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Abstract. We present an alternative model for multifactorial inheritance.
By changing the way the malformation (and selection) is determined from the
genetic information, we arrive at a model that can be properly handled in the
mathematical sense. This includes the proof of population convergence and com-
putation of conditional malformation probabilities in a closed form. We also
present a comparison to similar models and results of fitting our model to Hun-
garian data.

1. Introduction

The concept of multifactorial inheritance goes back to Francis Galton, a
contemporary of Gregor Johann Mendel (see Karlin [4]). Instead of the case
investigated by Mendel, where the appearance of a congenital malformation
is controlled by a single gene, in multifactorial inheritance the number of
genes involved is large or infinite. As a result their effect is concentrated in
a virtual quantity, the liability having standard normal distribution. The
joint distribution of the liabilities of members of a family is also normal with
covariances

h2
ﬁa
determined by the remove degrees of the relationship where h is the her-
itability of the malformation and d is the degree of relationship. In the

cov(X,Y) =
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simplest case of h = d = 1 the conditional probability that a first order rel-
ative of a malformed person has the malformation is roughly ,/p, where p is
the population incidence of the malformation. This approximation is due to
A. W. F. Edwards [2]. The multifactorial model was tested on Hungarian
data by Czeizel and Tusnddy [1] which work was criticized by Kari Sankara-
narayanan because the effect of selection was neglected. He organized a
group to solve the problem and some preliminary results were published by
members of the group [6] while Tusnédy tested the new model on original
data [7]. Unfortunately a question remained unsettled: the stability of the
proposed model. Here we offer a partial solution of the problem.
Let X and Y be the liabilities of the parents, then the liability of their

child is

X+Y
2

where U is a normal variable with expectation zero and variance % The
main observation of Sankaranarayanan was that in the case of selection the
bad genes causing the malformation simply flow out from the population like
the water from a bathtub. It is the mutation which can supplant the bad
genes. The effect in the model may be represented by changing the expec-
tation of U to some positive number to balance the effect of selection. As
usual, let L = Z + V be the liability of the investigated child, where V is the
environmental effect with appropriate variance, and let us postulate that the
appearance of the malformation is equivalent with the event L > T', where
T is the threshold. (The random variables X, Y, U, V are independent.)

The effect of selection may be represented in the model by a second
threshold S > T such that if L > S then there will be no descendant for the
person having liability L. The stability of the model means that starting
with an arbitrary distribution on parents in course of generations the dis-
tribution of the liability goes to a limit which is independent of the original
distribution. This is observed for computer simulations but we have no the-
oretical proof. Instead we turn to the case of finitely many genes. In this
case the environmental effect may be represented with a Poisson variable
with an appropriate parameter, any bad gene will be given to the child with
probability %, and the effect of mutation is also a Poisson variable. In the
general case let p(L) be the probability that a person with liability L has
the malformation. (L may be identified in this case with a natural num-
ber coming partly from bad genes and partly from quantized environmental
effects with the same habit as bad genes.) If p(L) =1 iff L 2 T, the situ-
ation is the same as in the continuous case but if p(L) = 1 — p! with some
0 < p < 1, then the question of stability turns to be solvable.

Let us say we are thinning a Poisson variable if we represent it with
balls and kill independently the balls with a certain probability. It is a well

Z +U,
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162 B. GERENCSER, B. RATH and G. TUSNADY

known fact that the thinning of a Poisson variable results in a Poisson vari-
able again. Let Z be a Poisson variable with parameter A and let it be
thinned independently into random variables X; and Y; with probabilities
p and ¢ accordingly. Let the random variables X and Y5 be Poisson with
parameters (1 —p)A and (1 — ¢)\ and independent of the earlier random
variables. The joint distribution of

X=X1+Xo, Y=V1+Y

is somewhat cumbersome:

P(X =2,Y =y) =) Pois(z,A) {ZBin (2,p, 1) Pois(z — i, (1 — p)/\)}
z=0 1=0

X [ZZ:Bin (z,q,7)Pois(y — 7, (1 — q))\)}.
=0

but its generating function is easily found. This observation is the driving
force in our calculations on the conditional probabilities for pairs of relatives.

In Section 2 we present the working model, in Section 3 we prove the
main theorem, in Section 4 we develop the conditional probabilities for the
malformation in the relatives of an affected person. In Section 5 the theory is
applied on the Hungarian data, and in Section 6 the conclusions are drawn.

