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STATISTICAL INFERENCE ON RANDOM STRUCTURES

VILLO CSISZAR, LIDIA REJTO and GABOR TUSNADY

INTRODUCTION

Randomness for a statistician must have some structure. In traditional com-
binatorics the word random means uniform distribution on a set which may
be the set of all graphs with n vertices, the set of all permutations of the
numbers N = (1,2,...,n), the set of all partitions of IV, or any other set
of simple structure. In practice the statistician meets a subset of the struc-
tures and she or he is interested in the question, what was the mechanism
which generated the sample. Uniform distribution and independence are
shapeless and they have low complexity for catching the character of sam-
ples produced by real life situations. In [12] Persi Diaconis investigated a
sample consisting of the votes in an election of the American Psychological
Association. The sample was investigated by others but without achieving
a reasonable goodness of fit, because the present collection of distribution
of permutations is not large enough. Investigating the sample we found a
hidden property leading to a new class of distributions of permutations.

Classical statistics developed around the multidimensional Gaussian dis-
tribution. Even in Euclidean space the family of useful distributions is still
meager. On other sample spaces the collection of distributions is much less
developed. Graphs appear in applications as structured relations. In many
cases rather heavy simplifications are needed for reducing the complexity of
the investigated situation to a graph. One source of our interest in graphs
is the system of metabolic interactions, which may have some fractal struc-
ture: the enzymatic interactions may be leveled, they may be sensitive for
situations, their control might be hierarchic. Changes of the concentration



38 V. Csiszér, L. Rejté and G. Tusnddy

of different enzymes in a cell follow their dynamical rule what is reflected
imperfectly in the graph of enzymatic interactions.

In modern combinatorics the stochastic method is rapidly extending.
We shall use the ideas of papers [7], [8] and [9] written by Christian Borgs,
Jennifer Chayes, Léaszlé Lovasz, Vera T. Sés, Balazs Szegedy and Katalin
Vesztergombi in defining new classes of random permutations.

SVD of real matrices. Let M be an arbitrary digital picture: a face, a
tree, a hill or some other natural object which is not very complicated. Let
us suppose that the colours are ordered according to their wave lengths and
M is an m times n real matrix containing the codes of the colours in the
individual pixels. Let o be a random permutation of the integers 1,...,m
and § of 1,...,n. Let

R(i,j) = M(a(i), 8(j))

be the randomly reordered copy of M. How can we reconstruct M from R?

One possible method is the singular value decomposition (SVD) of R
which is invariant under random permutations. The singular values of
matrices M and R are identical. We refer to them as the spectra of the
corresponding matrix. If the picture is simple, then the spectra is J-shaped:
there are few large singular values and the corresponding singular vectors
concentrate the majority of the relevant information in M. The coordinates
of the leading singular vectors of M reflect the topology of M, while the
coordinates of the singular vectors of R follow the permutations «, 3. It
implies that the traveling salesman problem may be easily solved in the
space of leading eigenvectors independently of rows and columns.

Microarray analysis. The previous problem arises in microarray analysis
where the rows are genes and the columns are the different conditions used
in the experiment for controlling the expression of the genes. It is natural
to postulate that the genes and conditions are embedded in Fuclidean
spaces and the expression level is a continuous function of the embedding.
Sometime we get well defined clusters when applying SVD of microarray
data: clusters in genes come from the metabolic networks of the proteins
they code and the clusters of conditions come from the structure of the
plan of the experiments. The phenomenon is known in the literature as
the chequerboard structure: after appropriate reordering, gene-expression
matrices become chequerboard like. Batches of genes express similarly under
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batches of conditions. Interestingly, rather good reorderings are supplied by
simple hierarchical clusterings of rows and columns simultaneously.

