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Abstract

Let ε1, . . . , εm be i.i.d. random variables with

P (εi = 1) = P (εi = −1) = 1/2,

and Xm =
∑m

i=1 εi. Let Ym be a normal random variable with the
same first two moments as that of Xm. There is a uniquely deter-
mined function Ψm such that the distribution of Ψm(Ym) equals to
the distribution of Xm. Tusnády’s inequality states that

| Ψm(Ym)− Ym |≤
Y 2
m

m
+ 1.

Here we propose a sharpened version of this inequality.
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1 Conjecture

Let ε1, . . . , εm be i.i.d. random variables with

P (εi = 1) = P (εi = −1) = 1/2,

and Xm =
∑m

i=1 εi. Let Ym be a normal random variable with the same
first two moments as that of Xm. Using quantile transformation we can
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see that there is a uniquely determined function Ψm such that the dis-
tribution of Ψm(Ym) equals to the distribution of Xm. The central limit
theorem implies that the function Ψm is close to the identity for large m.
A sharp inequality of Tusnády [12] raised certain interest in the literature
([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[13]).

Let us define the function f on the interval (0, 1) as

f(x) =
√

(1 + x) log(1 + x) + (1− x) log(1− x),

set f(0) = 0, f(1) =
√

log(4). Let us put

xk,m =
k − m

2
m
2

for positive even integers m with k such that m/2 < k ≤ m, and set

pk,m = P (Xm ≥ 2k −m) = 2−m
m∑
i=k

(
m

i

)
.

Let us define the function Q on the reals as

Q(x) =
1√
2π

∫ ∞
x

e−u
2/2du.

With those ingredients our conjecture states that

Q(
√
mf(xk,m)) < pk,m < Q(

√
mf(xk−1,m))

holds true for m
2
< k ≤ m. Or more sharply

2(k−1)−m
2

+0.8964 < mf−1(Q−1(pk,m)/
√
m) < 2(k−1)−m

2
+1.0000 (1)

holds true with pessimal parameters m = k = 10. It implies that Tusnády’s
inequality is sharpened to∣∣∣∣Ψm(Ym)−mf−1

(
Ym
m

)∣∣∣∣ < 1.1036.

2 Generalization

For an arbitrary random variable X let us consider the function on reals

R(t) = EetX
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restricting ourselves for distributions having finite momentum generators.
Next we define

ψ(t) =
R′(t)

R(t)
,

α(x) = t iff ψ(t) = x,

ρ(x) = R(α(x)) exp(−xα(x)).

The probability P (
∑m

i=1Xi ≥ mx) is approximately ρ(x)−m if x > EX.
The function ρ depends on the distribution of X, it is the Chernoff function
of X. Let us denote the Chernoff function of the distribution F of X by
ρF , and the corresponding function for standard normal by ρG. The quantile
transformation between the partial sums of distribution F with Gaussian
ones resemble us to the equation

ρF (x) = ρG(y)

having the property that it gives sharp values for any m. Perhaps the error
term is bounded with a bound depending on the distribution of X. For the
case symmetrical binomial distribution the error term might be as small as
that the quantile curve jumps over its limiting function: it is the informal
explanation of our conjecture.

3 Numerical Illustration

The function Ψm is shown in Figure 1. called “step” for m = 50 with a
rescaling for random variables

ξm =
Xm

m
, ηm =

Ym
m
.

The function f is called “limit”, for the sequence of step functions goes to
f after rescaling. The conjecture comes from the observation that the limit
function crosses all steps near to their middle. Let us introduce the blow up
error term

∆k,m = 10

(
2k − 1−m f−1

(
1√
m
Q−1

(
m∑
i=k

(
m

i

)
2−m

)))
,

for 0 < k ≤ m/2. In Figure 1. it is labelled as ”Delta”. With these notations
(1) is equivalent with 0 < ∆k,m < 1.036. These error terms are shown in
Figure 2. for 2 ≤ m ≤ 1000. Figure 2. prompts the conjecture that even
these curves are convergent. We are a bit perplexed: even the inequality
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0 < ∆1,2 < 1.036 means that Q(0.723359) < 0.25 < Q(0.6435214). How can
we prove such an inequality theoretically?

Acknowledgement: We thank to Peter Harremoës for pointing out a
mistake in the earlier version of the paper.
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4 Appendix

R- program of Figures 1 and 2.

Q=function(p) -qnorm(p)

G=function(x) ((1+x)*log(1+x)+(1-x)*log(1-x))**0.5

Ginv=function(u) {

GG=function(x) G(x)-u

uniroot(GG,c(0,1),f.lower=-u,f.upper=log(4)^.5-u,tol=10^-100)

}

m=50; k=m/2

sum=0; divisor=2**m; bin=

xx=c(1:k+1); yy=c(1:k+1); zz=c(1:k+1);

for (i in 1:k-1){

sum=sum+bin

x=(m-2*i)/m

y=Q(sum/divisor)/(m**.5)

b=Ginv(y)$root

yy[i+1]=y; xx[i+1]=x

bin=(m-i)*bin/(i+1)

zz[i+1]=10*(m-2*i-1-m*b)}

xx[k+1]=0; yy[k+1]=0; zz[k+1]=0

kerx=c(0,1.25); kery=c(0,1.15)

plot(kerx, kery, type="n",xlab="eta", ylab="xi",

main="Figure1. Quantile transform, its limit and blownup error, m=50")

for (i in 1:k){

bb=seq(from=yy[i+1], to=yy[i], by=0.01)

cc=bb*0+1; cc=cc*xx[i+1]

points(bb,cc,type="l", col="blue", lwd=2)}

cc=seq(from=0, to=0.999, by=0.001)

bb=((1+cc)*log(1+cc)+(1-cc)*log(1-cc))**0.5

points(bb,cc, type="l", col="red", lwd=2)

points(yy,zz, type="l", col="green", lwd=2)

legend(locator(1),c("Limit","Step","Delta"),

lty=c(1,1,1),

col=c("red","blue","green"))
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kerx=c(0,1.25); kery=c(0,1.15)

plot(kerx, kery, type="n",xlab="eta", ylab="Delta",

main="Figure 2. The blownup error")

for (k in 1:500){m=2*k;

sum=0; divisor=2**m; bin=1

yy=c(1:k+1); zz=c(1:k+1);

for (i in 1:k-1){

sum=sum+bin

y=Q(sum/divisor)/(m**.5)

b=Ginv(y)$root

yy[i+1]=y;

bin=(m-i)*bin/(i+1)

zz[i+1]=10*(m-2*i-1-m*b)}

yy[k+1]=0; zz[k+1]=0

if (k<100) clr="red" else

if (k<200) clr="blue" else

if (k<300) clr="purple" else

if (k<400) clr="gray" else clr="green"

points(yy,zz, type="l", col=clr)}

legend(locator(1),c("0<m <= 200","200<m<=400","400<m<=600",

"600<m<=800","800<m<=1000"),

lty=c(1,1,1,1,1),

col=c("red","blue","purple","gray","green"))
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Figure1. Quantile transform, its limit and blownup error, m=50
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Figure 2. The blownup error
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