2. The working model

We consider a population with sexual reproduction, selection, syn-
chronous generations on a short time frame in the evolutionary sense. We
assume all relevant loci have the same effect in view of the birth defect, so
the only thing we keep track of is the number of mutant genes one has. To
get the genetic information of offsprings, we need recombination, mutation,
and selection.

During recombination we assume crossovers may happen, and there is a
low number of mutant genes, that is, each of them is inherited independently
with probability 1/2. If the two parents have z and y mutant genes, the child
will receive a random number from the Binom (z + y, 1/2) distribution.

The child is affected by additional mutation, this is represented by adding
an independent Poisson (p) random variable to the inherited mutant gene
count.

Given the number of mutant genes the child has, we have to find out
two things: whether he/she is affected by the disorder and whether he/she
is fertile (and viable). We assume each mutant gene may cause the disorder
to appear or the loss of fertility. There is an ordering of the two symptoms,
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a gene causing the loss of fertility also causes the disorder to appear. The
probability of a single gene not causing the disorder is denoted by A, and
the probability of mot inhibiting fertility is p. Clearly p > A. Once again,
each gene has a random effect on the individual in the following way:

e with probability A it has no effect,

e with probability p — A it causes the individual to be affected by the
disorder, but has no effect on fertility,

e with probability 1 — p it causes the individual to be affected by the
disorder and lose fertility.

We need to easily refer to the combination of these operations. For a pair
of distribution of mutant genes (Pf, Ppy,), let us denote the female distribu-
tion of the next generation by T (Py, Py,). We use the analogous notation for
the male counterpart. We vaguely use T' }“(Pf, P,,) for the female distribution

after k generations (although we should use T (T (Py, Pp), T (Pf, Pr)) in-
stead of T?(Pf, Py)).

3. Stationary genotype distribution

This section deals with the long-term behavior of the genotype distri-
bution. It is rather clear that if there is no selection which has the role of
filtering out the mutant genes, then their number will grow unboundedly.
Consequently, to have a chance of stationarity, we need p < 1. We claim
that in this case the distribution of mutant genes in the population stabi-
lizes over time. We assume there is a separate set of parameters for females
(g, pr, Ay) and males (ftm, pm, Am). We do not see biological evidence for
py and pi, to differ but it does no harm to include it in our study, and we
get a more general result.

THEOREM 1. If py,pm <1 then for any pair Py, Py, of initial distri-
butions of mutant genes, the distributions of T]’f(Pf,Pm), Tk (Py, Py,) will

converge in distribution to a pair of limiting Poisson distributions with pa-
rameters

A = PrPm(Bm — frp) + 2p5py N\ = Prpmlby = pm) + 2pmbm
2—pf—Pm ’ " 2—pf—pm ’

for females and males, respectively, when k — oo.

PROOF. We work with generating functions. We say that P = (p;);2 is
a probability distribution on N if p; 2 0 and Y ;2;p; = 1. Denote by P the
set of probability distributions on N. For P € P and x € [0, 1] let us define

Gp(x) = z:placz
i=0
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The coefficients of the power series form a probability distribution, con-
sequently Gp(x) is analytic on [0, 1]. The operations used in our model are
easy to handle with generating functions. We write out the equations for a
daughter, we get the analogous equations for a son by exchanging f and m
in the indices.

Convolution of distributions is reflected as multiplication of the generat-
ing functions, so adding up parental mutant genes translates to

Gp/ (.%') = pr (af)Gpm (:L')

Plugging the value of the variable into a binomial distribution with pa-
rameter 1/2 (also known as “thinning”) translates to changing the argument
from z to (1 + x)/2. We get

1+
GP//(ﬁ)ZGP/< 2x)

Adding external mutation is another multiplication with the generating
function of a Poisson variable with parameter fis:

Gprn(x) = Gpr(z)et @),

During selection, we put weights on each p!’, then normalize to obtain a
probability dlstrlbutlon in the following fashion: the probability of having i
mutant genes is p’” and the probability that a female with 7 mutant genes
remains fertile is pY%, thus a female in the community of fertile females will

/1!

have i mutant genes with probability p!” pzc /2520 ] pf This operation is
known as the “exponential tilting” of the distribution P"”. For generating
functions, the effect of selection can be computed the following way:

o0 /11

p; :0 ;,  Gpr(prx
GP”"($):Z f __Gp (pf )

X .
pr D Ay Gpr(py)