GRAPHS

Graph complexity. There are natural ways to assign matrices to a graph:
the off-diagonal entries reflect the connectivity and the diagonal entries may
be set to zero or to the degree multiplied by —1. In the second case the
sum in each row is zero and a non-zero vector with equal coordinates is
an eigenvector with zero eigenvalue. All eigenvalues are non-positive in the
second case. We call the matrix in first case the adjacency matrix and the
second one the Laplacian ([3], [4], [5], [10], [18], [23], [35]). For regular

graphs the spectra of the two matrices differ only by a constant.

An arbitrary graph is a free sequence of (g) bits. Without fathoming
the inner structure of the graph we can not catch the complexity of a graph.
In the simplest case the spectra is J-shaped: there is some topology on the
vertices and the edges follow that. For Albert—Barabdsi graphs ([1], [6])
the topology comes from preference: the degrees of the vertices control the
choice of the edges. According to Wigner’s semicircle law ([17], [20], [25])
for random graphs the spectra of the adjacency matrix forms a semicircle,
which is definitely not J-shaped. Incidentally: we do not know what is the
asymptotic for the spectra for random symmetrical matrices with i.i.d. off-
diagonal entries but putting the sums (multiplied by —1) in the diagonal.
If the entries of a random matrix are independent Wiener processes, the
eigenvalues \; = \;(¢) follow the system of stochastic differential equation

d)\; = dW; + dt H
J#i

1=1,....n

o
NN

showing that the eigenvalues repel each other. Do eigenvalues of random
graphs repel each-other? Does this depend on which eigenvalue definition
we use and what model of random graphs?

Fractals. An other intriguing question is, whether there are fractals in large
graphs? To catch the fractal behavior we propose the following potential
defined for connected graphs. For a given vertex x let y be the vertex closest
to x of degree not smaller than that of z, and let D, be the set of vertices
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different from x that are strictly closer to x than y is. This D, is the estate
and its size the asset of x. (If there is only one vertex with maximal degree
then its estate is empty.) The wealth V, of z is the sum of the assets of all
vertices in D,. Finally, the potential of the graph I' is

Q) =) VVrd®(z,y),

where the summation runs on all pairs (z, y) of vertices, d is the distance on
the graph and «, 8 > 0 are fixed constants. What is the graph which max-
imizes this potential for fixed number of vertices? For n = 254, a = 0.75,
6 = 0.25 we constructed several graphs. Revealing the structure of opti-
mal graphs created by exhaustive stochastic search we generated the graph
presented in the Appendix. For this graph Q(T") = 14,343. The structure
of the graph is shown in Figure 1. The empty circles represent virtual ver-
tices, which help only in building up the structure. We tend to believe that
real complexity is connected with the repelling property of the eigenvalues,
while the concentration of the eigenvalues comes from the equivalence of the
vertices.

Equivalent vertices. Equivalence of vertices have two features:
— equivalent vertices may prefer each other: the edge-density inside equiv-
alent clusters is larger than outside

— vertices belonging to equivalent clusters behave similarly.

The first case is reflected by the spectra of the Laplacian and the second
case is Szemerédi’s regularity property ([14], [21], [27], [34], [37]): we say
that the bipartite graph with vertex sets A, B is e-regular if

‘E(X, Y) ‘

—~ v Al =¢

[ XY]

holds true for all X € A, Y € B such that |X| > ¢|A|, |Y| > ¢|B|, where

E(A, B)

A= 07
|Al|B|

is the edge-density in the whole graph.

Regularity lemma for a statistician. Roughly speaking, Szemerédi’s
regularity lemma states that the vertices of every graph may be clustered
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Fig. 1

in such a way that the bipartite graphs corresponding to different clusters
are ¢ regular with a small exceptional fraction of the pairs if the number of
vertices is large enough.

