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Rényi Institute of Mathematics

Budapest, Hungary
Email: tusnady@renyi.hu

Abstract—For testing goodness of fit it is very popular to use
either the χ2-statistic or G2-statistics (information divergence).
Asymptotically both are χ2-distributed so an obvious question
is which of the two statistics that has a distribution that is
closest to theχ2-distribution. Surprisingly, when there is only one
degree of freedom it seems like the distribution of information
divergence is much better approximated by aχ2-distribution
than the χ2-statistic. For random variables we introduce a new
transformation that transform several important distribu tions
into new random variables that are almost Gaussian. For the
binomial distributions and the Poisson distributions we formulate
a general conjecture about how close their transform are to the
Gaussian. The conjecture is proved for Poisson distributions.

I. CHOICE OF STATISTIC

We consider the problem of testing goodness-of-fit in
a discrete setting. Here we shall follow the classic ap-
proach to this problem as developed by Pearson, Neyman
and Fisher. The question is whether a sample with ob-
servation counts(X1, X2, . . . , Xk) has been generated by
the distributionQ = (q1, q2, . . . , qk) . For sample sizen
the counts(X1, X2, . . . , Xk) is assumed to have a multi-
nomial distribution. We introduce the empirical distribution
P̂ =

(

X1

n , X2

n , . . . , Xk

n

)

where n denotes the sample size
n = X1 +X2 + · · ·+Xk. Often one uses one of the Csiszár
[1] f -divergences

Df

(

P̂ , Q
)

=
k
∑

j=1

qjf

(

p̂j
qj

)

. (1)

The null hypothesis is accepted if the test statisticDf

(

P̂ , Q
)

is small and rejected ifDf

(

P̂ , Q
)

is large. Whether

Df

(

P̂ , Q
)

is considered to be small or large depends on the
significance level [2]. The most important cases are obtained
for the convex functionsf(t) = n(t− 1)2 andf(t) = 2nt ln t
leading to thePearsonχ2-statistic

χ2 =
k
∑

j=1

(Xnj − nqnj)
2

nqnj
(2)

or the likelihood ratio statistic

G2 = 2
k
∑

j=1

Xnj ln
Xnj

nqnj
(3)
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Fig. 1. Q-Q plot of aχ2-distribution against the distribution of theG2-
statistic for a symmetric binomial distribution withn = 51. The midpoint of
each step is marked. The red line marks the identity.

which is a scaled version ofinformation divergencethat we
will denoteD without subscript. In this paper we shall focus
on the case where there are only two bins because this allow
us to formulate in a qualitattive manner in terms of what
we will call the intersection conjecture. With only two bins
the multinomial distribution of counts can be described by
a binomial distribution. We will also consider the limiting
case where the binomial distribution is replaced by a Poisson
distribution. This corresponds in a sense to having only one
bin.

Notation 1: Please note that we follow the notation from
[3] by denoting the likelihood ratio statistic byG2 rather than
G as done in many textbooks and articles. OurG2 should not
be confused with Getis–Ord’sG statistic [4].

One way of choosing between various statistics is by
computing their asymptotic efficiency. In 1985 it was proved
that theG2-statistic is more efficient in the Bahadur sense than
theχ2-statistic, and this result has been extended in a number
of papers [5]–[9]. The asymptotic Bahadur efficiency ofG2

implies that a much smaller sample size is needed when using
G2 than when usingχ2 if a fixed power should be achieved
at a very small significance level for some alternative. Since
this type of result only holds asymptotically for large sample
sizes it may be difficult to use for a specific finite sample
size. Therefore we will turn our attention to another important
property for the choice of statistic.
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Fig. 2. Q-Q plot of aχ2-distribution against the distribution of theχ2-
statistic for a symmetric binomial distribution withn = 51. The red line
marks the identity.

For the practical use of a statistic it is important to calculate
or estimate the distribution of the statistic. This can be done
by exact calculation, by approximations, or by simulations.
Exact calculations may be both time consuming and difficult.
Simulation often requires statistical insight and programming
skills. Therefore most statistical tests use approximations to
calculate the distribution of the statistic. For a fixed number
of bins the distribution of theχ2-statistic becomes closer
and closer to theχ2-distributions as the sample size tends to
infinity. For a large sample size the empirical distributionwill
with high probability be close to the generating distribution
and the Csiszárf -divergenceDf can be approximated by a
scaled version of theχ2-statistic

Df (P,Q) ≈
f ′′ (0)

2
· χ2 (P,Q) .