Composing the three transformations we get

GPf ( (1 + pf$)/2) GPm ( (1 + pfﬂ?)/Q) e,ufpf(az—l)
Gr,((1+ps)/2) G, ((1+ pf)/2) '

We want to iterate T n times. Naturally we want to avoid writing down
all these complicated formulas. In order to see the structure of what we get,
let us write down the formula for 72, but without arguments:

(1) Gryp,p(7) =

a 0G 0 GPf()GPm()e,,,GPf()GPm()e_,,
00G1,,00 . @0Gr,0¢ Cr0Cr, 0
2)  Gpae) = el = ¢
Gr.00G Gr,0Gr 0 Gr0Gry 0
70007,00 e aray e
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From (1) we see that the denominator of Gr,(P,,p,,) 1s constant in z and
the constant is the normalizing factor which guarantees that Gp. (1) = 1.
Rearranging (2) we end up with a formula that is the product of four G()/G()
terms (where the denominator normalizes the numerator and the ratio takes
value 1 for z = 1) and an exponential term. After n iterations we get that

Gry(z) is a product of the functions GT;L (z) and EF(x), where C;’Tfn(ac) is a
product of 2" terms of the form G()/G() and E%(x) is an exponential term
(the generating function of some Poisson random variable).
Let us treat GT;L (z) and E%(x) separately.
We first show that GT;L(x) — 1 for all x € [0,1] as k — oo.
If we put back the arguments in one of the 2" terms of GT;L (x), we see
that it is of the form
G(B(z))
G(B(1)’
where B is an affine function, an n-fold composition of either z +—

(14 ppx)/2 or x — (14 pmx)/2, and the generating function G is either
Gp, or Gp, . The product of all these terms look like

Q
G(B@) — G(BE) _ (logc:(B(x))
G(B() " G(B)

with G and B changing throughout the formula. Let us make sure the use of
logarithms is feasible. It is easy to see that B(xz) > 0 for = 0. The gener-
ating function G is a power series with non-negative (and at least one posi-
tive) coefficients, so G(B(z)) > 0 for z € [0,1]. Now we have to estimate the
terms of the form log (G(B(x)) /G(B(1))). Denote p, = max (pf, pm) < 1.
By the mean value theorem, for every z € [0,1] there is a £ € [ B(z), B(1)]
C [1/2,(1 + ps)/2] such that

G(B(x))

GB) ~ BC(B@) ~logG(BW) = (B(x) ~ B(1)) (105G)'(€).

log

The coefficient of x in B(z) will be at most (p,/2)". Thus for any x € [0, 1]
we get

B - 5| = (%)

The function G is continuously differentiable and bounded away from 0 on
the interval £ € [B(z), B(1)] € [1/2,(1+ p«)/2], consequently the deriva-
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tive of the logarithm can be bounded in absolute value by some C. In the
end we get

log

G(B()) ‘ _ C(&>"_

G(B(1)) 2
Adding up 2™ of such terms gives the bound

G(B(x))

G(B(x))
G(B(1))

G(B() = Or.

log + - +log < Cp;

This tends to 0 for all € [0, 1], thus the product on the left-hand side of (3)
converges to 1 as n — oo. Observe that the exponential term in E (x) does
not depend on the initial distributions Py, P,,. Thus we have just shown
that the only part depending on the initial distributions vanishes. Con-
sequently the convergence and the potential limit does not depend on the
initial distributions.

It is now enough to show a pair of distributions satisfying

(Pt, Pn) = (T¢(Py, Pm), Ty (Py, Pn)) ,

as the previous reasoning ensures that the trivial convergence of this case
implies convergence for any initial generating functions to this fixed point.
We search among Poisson distributions because this family is closed for all
the transformations we use. The pair (Af, Ap,) is invariant exactly when

A+ A A+ A
)‘f: <fT+:U’f) Pf Am = <fT+Nm) Pm-

Taking the average of the two equations results in a simple expression for
(Af +Am)/2, plugging it back gives us the parameters stated in the theorem.

To conclude we use the fact that the convergence of a sequence of gen-
erating functions to a generating function on [0, 1] implies the convergence
of the corresponding probability distributions (see e.g. Mukherjea et al. [5]).
O

We should note that the proof strongly relies on the specific choice of
selection which we can conveniently handle using generating functions. As
we mentioned in the introduction, it makes sense to consider different func-
tions determining the risk based on the mutant gene count. However, it is
unclear how one should modify the proof to resolve the alternative cases.