For a statistician the condition in the definition of e-regularity is a
statistical test resembling to Rényi’s version of the Kolmogorov test. Let n
be an arbitrary number, for integers i between 1 and n let «(7) be arbitrary
integers between 1 and k, where k < n. Let p;;, 1 < 4,7 < k be an
arbitrary symmetric matrix with 0 < p; ; < 1. We call the random graph
checkerboard graph if vertices i, j, where 1 < ¢ < j < n are connected with
probability p,(i)(j) and the edges are independent. At first instance, the
regularity lemma seems to state that the collection of checkerboard graphs
is bold enough for having the power to generate all graphs. The striking
effect of the lemma is its simplicity: the random mechanisms used in a
possible rigorous formalization are quite natural and, what is more, they
are not capable of catching all the possible information out of a graph.
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The riddle of Szemerédi’s lemma is hidden in the definition of regularity.
It fixes, prescribes a test on graphs for the use of testing the hypothesis
that the graph comes from the class of checkerboard distributions. Being
true statisticians we propose to develop other tests, possibly with relevant
power for testing the hypothesis. One natural aspirant is the spectra of
the adjacency matrix: for checkerboard graphs it has to be J-shaped, and
the eigenvectors have to show clear clusters. Any deviation from these
properties may lead to rejecting the hypotheses.

A universal lemma might state that any maximum likelihood estimate
is bold enough to have the property that it is optimal for all measures in
the statistical field. You can never use the picture given by a maximum
likelihood estimate for testing the hypothesis concerning the completeness
of the investigated measures. Inside the world the statistical field they have
to be bold enough just by definition of the maximum likelihood estimate.
But we can test the hypothesis by other accordingly chosen statistics which
are usually orthogonal to the logic of the likelihood. Recently one of the
most interesting fields for an extension of the lemma are the hypergraphs.
Accordingly we have to learn the precise use of the stochastic method: it is
better to formulate minor sets of conditions under which a useful theorem
of stochastics holds true and extend it to as wide a territory as possible but
we can never forget effectiveness. In case of Szemerédi’s lemma it is the
blow up property.

Blow up property states that in a large enough graph all the small graphs
appear with a frequency proportional with their probabilities. The state-
ment is also called the Counting Lemma. Taking a large enough distance
from the details of the affair investigated we think that the situation re-
sembles quantum physics: first you choose what you are interested in, then
the analytic machinery answers your question as you like it. If we want to
ensure e-regular colouring for all graphs then we have to choose the number
of colours enormously large. But according to our experience, checkerboard
graphs are applicable to small graphs too. The “bold enough” property
appears only for large graphs, but the property being universal for large
graphs may be present for a special family of small graphs.

Other models. Let f(z,y) be a differentiable function for 0 < z,y < 1 such
that 0 < f(x,y) < 1. Let x1, 9, ..., x, be arbitrary numbers in (0,1). The
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random graph connecting the vertices ¢, independently with probability
pij = f(xi, ;) represents the function f and numbers z;. We can try to
reconstruct the model parameters f,z1,...,x, by a maximum likelihood
method. Maximizing the likelihood the following two-phase algorithm is
applicable:

— for given f the gradient method applies to the x;-s

— for given z;-s the function f(z,y) may be estimated by the edge-density
for |z; — x| <e, |z; —y| <e.

We say that the function f is the face of the graph and the x;-s are its core.
For large n and z; = % the spectra of the random graph is close to the
spectra of f. If f(x,y) = x—;ry the eigengenvalues are uniformly distributed
in (%, %) in contrast with the chequerboard case when they are clustered
around a few points. It goes without saying that the uniform distribution
may be approximated by a discrete distribution concentrated on finitely
many points, but we may detect the difference with appropriate statistics.

What is the case with Szemerédi’s statistics

(E(X,Y) — F(X7Y))2
G(X,Y) ’

where

E(X,Y)
- F(X,)Y)= ineX,xjeY pij is the expected value of F(X,Y)
G(X,Y)

( = max (1, inex,xjey pi,;(1 —p; ;) is the truncated variance of
E(X,Y)?