Therefore the distribution of anyf -divergence may be ap-
proximated by a scaledχ2-distribution, i.e. aΓ-distribution.
From this argument one might get the impression that the
distribution of theχ2-statistic is closer to theχ2-distribution.
Figure 1 and Figure 2 show that this is far from the the case.
Both figures are Q-Q plots where for eachp ∈ [0, 1] a point is
plottet with thep quantile the square of a standard Gaussian
as first coordinate and thep quantile of the distribution of
the statistic as the second coordinate. Figure 1 shows that
the G2-statistic is almost asχ2-distributed as it can be when
one takes into account that the likelihood ratio statistic has
a discrete distribution. Each step is intersected very close
to its midpoint. Figure 2 shows that the distribution of the
χ2-statistic deviates systematically from theχ2-distribution
for small significance levels. For larger significance levels
both statistics will give approximately the same results which
is related to the fact that the two statistics have the same
asymptotic Pitman efficiency. The two plots show that at least
in some cases the distribution of theG2-statistic is much
closer to aχ2-distribution than Pearson statistic is. The next
question is whether there are situations where the likelihood
ratio statistic is not approximatelyχ2-distributed. For binomial
distributions that are very skewed the intersection property of

Figure 1 is not satisfied when theG2-statistic is plotted against
the χ2-distribution so in the rest of this paper a different
type of plots will be used. For getting a better approximation
another strategy is Bartlett’s adjustment, see [10].

T. Dunning [12] has made a summary of what the typical
recommendations are about whether one should use theχ2-
statistic or theG2-Statistic. The short version is that the
statistic is approximatelyχ2-distributed when each bin con-
tains at least 5 observations or the calculated variance for
each bin is at least 5, and if any bin contains more than
twice the expected number observations then theG2-statistic
is preferable to theχ2-statistic. Our main idea is tochange
the statistic into a signed version as it was introduced by
Barndorff-Nielsen as a signed likelihood ratio [13]. We call
the operationG-transform and change our orientation from
hypothesis testing to normal approximation of distributions
of sums of independent variables. Our main observation is
that theG-transform covers probabilities in the whole domain
including large deviations.

Notation 2: In the rest of this paper we will letτ denote
the circle constant2π and letφ denote the standard Gaussian
density

exp
(

− z2

2

)

τ1/2
.

We let Φ denote the distribution function of the standard
Gaussian

Φ (t) =

∫ t

−∞

φ (z) dz .

II. T HE G-TRANSFORM AND ITS DISTRIBUTION

Here we shall introduce a transformation that is useful for
our understanding of the fine structure of the distribution
of the likelihood ratio statistics. Consider a 1-dimensional
exponential familyPβ where

dPβ

dP0
(x) =

exp (β · x)

Z (β)

andZ denotes the partition function given by

Z (β) =

∫

exp (β · x) dP0x .

Let Pµ denote the element in the exponential family with
mean valueµ. Let µ0 denote the mean value ofP0. Then

D (Pµ‖P0) =

∫

ln

(

dPµ

dP0
(x)

)

dPµx.

To verify that D (Pµ‖P0) is χ2-distributed it is sufficient
to verify that the square root is a centered Gaussian. This
motivates the next definition:

Definition 3: Let X be a random variable with distribution
P0. Then theG-transformG (X) of X is the random variable
given by

G (x) =

{

− (2D (P x‖P0))
1/2

, for x < µ0;

(2D (P x‖P0))
1/2

, for x ≥ µ0.
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Fig. 3. Symmetric binomial distribution withn = 30.
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Fig. 4. Binomial distribution with success probability equal to 0.3 andn =
30.

UsingG (x) instead ofD (P x‖P0) as statistic is essentially
the difference between using a one-sided test instead of a two-
sided test. With this definition one easily sees that theG-
transform of a Gaussian is a standard Gaussian. In [14] it
was verified that if a random variableX satisfies a Cramér
condition the then with a minor correctionGn

(

1
n

∑n
i=1 Xi

)

is Gaussian within a factor of the order1 + O
(

1
n

)

. In this
paper we are interested in sharp bounds rather than asymptotic
results.