4. Theoretical disorder probabilities

From the previous section we learn that it makes sense to assume the
population to be in the stationary state. It is easy to check that the num-
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ber of mutant genes a newborn has follows a Poisson distribution with the
following parameters depending on the gender:

A+ Am Af Af+Am Am

s Tt = — Tt Hm =
2 T by 2 Pm

Consequently his/her probability of being healthy is

Ar—1 JANS|
pf = exp (Af fpf >, Pm = €xp <>\m p )
m

Similarly, the probability of being fertile is

- -1 - -1
by = exp )‘f £ 3 Pm = €Xp ()\m pm ) .
Pf Pm

However, if we look at a family tree at once, we see a complex multidimen-
sional joint distribution. We want to answer simple questions like “What
is the (conditional) probability of an aunt of a malformed child being af-
fected?”.

We claim that we can get a closed form expression on any reasonable
conditional probabilities like above. The resulting formulas often become
enormous, but there is a way to derive them with reasonable effort.

We would like a general iterative computational scheme that can be used
for most cases. The idea is to draw a graph of the family tree, transform it
to simpler graphs while building the formula for the probability.

We include the possible dependence on the gender of the patient. There-
fore the parameters we have are

iy Bms Py Pms Afv Am

The parameters of the stationary distributions are

0w — pip) + 2py iy N = PrPm(py = pm) + 2pmfin
- 9 m .

A
d 2—pf—pm 2—pf—pm

From now on to reduce the number of formulas, we use x,y,... for one
gender or another, thus p, or A, is the parameter corresponding to the ap-
propriate gender. In addition we use 2’ for the gender different from x.

4.1. Representing graphs. First, let us visualize the situation. We
may draw a family tree with some additional information.

We use Fig. 1 as an example. Suppose z =m, y =m, z = f for a mo-
ment. The circles in the graph represent members or couples of the family.
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Af + )\m

Fig. 1: Healthy boy and aunt (or similar)

In this case B is the male patient we start at, A is the mother, C' is the fa-
ther. D represents the paternal grandparents together. We do not separate
them as we use only the joint genetic information of them. The last member
FE is an aunt.

The genetic information moves in the following way. Each line represents
a parental relation, so each gene is inherited downwards independently with
probability 1/2. The values above the circles show where additional mutant
genes enter the system. We always mean a Poisson random variable with
the parameter being the value indicated. These are obviously pu, for most
people, and A, or Ay + Ay, for the people or couples we start with.

The event we want to investigate is coded in the values below the circles.
They show a per-gene probability for mutant genes that the actual person
complies with the event. In the figure above we have A, in two positions
which means we want the patient and the aunt (or uncle) to be healthy. The
py under C is an implied restriction, as we need the father (or mother) to
be fertile for the graph to be valid. Some places have no value indicated, we
have no restriction there, we may also write 1 to these places.

This way we can only express events requiring some to be healthy, some
to be fertile, but these are the ones that are easy to directly compute. By ba-
sic inclusion-exclusion formulas we can also handle events about some being
affected or infertile. To compute conditional probabilities we simply need to
divide two of such probabilities.

Now let us get into computational details to work through our plan.

4.2. Processing graphs. We can handle the simplest graph possible:

n
O

(07

Fig. 2: Basic graph
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The probability of the event described by this basic graph is

%

> ﬁe_"oﬂ =exp (n(a—1)).
i=0 v

We introduce a few graph operations so we can transform complex graphs
into simpler ones. Observe that if a final descendant receives mutant genes
from multiple sources, they pose independent threats, so we can split the
graph as pictured below.

n v n v
vg\ocf
O

Fig. 8: Splitting a graph

The other operation we use is to merge a child to the parent. Consider
the following setting:

(07

Fig. 4: Parent and child

We condition on the number of mutant genes the parent has, suppose
it is ¢. Then the distribution of mutant genes the child inherits follows a
Binom (¢, 1/2) distribution. So the probability that the child behaves ac-
cording to the event is

() (@)= (%)

S (C)(5) o= |

—\u 2 2
This is an exponential term in ¢, so we do not change the overall probability
of the event if we omit the child but multiply the risk factor of the parent
by (a+1)/2.