Of course it has to be applicable to detect the difference, but in the regu-
larity lemma the constants are chosen loosely for that aim. The spectra of
the adjacency matrix shows more characteristic effect of the checkerboard
structure than the Laplacian, but a rigid SVD of the matrix p; ; is usually
not flexible enough for detecting real structures because it poorly approx-
imates matrices with entries in the interval (0,1). The logistic transform
pij =b/ (c + exp(am-)) offers an easy bridge between real numbers and the
(0,1) interval. More generally, we can use any monotone increasing function
for this role. The nonparametric maximum likelihood estimator is a step
function usually with a small number of steps and a remarkable portion of
the edges has probability zero or one and thus the fitted model has moder-
ately random character only on the borderline of the two subsets of edges
where we can explicitly predict their existence.

is the number of edges between the disjoint sets X, Y
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Dynamics. The most complicated matrix p; ; is unable to reflect fine in-
teractions between the edges. We can build up systematically stochastic
models starting with a joint distribution of two or three edges or subsets
of vertices, but in case of graphs presented by real life situations the struc-
ture of stochastic interactions is mostly multifactorial. Firstly, gathering all
the available information, we can try to describe with words the character-
istic features of the investigated graph. Next we translate our own words
to mathematical formulas and we define some potential function measuring
the perfection of individual graphs and we develop algorithms to maximize
the potential following a kind of Darwinian path. The algorithms may re-
semble to the mechanisms creating the studied graphs. But typically the
optimization procedure reveals something that is rather far from our ideals
formulated originally in words. In such situation the whole procedure starts
again and we should recycle it until convergence.

The potential Q(T") defined by assets and wealths led to the following
procedure. We start with one vertex. Step by step, each vertex in the graph
is divided into two daughters, and in the new graph

— we join two daughter points with probability p = 0.06, if their mothers
were joined

— otherwise we join them with probability ¢ = 0.005, and

— we join them with probability p = 0.03 if they have the same mother.

The fractal structure is imprinted in the algorithm. The reason for the low
probabilities is that the potential prefers spare graphs. One source of the
potential is

\I/(F): Z f:z:fy7

(z,y)e€

where f, is the degree of x. In Albert-Barabdsi dynamics ¥ is maximal
among graphs with given degrees, which is unnatural in the majority of
cases: the hubs are in most cases separated, they are far from other hubs.

PERMUTATIONS

The Thurstonean. Let Fi, Fs, ..., F, be arbitrary continuous real distri-
butions, for each 1 < i < n let X; be a random variable with distribution
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F; and let the variables X1, X, ..., X, be independent. Let
= (m(1),7(2),...,7(n))
be the permutation ordering the X;-s monotone increasingly:
Xﬁ(l) < Xﬂ(g) < < Xﬂ(n).

The model was proposed by Louis Leon Thurstone in [38] (see also in [33])
thus we call the distribution defined by the model Thurstonean.

It is easy to see that if the distributions F; are exponentials with para-
meters \; then

P(r(a+1)=t|=(1),n(2),...,7(a)) =

a=0,1,....n—1, t¢ L,

where L, = {m(1),7(2),...,7(a)} with Lo = 0.
IfY;, ¢t =1,2,..., are i.i.d. with distribution

PWVi=t)=p, t=12,...,n,

and we delete all elements from the sequence that we have seen earlier, then
the remaining random numbers form a permutation in N with the same
distribution as the exponential Thurstonean one, whenever

b Z?:l Ail
Interestingly, in these two models the EM-algorithm [24] leads to different
iterations. In the general case the Baum—Welch algorithm [29] leads to the

following iteration. For the sake of simplicity let us suppose that 7 is the
identity. In this case we have to calculate the conditional distributions

Qi(t):P(Xi<t|X1<X2<"'<Xn), 1=1,2,...,n.

