second statement of the theorem. Starting with fl = 
71*= 1 define the sequence of random variables k, Trk* recursively as follows: 
fk(k > 2) is the smallest integer for which tCm(X, Tk) - m(X, fkl)> 2m, and 
Tk*(k > 2) is the smallest integer for which rm(x, Tik*) - m(X, fkl)> m. Denote 
by rm(x, k) the set of differences {m(xI j) - m(x, fk); = fk + 1, Ti J+ 2, * 
T -k1}. The random sets rm(x, 1), rm(x, 2), *.*., rm(x, k) are independent 
and identically distributed. The probability P(rm(x, j) = rm(x, j); j = 1, 2, 
k) > 1 - k P(trm(x, T) < rm(X, Ti-1) + 2m) tends to 1, and this proves our 
theorem. 
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