It is easy to see that any acyclic family tree can be reduced to contain
only a few copies of the simplest one-node graph.
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1
B _

|
O=

-+

p(25)

v ‘

Fig. 5: Merging a child

4.3. Siblings. Let us start with the simplest case, computing condi-
tional probabilities for first order relatives. We want to find out the con-
ditional probability of a sibling of a malformed child being affected. Fig. 6
shows the graph for the sibling.

/\f + >\m
Ha Hy
@) ©
A, A,

Fig. 6: Healthy patient and sibling

Let us use the notation scheme p j-, this stands for the probability of A
being affected by the risk and C not (and we do not count on others). This
means the conditional probability gs we need is

_ Pic
PA

as

Using inclusion-exclusion formulas we have

pic =1—pa—pc+pac, pi=1-pa.

The method in the previous section allows us to compute these prob-
abilities. When computing pa, we replace the risk of C' by 1. The graph
decomposition is shown in Fig. 7. By symmetry we can calculate pc analo-
gously. We show the graph decomposition for computing p4¢ in Fig. 8.

We do not aim for the simplest expressions, we rather leave it in a form
that is easier to check.

A+ A
baA = €xXp ((Hw + fT) (Ax - 1)) ’

A4 A
PC = €exp <</~Ly + %) (A, — 1)) ,
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)\f+)\m )\f+)\7n Af+)\nl
(B) O
1+A,
M e — 2
@ © O O
A, 1 A, A, ;

Fig. 7: Graph decomposition to compute pa

)\f + >\m )\f + >\m
1+A,\ (1+4,
—_ fy = fi, (T) (T) Iy
O O O O
x AJL Ay Ay T Ay

Fig. 8: Graph decomposition to compute pac

)\m—l—)\f

L (Ba +1)(8, +1) - 1)),

PAC = €xXp (Nz(Ax — 1) + py(Ay — 1) +
In case of complete selection and symmetric gender roles, i.e.
Ap=Ar=pm=pr=p, Ap=An=2A and pwn=ps=p,
the conditional probability gg is

1—et
1—e#’

qgs =2—
where

1
t=2u(1-2p(1-p)),
and p = ﬁ Surprisingly ¢s depends on p through the term p(1 — p). In

this case the population prevalence simplifies to

pa=1l-exp((A+p)(p—1) =1-exp(A—(A+p) =1-exp(—p).

thus p is a free parameter and gg is a symmetric function of p regarding the
swap p =1—p. We are curious whether there is a direct explanation for
this symmetry. When p is small and p = %, then A = p and a bad gene is
rare. An affected child gets a bad gene fifty-fifty either from mutation or
from one of his/her parents. In the second case the sibling gets the bad gene
from the affected parent with half probability and the bad gene is expressed
again with probability half. Accordingly gg is close to %. We shall refer to
this parametrization as standard model.
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4.4. Parent. Next we calculate the conditional probability for a par-
ent being affected, which is also fairly simple. See Fig. 9 for the describing
graph. The only novelty is the A, /p, risk of the parent. It is easy to see that
this is the risk of not being affected by the disorder conditioned on being
fertile.

Ay A

Y
(©
Ay
Py

Fig. 9: Healthy patient and parent

pec _ 1 —pp—pc +psc
Pp 1—-pB

pB = €xp ((Mr + M) (Ap — 1)) ,

qr =

2

ool ().
Py
Ay Ay Ay +1
ch:eXp<<uz+—y)(Ax—l)—l—/\y(—y( + )—1)).
2 Py 2

In the standard model, when pr = pp, = Ap = A, =1/2 and py = i
is small, we get gp = 0. This is rather clear because this special case implies
complete selection.

4.5. Grandparent. Let us move on to higher order relatives, starting
with grandparents. Fig. 10 shows the actual graph to be processed. The
conditional probability can be expressed as

o = PBcb _ PC —PBC — PCD + pBCD
Piac Pc — PBC ’

A+ A
PC = €exp ((uy + fT) (py — 1)) ,

Ay A+ A Ay +1
PBC :eXp<<,U/a:+7y) (Ax_1)+ <My+fT> (py 9 _1>>7
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Az Az

Fig. 10: Healthy patient and grandparent

pCD:eXp(<,uy+%>( _1)+)\< <py+1) ))
PBCDZeXp(<Mx+)‘_>(A . (Ny"‘)\;,)( A

+ A A: (pPy 41 -1
Pz 2 ‘

In the standard model we get go = 0 as we expect because of the com-
plete selection.