In the forward phase of the algorithm we calculate recursively the condi-
tional distributions

Gi(t):P(Xi<t’X1<X2<"'<X¢)

by
9i(t) = fi(t)Gi-1(t),
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where f; = F/, g; = G). Similarly, for
Hl(t) :P(XZ' <t|Xi < Xjpp <+ <Xn)
hi(t) = fi(t) Hipa (t)

holds true where h; = H/ while Gy = Fy, H, = F,,. Then

¢i(t) = fi(t)Gi—1(t) Hi+1 (1),

where ¢; = Q; and Gp = Hp41 = 1.

Let us denote by 7, the set of all Thurstonean random permutations
with n elements. A possible generalization is to drop the independence of
the X;-s. Let G, be the set of n-dimensional Gaussian distributions with
expectation p and covariance . G, is described by

1
<n—21— >—|—n—2

parameters, which suggests that for n = 2, 3 the model is overparametrized.
Indeed, for n = 2, ¥ may be reduced to the identity matrix and Go = 75 =
P2 where P, stands for the set of all possible distributions of permutations
on N. If n = 3, then the distribution rendering half probability to the
permutations (1,2,3), (3,2,1) is definitely not in 73 yet, it is in G3 for
1 equals zero and with a covariance ensuring that X; = 2X5, X3 = 0 or
X1 = —X3,X5 =0. For large n the set 7,, should be larger than G,,, for the
number of degree of freedoms goes to infinity more rapidly in the first case.
In the Gaussian case a possible reduction of the number of parameters is
the control on the rank of 3 as it is usual in factor analysis and principal
component analysis. But the covariance of 7 is unable to catch the rank
of ¥, it is visible only in the covariance of 7—!. Permutations in practice
mostly come from some one-to-one correspondence between two different
unordered sets. The row-ordering and column-ordering of the chequerboard
representing the permutations usually is lurking behind. If X has some
multidimensional stochastic structure one cannot find it in 7, because 7 (i)
gives the coordinates of the i-th element of the ordered sample answering
the question: who stays on the i-th position. But the order of coordinates
in X is arbitrary. In contrary, m—1(j) tells us where the j-th coordinate X;
is in the ordered sample which is a nearly linear function of the values of
the coordinates, hence the covariances of X and 7~ are close to each other.



Statistical Inference on Random Structures 47

Statistics. Models and statistics on a structure are the two legs of any
inference. All models have their natural statistics or sufficient statistics
and for a given family we can test the goodness of fit of the whole family.
For permutations the primary marginals are the positions of a subsets of
the elements among the whole set: here a void mark is substituted for the
elements outside the group, this means that the order of the elements of the
chosen group is filled in with some void marks:

¥ x k3 x5 1 %% % x4 % 2%

means that 7(4) = 3, 7(6) =5, n(7) = 1, 7(12) = 4, 7(14) = 2. Dropping
the stars we get the permutation of the chosen elements which is another
marginal. We say that the permutation 35142 is the shrunken version of
the original one into the set (1,2,3,4,5). For one element only the filled
marginals contain information, one is tempted to use these one-element
positions as aspirants for the unknown distributions in the Thurstonean
case. Turning to the inverse, other one-element marginals appear and
the distribution, having simultaneously a given row marginal and a given
column marginal is of the form

P(ﬂ-) = ’iHafw(i))
=1

where the matrix A = (a; ;) is an arbitrary doubly stochastic matrix, A is
a positive number, and x is the normalizing factor. It is well known that
for any doubly stochastic A there is at least one permutation with positive
probability. We call the distribution simple rook distribution because repre-
senting the permutations on a chequerboard the probability of the permu-
tation is proportional to the product of the numbers in the occupied pixels.
For simple rook distributions the sufficient statistics are

v(i,j) = #{n(i) =7}, 1<i,j<n,

which are simultaneously the matrices of unnormed row and column mar-
ginals. The statistics v(i, j) are useful for distributions

P(m) = kexp ( — d2(7r, 7r0)/T) )

where d is some distance function, mq is the centrum of the distribution, 7" is
a positive constant, and k is the norming factor. The family was introduced
by Mallows in [22] (see also [15], [28] and [36]).
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Row cuttings. Let us say that an element of P,, has the property of row
cutting at a if