Now we can make quantile plots of the Gaussian distribution
against the distribution of theG-transform of various random
variables. On Figure 3-7 theG-transform of some binomial
and Poisson distributions are compared with the standard
Gaussian via their Q-Q plot. In these plots the red lines
correspond to the boundsP (X ≤ x) ≤ exp (−D (P x‖P0))
for x ≤ µ0 andP (X ≥ x) ≤ exp (−D (P x‖P0)) for x ≥ µ0.
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Fig. 5. Binomial distribuition with success probability equal to 0.1 and n=30.
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Fig. 6. Poisson distribution with mean equal to 20.

These plots support the following conjecture:
Conjecture 4 (The intersection property):Let M denote a

binomial distributed or Poisson distributed random variable
and letG (M) denote theG-transform ofM. The quantile
transform betweenG (M) and a standard GaussianZ is a
step function and the identity function intersects each step,
i.e.

P (M < m) < P (Z ≤ G (m)) < P (M ≤ m)

for all integersm.
Another way of reformulating the intersection property is

that in the stochastic orderingX should be less than a random
variable with point probabilitiesΦ (G (m)) − Φ (G (m− 1))
and greater than a random variable with point probabilities
Φ (G (m+ 1))−Φ (G (m)) , whereG (−1) is defined as−∞
andG (n+ 1) is defined to be∞ for a binomial distribution
number parametern. The conjecture is so well supported by
numerical calculations that we would not hesitate to recom-
mend it for estimation of tail probabilities for the binomial
distributions in goodness of fit tests instead of using the usual
χ2-approximation of theχ2-statistic.

As we see both skewed binomial distributions and Poisson
distributions have different step sizes for positive and negative
values. Although the quantile transform betweenG (M) and
a standard Gaussian has the intersection property interference
between the step sizes may have the effect that the quantile
transform between theG2-statistic and theχ2-distribution does
not necessarily have the intersection property. We believethat
theG-transform is always closer to a standard Gaussian than
the original. We have no idea, which distributions have the
intersection property.

III. T HE LINK TO WAITING TIMES

Hitherto we have discussed inequalities for discrete distri-
butions but there is an interesting link to inequalities forcon-
tinuous distributions associated with waiting times. Assume
that M is Poisson distributed with meant andT is Gamma
distributed with shape parameterm and scale parameter 1, i.e.
the distribution of the waiting time untilm observations from
an Poisson process with intensity 1. Then

P (M ≥ m) = P (T ≤ t) . (4)

The Gamma distributionΓ (m, θ) has density
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Fig. 7. Q-Q plot of a standard Gaussian againstΓ(1, 1) (black), Γ(3, 1)
(yellow), Γ(20, 1) (blue), and another standard Gaussian (green). The red
curves are the large deviation bounds.

f (t) =
1

θm
1

Γ (m)
tm−1 exp

(

−
t

θ

)

so the divergence can be calculated as

D (Γ (m, θ1) ‖Γ (m, θ2)) = m

(

θ1
θ2

− 1− ln
θ1
θ2

)

.

In particular

D

(

Γ

(

m,
t

m

)

‖Γ (m, 1)

)

= t−m−m ln
t

m
.

Next we note that

D (Po (m) ‖Po (t)) = D

(

Γ

(

m,
t

m

)

‖Γ (m, 1)

)

.

If GP is the G-transform for Po (t) and GΓ is the G-
transform forΓ (m, 1) thenGP (m) = −GΓ (t) . This shows
that if theG-transforms of the Gamma distributions are close
to a Gaussian then so are theG-transforms of the Poisson
distributions. Figure 7 shows Q-Q plots of theG-transform of
some Gamma distributions.

We see that the fit with a straight line of slope 1 is extremely
good. The point (0,0) is not on the line reflecting the fact that
the means and the medians of the Gamma distributions do
not coincide. In the next section we shall see that the quantile
transform between a Gaussian and theG-transform of Gamma
distributions is always below the identity.

IV. T HE INCREASING PROPERTY

In this section we shall formulate some conditions that
are stronger than the intersection property. The proof of the
following lemma is an easy exercise so we omit the proof.

Lemma 5:Let f1 and f2 be the densities of the random
variablesX1 andX2 with respect to some measureµ on the
real numbers. If

f1
f2

is an increasing thenX1 is less thanX2 in the usual stochastic
ordering.