)

4.6. Aunt and uncle. Let us turn to investigating aunts and uncles.
We use Fig. 1 for the calculation. The conditional probability can be ex-
pressed as

PBcE _ PC —PBC — PCE + PBCE
Ppo pc —PBC
We can compute the occurring probabilities as before. Without going into

details, we get
Ar+ A
pc = exp <<My + %) (py — 1)) :
(3
PBC = €xXp 9

> (Ar —1) + (uy+ w) <pyA$2+1 - 1>)

PCE = €xp (uy(py — 1)+ p.(A, = 1)

NEPOWT (CELLCESN )
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Ay’ A+ 1
DPBCE = €Xp (Mz(Az -1)+ (Mm + 73;) (Az — 1) + py <Py 5 1)

Af + Am Ay +1
+ fz ((py ; +1)(Az+1)—4>)-

Plugging these back gives us the conditional probability we were looking
for.

In the standard model the number of halving factors is 5:

— the affected child might get the bad gene by mutation,

— or by the parent out of link to aunt-uncle,

— the parent in the link to aunt-uncle might get the bad gene by muta-
tion,

— the grandparents need not to pass it to another child,

— who needs not to express the malformation.

We get g4 = 1/32 as well by using the expressions above for the standard
model.

4.7. Cousin. To compute the analogous conditional probability for
cousins, we will use Fig. 11 below.

Fig. 11: Healthy patient and cousin

Using the same method, we want to compute

_ PBcEF _ PCE — PBCE — PCEF + PBCEF _ | _ PCEF — PBCEF

PBcE PCE — PBCE PCE — PBCE

qc

For the individual probabilities in this setting we get

PCcE = €Xp (ﬂy(ﬂy — 1)+ pe(p-— 1)+ W((ﬂy +1)(p-+1) - 4)) )
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Ay Ay +1
PBCE — €Xp ( <sz + 721) (Az = 1)+ po(p. — 1) + Hy (Py 2 - 1)

A 4+ A Ay +1
+ If(<py * +1)(pz+1)—4 )

PCEF = €Xp ( (Mu + 5

)
L Am Ay (G}“”H) (py+1)—4))a

4 2

2

A, +1 Ay +1
+ fhy (pyxT—1>+uz (pz > —1>

)\ / )\Z’
PBCEF = €Xp ( (Mx + —y) (Ay—1)+ (,Uv + 7) (Ay—1)

2

Af+ Am Ay +1 Ay +1
P (B () Ak +1)_4)).

These are rather cumbersome formulas, but in the standard model, we
get go = 1/124. At first this is a bit surprising, because by counting the
number of halving factors as before, we get 1/27 = 1/128. We should note
that checking a cousin for the disorder implies he is already born, that is,
his parents are fertile. Conditioning on this accounts for a division by 31/32
which brings us to the correct value.

5. Validation of the model

It is an important milestone to have a model which we can handle, we
still have to check how well does it follow biological principles and how does
it fit the population. Let us recall the notations introduced in Section 4:

p = P(subject is affected), ¢g = P(sibling is affected | subject is affected).

The initial requirement for a model with inheritance is to have high condi-
tional probabilities for first order relatives, in other words gg > p. To test
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this, we will try to choose the parameters to increase gs as much as possi-
ble within the given constraints. Another guideline we use is a fundamental
approximation on multifactorial disorders given by the Edwards formula [2]
which states that qg =~ /p.

We do not want to go into theoretical details, let us just present
Fig. 12 showing the relation between logp and loggs for p € [0.005, 1] and
p € [0.5,1). On the left side, we assume complete selection, that is, p = A,
on the right side we consider a partial selection with p = (1 + A)/2.

9 9
8 8
7 7
6 6
&£5 25
L= L=
24 24
3 3
2 2
1 1
Q Q
0 1 2 3 4 5 6 7 8 8 0 1 2 3 4 5 6 7 &8 9
-log p -log p
(a) Complete selection (b) Partial selection

Fig. 12: Model probabilities and the Edwards formula

The upper diagonal line shows where the Edwards formula is precisely
satisfied, the lower one corresponds to probabilities of the Gaussian model
used by Czeizel and Tusnady in [1]. We prefer parameters where the disorder
is mainly inherited, that is, A > u. Thus we split the domain the model
sweeps through into three regions, the values we can reach while A\ = 10u, or
just 10 > A = p, or only u = A (top to bottom). Although the model does
not satisfy the formula in general, we may choose the parameters to do so.