P(m | Lg) = f(m(1),7(2),...,7(a)) g(7(a+1),...,7(n))

holds true with some a variate function f and (n — a) variate function g,
where 2 < a < n — 2. We denote by R, the set of all distributions with the
property row cutting at a. Row cutting at a means that the permutations
(7(1),7(2),...,7(a)), (r(a+1),7(a+2),...,m(n)) are conditionally inde-
pendent on the statistics L,. We say that a random permutation is row-free
if it has the row cutting property for all a. It is easy to see that row-free
random permutations have the form

n—1
P(m) = H c(7r(a +1), La) ,
a=0
where the conditional probabilities ¢(u, V') are concentrated on u € N \ V.
The degree of freedom of the set R of row-free permutations is

- n n "
rn—;(a—l)(a) = (2 —1>2 + 1.
The set Cp is the set of all distributions with the property column cutting
at b, and the set C of column-free permutations is similarly defined with
substituting 7! for 7. A possible representation of n element permutations
is putting rooks on the n by n chequerboard: here the properties of row- and
column-freeness are symmetrical. The sample presented by Persi Diaconis
happens to be in a certain sense inside of the intersection of the sets R and C.
Our main theorem states that the degree of freedom of the intersection is

n—1
Vp = E a’.
a=1

We call the elements in the intersection free distributions. Exponential
Thurstonean distributions are row-free and the simple rook distribution
is free. A possible set of sufficient statistics for free distributions is the
following:

v(a,b) :Zz(ﬂ'(i) <b), 1<ab<n-1,
i=1

p(a,b) =Y I(w(i) <bm(a+1)=b+1), 1<ab<n-2
i=1
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If all permutations have positive probabilities then a free distribution has
the form

n—2 n—1 n—1
P(n) = H gla,m(a+1), ,u(a,w(a + 1)) H H f(a, b, v(a, b))
a=1 a=1 b=1

In the intersection of the sets R, Cp the distributions have the form
P(r) = a(mt)B(mh) v(w8) (h) .

where «, 3,7, § are positive functions, and

70 denotes the shrunken version of (m(1),7(2),7(a)) to the set (1,2,
..,b)

7'('2 denotes the shrunken version of (7(1),7(2),m(a)) to the set (b+ 1,

b+2,...,n)

7% denotes the shrunken version of (m(a + 1),7(a+ 2),7(n)) to the set

(1,2,...,b)

7 denotes the shrunken version of (m(a+1),m(a+2),7(n)) to the set

(b+1,b+2,...,n).

The product of the four functions in P(7) means that random permutations
in the intersection of R, and C; have the property that the events in the four
quarters of the chequerboard are conditionally independent whenever the
subsets of rows and columns occupied inside them is given and the occupied
rows and columns in the left upper quarter are conditionally independent
from the ones in the right lower quarter under the condition that the number
of rows and columns is given. (Observe that the number of rows should be
equal to the number of columns.)

Structural zeros in row-free distributions may appear independently:
any conditional probability C(u, V') may be zero as long as there is at least
one permutation with positive probability. For free distributions structure
zeros may be generated by the parameters f, g, but the intersection of row-
free and column-free distributions with structural zeros is larger than this
set. For n = 4 the uniform distribution concentrated on permutations such
that only the permutations 1234, 2341, 2413, 2431, 3124, 3142, 3241, 4321
is free. However, for any set of the structural parameters f(a,b,c), g(a,b,c)
such that the probabilities of the above eight permutations are positive, all
permutations have positive probabilities.
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Estimation of the parameters of row-free random permutations is
straightforward: the estimators of the conditional probabilities ¢(u, V') are
the corresponding conditional relative frequencies. For free random permu-
tations there are two iterative procedures:

— we can use alternating divergence projections on the sets R,C or

— we can apply iterative fitting procedures on the statistics v(a, b), u(a, b).