Theorem 6:TheG-transform of a Gamma distributed ran-
dom variable is less than a standard Gaussian in the stochastic
ordering.

Proof: Let T be aΓ (m, 1) distributed random variable
with densityg. The distribution in the exponential family based
on Γ (m, 1) with meant is Γ

(

m, t
m

)

. TheG-transform is

G (t) = ±

(

2D

(

Γ

(

m,
t

m

)

‖Γ (m, 1)

))1/2

where± means that we will use+ whent is greater than the
meank and use− when t is less thanm. For the Gamma
distribution we have

dΓ
(

m, t
m

)

dΓ (m, 1)
(t) =

exp (t−m)
(

t
m

)m .

Let W = G (T ) with densityf (w) . We want to prove that
φ(w)
f(w) is increasing. Now

f (w) =
g
(

G−1 (w)
)

G′ (G−1 (w))

so that

φ (w)

f (w)
=

φ (G (t))G′ (t)

g (t)
=

G′ (t)

τ1/2
dΓ(m, t

m)
dΓ(m,t) (t) · g (t)

=
Γ (m)

τ1/2mm exp (−m)
· tG′ (t) .

Hence we want to prove thattG′ (t) is increasing.

tG′ (t) = ±t
2D′ (t)

2 (2D)
1/2

= ±m1/2
t
m − 1

(

2
(

t
m − 1− ln t

m

))1/2
.

With the substitutionu = t/m we have to prove that

±
u− 1

(2 (u− 1− lnu))
1/2

is increasing. We have

d

du

(

±
u− 1

(2 (u− 1− lnu))
1/2

)

= ±
u− 2 lnu− 1

u

(2 (u− 1− lnu))
3/2

so we want to prove that

±

(

u− 2 lnu−
1

u

)

≥ 0.

Now we have to prove thatℓ (u) = u− 2 lnu− 1
u is positive

for u > 1 and negative foru < 1. Obviously ℓ (1) = 0 so it
is sufficient to prove thatℓ′ (u) ≥ 0, but

ℓ′ (u) =

(

1−
1

u

)2

≥ 0.

Next we shall formulate an even stronger conjecture and see
that it actually implies that binomial distributions and Poisson
distributions have the intersection property.



5 10 15 20

25 30 35 40 45 50

−20

−15

−10

−5

5

10

15

20

k

Fig. 8. Plot of the logarithm of (5) for a symmetric binomial distribution
with n = 50.

Conjecture 7 (The increasing property):If M is a binomi-
ally or Poisson distributed random variable withG-transform
G (M) then

m →
P (M = m)

Φ (G (m+ 1))− Φ (G (m))
. (5)

is increasing and

m →
P (M = m)

Φ (G (m))− Φ (G (m− 1))

is decreasing.
The conjecture is supported by numerous numerical com-

putations. If it holds the intersection property follows by
Lemma 5. The increasing property implies log-concavity of
the distribution but for instance the geometric distribution
is log-concave but does not satisfy the intersection property.
We have some indications that the conjecture also holds for
any distribution of a sum of independent Bernoulli random
variables.

Theorem 8:The intersection property is satisfied for any
Poisson random variable.

Proof: (Outline) The inequality

P (M < m) ≤ P (Z ≤ G (m))

follows from Theorem 6 combined with Equation 4. The
inequality

P (M ≤ m) ≥ P (Z ≤ G (m))

can be proved case by case form ≤ 5. Form > 5 it is proved
using the intersection property.

Theorem (8) gives bounds on the tail probabilities for
Poisson distributions that are far better than what can be found
in the literature (see for instance [15]). At the same time the
theorem gives bounds on the median that are compatible with
the bounds in the literature [16], [17].

V. D ISCUSSION

Many goodness-of -fit tests involve parameter estimation
(that is, the model is a parametric family of distributions,
not a single distribution). In such cases, theG2-statistic may
converge slower to aχ2-distribution than theχ2-statistic [18].
How such results are related to the presents results is now

clear yet. Since we only discuss the cases with one or two
bins our results can be reformulated in terms of conficence
intervals. We hope to cover confidence intervals in a future
paper.

In the present paper the focus has been on the two bin case.
We do not know if something equivalent of the intersection
property can be formulated for more than two bins. For results
on more than two bins it may be better to try to generalize
the results on asymptotics presented in [14].
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