Here is another way of comparing with the Gaussian model. Let the
population frequency of a malformation be 0.00071 for males and 0.00317
for females, suppose there is no selection. The following table shows the
conditional probabilities of the malformation in the first, second and third
degree relatives in the Gaussian model. The rows correspond to different
genders of the malformed child, columns represent the degree of relationship
and the gender of corresponding member of the family.

It is a remarkable property of the multifactorial threshold model that a
relative with the gender of larger frequency of a malformed child with the
gender of smaller frequency has the maximal conditional probability. The
reason for the property is that the malformed child with smaller frequency
has larger liability shifting the liability of his family upwards. The relatives
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I 11 11 11T 11T
F M F M F

I

M
M | 0.0393 0.1149 0.0076 0.0276 0.0024 0.0195
F | 0.0232 0.0749 0.0055 0.0204 0.0014 0.0087

Table 1: Conditional probabilities in the Gaussian model without selection

with gender of larger frequency is evaluated with a smaller threshold which
results in the mentioned property. The following table gives the conditional
probabilities for the case with complete selection for the Gaussian model.

M F M F M F
M ‘ 0.0365 0.1025 0.0085 0.0255 0.0032 0.0113
F

’ I I II II 11T III

0.0242 0.0739 0.0063 0.0234 0.0020 0.0088

Table 2: Conditional probabilities in the Gaussian model with complete selection

We compare these values with those coming from the Poisson model. We
assume [if = (L, and use the remaining degree of freedom to get the high-
est conditional probabilities as mentioned in the beginning of this section.
Having no selection means py = p,, = 1 but in this case we cannot apply
Theorem 1. We rather choose py = p,, = 1 — ¢ for some small € > 0 to allow
only negligible selection, but stay within the conditions of Theorem 1.

M F M F M F
M ’ 0.1124 0.5015 0.0566 0.2523 0.1475 0.1722
F

‘ I I II II IIT III

0.1123 0.5012 0.0565 0.2521 0.1473 0.1721

Table 3: Conditional probabilities in the Poisson model with negligible selection

With complete selection:

M F M F M F
M ’ 0.0452 0.2017 0.0135 0.0603 0.0342 0.0418
F

‘ I I IT II IIT III

0.0452 0.2015 0.0135 0.0602 0.0342 0.0418

Table 4: Conditional probabilities in the Poisson model with complete selection

The reassuring fact we see is that we can set the conditional probabilities
even higher than in the Gaussian model while leaving population probabili-
ties unchanged.
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Fig. 13: Model family

Next, we perform a Monte Carlo simulation on a model family given in
Fig. 13. We fix that A2, A4, A6, A8, B6 are women, Al, A3, A5, A7, B3
are men. The following numbers in Table 5 are probabilities conditioned
on C5 having the malformation. We generated a large number of families
starting from A1-A8 and only selected those where C5 was born and had
the malformation. This explains the zeros in the first lines as they are all
parents and consequently they are healthy. This does not hold for Bl as we
allow him/her to be infertile thus C1 might not be born.

Gender of
relative  index | Al A2 A3 A4 A5 A6 AT A8
M M 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
M F 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
F M 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
F F 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
| Bl B2 B3 B4 B5 B6 B7 B8
M M 0.00100 0.00071 0.00000 0.01853 0.00752 0.00000 0.00077 0.00077
M F 0.00079  0.00064 0.00000 0.01890 0.00887 0.00000 0.00069 0.00068
F M 0.00295 0.00305 0.00000 0.08952 0.03948 0.00000 0.00288 0.00293
F F 0.00334 0.00290 0.00000 0.08458 0.03906 0.00000 0.00306 0.00310
| C1 C2 C3 C4 C5 C6 (e4 C8
M M 0.00701  0.00684 0.00813 0.04489 1.00000 0.04284 0.00221 0.00290
M F 0.00706  0.00657 0.00717 0.04408 0.00000 0.04392 0.00310 0.00312
F M 0.03072 0.03130 0.03076 0.18805 0.00000 0.19658 0.01346 0.01445
F F 0.02944  0.02999 0.02988 0.19319 1.00000 0.19074 0.01485 0.01411

Table 5: Conditional probabilities in the Poisson model with complete selection

The gender of the affected child has seemingly no effect beyond random-
ness. One explanation for this phenomena is that in case of rare malfor-
mations the only effect that the affected child might cause is that he/she
has a bad gene which is independent of gender differences. Using this setup
also allows us to numerically compute more elaborate conditional and joint

probabilities.
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Another way to qualify the power of the Poisson model is to check its
goodness-of-fit on the Hungarian data. In Table 6 we show the Poisson
model fitted to 7 different data sets. The population data were gathered
and published by Czeizel and Tusnddy [1].