An exact implementation of these algorithms consume n! steps what renders
them to small n-s. Metropolis algorithm and Bayes machine apply both
for generating i.i.d. free samples and estimating model parameters. As an
estimator of the expectations in the likelihood equations we may use the
averages of i.i.d. samples generated by the iteratively changing parameters.

Let M C N be such that 2 < |M| < n — 2. Let us denote by L,
the set {m(i), i € M}. We say that the random permutation has the M-
cutting property if the ordered numbers (7 (i), i € M) and (7(), i ¢ M)
are conditionally independent on Lj;. Random permutations having M-
cutting property for all M are the simple rook distributions. The number
of model parameters may be reduced by controlling the rank of the matrix A.
The rank has to be at least 2 because if it is equal to 1 then all elements
of A are equal.

PARTITIONS

Once upon a time there was a party with 14 participants labeled by in-
tegers from 1 to 14. As it is usual in parties they formed groups which
were sensed and recorded by devices offered by our modern technology.
The data can be found on the home page of G. Tusnady as SIRP DATA
(http://www.renyi.hu/ tusnady/). The first part is given in Table 1.

Each record of the data represents one grouping (partition) formed in
the course of the party. The first number means the time in hours when
the actual grouping occurred and the next 14 integers denote the partition.
Each set of a partition is labelled by its smallest number what we call leading
member.

For example
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.900159 1 11 4 5 5 5 5 5 5 11 5 11 5
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Table 1. First 24 records of SIRP.DATA

TIME 12 3 4 5 6 7 8 9 10 11 12 13 14
0.019238 111 45 6 5 6 5 5 5 6 13 5
0.064438 111 4 5 6 5 6 5 5 5 6 4 5
0.107385 111 45 6 5 6 5 5 5 6 13 5
0.119281 1114 5 6 7 6 5 7 7 6 13 7
0.127421 111 4 5 5 7 5 5 7 7 5 13 7
0.159595 111 45 6 7 6 5 7 7 5 13 7
0.244247 11145 6 1 6 5 1 1 5 13 1
0.246863 1114 5 41 4 5 1 1 5 13 1
0.393910 1 2 2 4 5 4 1 4 5 1 1 5 13 1
0.466802 11145 41 4 5 1 1 5 13 1
0.506604 111 4 5 4 7 4 5 7 7 5 13 7
0.518243 11145 6 7 6 5 7 7 5 13 7
0.519593 111 4 5 4 7 4 5 7 7 5 13 7
0.576503 111 4 5 4 5 4 5 5 5 5 13 5
0.707155 111 4 5 4 5 4 5 5 11 5 13 5
0.716638 111 45 6 5 6 5 5 11 5 13 5
0.727348 111 4 5 6 5 6 5 5 11 5 11 5
0.733247 111 4 5 4 5 4 5 5 11 5 11 5
0.834109 111 4 5 6 5 6 5 5 11 5 11 5
0.900159 111 4 5 5 5 5 5 5 11 5 11 5
0.918424 11145 6 5 6 5 o5 11 5 11 5
0.998953 111 4 5 6 5 6 5 5 11 5 13 5
1.155627 11145 15 1 5 5 11 5 13 5
1.252516 111 4 5 6 5 6 5 5 11 5 13 5

means that after 0.900159 hours from the beginning of the party the follow-
ing groups were sensed by our detectors: 14+2+3,4,5+64+7+8+9+
10 4+ 12 + 14, 11 4 13. Poor 4, seemingly a lonely person walked alone, the
noisy central body 5+ 6 +7+ 8+ 9+ 10 + 12 + 14 was situated around
the dinner table, while 1+ 2+ 3 had a very important discussion in a secret
corner and 11 + 13 were playing table tennis. There is a natural way to
order a graph to partitions: the vertices are the participants and they are
connected whenever they belong to the same group. However, partitions
are special graphs, because they contain only disjunct complete subgraphs
called sometime a clique.
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Visualization of partitions. In multidimensional data analysis a general
idea is to compress objects whenever they have something common. The
trouble is that without any constraints the population shrinks to a single
point. We use multidimensional covariance standardization as a constraint:
the data are centered by subtracting their average, dividing them by the
standard deviation and using covariances to keep the scales finite and non-
zero. The effect resembles opening an umbrella: the wires spread out what
the canopy pulls together.