In Table 7 we present the goodness-of-fit values for the same data. We
calculate the weighted average of the divergences for each relative. From
another viewpoint, this is the normalized log-likelihood loss when changing
real frequencies to the predicted probabilities.

disorder GOF fpr GOF for .
all relatives  first order relatives

ASB 0.012189 0.000615
CLP 0.005341 0.008989
CHPS 0.007234 0.007099
VSD 0.005122 0.003212

CDH-BB 0.031767 0.002309

CDH-CB 0.050819 0.007456
STEV 0.007865 0.007432

Table 7: Goodness-of-fit of the Poisson model to Hungarian data

Finally let us present the parameter values for the best fit in Table 8.

disorder | Lom, Lf Pm Py JANS, Ay Am Af

ASB 0.015 0.026 0.018 0.010 0.018 0.010 0.00027  0.00026
CLP 0.012 0.0075 0.019 0.143 5.0e-14 0.085 0.00024 0.0012
CHPS 0.020  0.006 0.069 0.078 0.061 0.00052  0.0015 0.00052
VSD 0.016 0.013 0.0040 0.023 1.7e-17 1.3e-17  6.2e-5 0.00031
CDH-BB | 0.036 0.175 0.028 0.142  3.4e-32 0.105 0.0014 0.027
CDH-CB | 0.030 0.237 0.010 0.137 6.5e-16 0.102 0.00050  0.035
STEV 0.015 0.0073 0.091 0.048 0.047 1.2e-14  0.0015 0.00039

Table 8: Parameters of the Poisson model for Hungarian data

We present in Table 6 the observed occurrences M together with their
expected numbers M because these pairs offer the most plausible insight
into goodness-of-fit. As it is transparent the majority of M-s are close to M
with the exception of third degree relatives.

Accordingly, the first kind errors given in Table 7 are encouragingly small
with the only exception of CDH-CB for all relatives. This body of Hungarian
family data is less reliable because the lack of sound agreement of diagnosis
of congenital dislocation of hip for different generations in XXth century
countryside in Hungary.

Honestly we were quite shocked by the extremely small frequencies in
Table 8. Only after understanding the dynamics of the standard model can
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we state that the Poisson model offers rather acceptable fit for Hungarian
data. The only question remained is the relation of Poisson model with
extremely low presence of bad genes in population with the Mendelian model
with dominance where the probability of expression of the malformation is
around 1/2.

6. Conclusion

Let us denote by by the probability that a fertile person has k bad genes.
Then the distribution of bad genes in the next generation has the form

ck=Y_ > H(i,j k)bibj,

i=1 j=1

where the kernel H is determined by biology. As it was shown in Tusnady [7]
with an example, bilinear transformations of this form may be chaotic even
if all the elements of H are positive. In the paper Hatvani et al. [3], the
case of continuous time is investigated. It is shown that the stability of a
positive bilinear operator is not ensured by the positivity of the kernel, but
no example was found having chaotic attractor.

The form of selection investigated in the present paper is fortunate and
ensures stability. The goodness-of-fit to population data is acceptable, the
only problems are the extraordinarily small values for the parameter A. This
means that the number of bad genes is usually zero, and the appearance
of a single bad gene causes the malformation or selection. Still, the low A
does not necessarily mean that the number of genes involved is small. As
we mentioned in the introduction, we qualify our solution partial. It is a
first acceptable solution for the problem resulting in a sound and practically
applicable model. Still, the stability of the models with threshold remains
open.

In a certain way the Poisson setup is richer than the Gaussian one as the
expression of the malformation is randomized. The situation of this model
is close to dominant Mendelian inheritance with restricted expression. If the
probability of the expression depends on the gender then the situation is
rather complex. In the standard model the conditional probabilities resem-
ble the formulas of Gaussian correlations. However, when allowing gender
differences in the parameters the Poisson model becomes richer: conditional
probabilities (of a relative being affected when the child is affected) show
stronger gender dependence in the Poisson model than in the Gaussian one.
Now we are facing the question, whether the Poisson model incorporated
with environmental effects offer a substantially better goodness-of-fit than
the Gaussian one.
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