In a good party there are appropriate places for people willing to do
something together. But to use different positions for each subset is pro-
hibitive: there is a combinatorial explosion. We restrict our algorithm to
pairs: all pairs of the participants have same special meeting point and the
groups are located at the average of the positions of their pairs. The formal
description of the algorithm is the following.

Let S be the number of different partitions occurring in the party and
let xp,yr be the coordinates of the point representing the k-th partition
(k=1,2,..,5). The initial values of the coordinates are random standard
normal numbers. The iteration consists of the following steps:

Step 1. Opening the umbrella (Schmidt orthogonalization):

~ T — T
T = w(:c) )
where
1 S
T = §Zx’f’
k=1

and
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where
yk =Yk _y)
S
1
g= S;yk,

Step 2. Positioning pairs of persons (averaging the partitions where
the given pair happens to be in the same group):

Dk plik)=p(ik) Th * Uk
Dk: plik)=p(ik) Tk

Uj 5 = 9

2ok p(ik)=pGik) T * B
2k p(i,k)=p(j.k) 2

'Ui,j = 9

where p(i, k) denotes the leading person of the group containing the i-th
person in the k-th partition and ¢; is the duration of the k-th partition.

Step 3. Dynamics (relocating the partitions with the gradient of the
pairs they unite):

Y =T — 7y * xTy,

where v denotes a small positive constant (it controls the speed of the
algorithm) and

T — E Ui,j)

i,3: p(i,k)=p(j,k)

YR = Uk — Y * Yk,

YYr = Z Vij-

i.5: p(ik)=p(3.k)

where
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The pair potential model. Our data are generated by the distribution

Py(m) =

o e (@ ),

where the potential Q(m, A) is defined by

Q(TI‘,A) = Z aj,j,

1<i<j<e: m(i)=n(j)

A) = Zexp (Q(ﬂ, A))

is the scaling factor where the summation runs over all partitions w. The
matrix A = a;; is symmetric and given by Table 2. The maximum of the
potential Q(m, A) is 39.64 and it is attained for the partition

and

r=1{1,1,1,4,5,6,5,6,5,5,5,6,13,5}.

The distribution can be sampled by the Metropolis algorithm [26], which
is based on a graph where the vertices are the partitions. We say that two
partitions are connected by an edge whenever one is formed by the other
with uniting two of its groups. The price of the edge is the product of the
numbers of persons in the united groups. The distance of two arbitrary
vertices is the price of the cheapest path between them. This is

n
7717772 Z Z Z Z k)+V(]7 ) (k,l)),

i=1 j=1 k=j+1

where
n
1 .]) = ZI(Wl(k) = ia 7'['2(k) = ])7
k=1
where n is the number of persons.
Concerning the partition function I'(A) one can prove that

T'(A+ B)

Ejexp (Q(m,B)) = r)

and

n—1 n
§H H 1—|—expa”))
i=1 j=i
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Table 2. Model parameters of SIRP.DATA

0.00 —3.08 —0.40 0.23 0.75 —1.23 1.13 —0.02 0.51 —2.62 0.78 2.93 0.05 —2.66
—-3.08 0.00 —4.63 1.18 143 1.19 4.73 —0.59 2.61 —5.01 2.08 1.94 391 1.94
—0.40 —4.63 0.00 4.31 1.65 294 —-1.17 0.87 —1.37 —0.72 1.66 —0.92 0.19 0.01

0.23 118 4.31 0.00 2.15-1.10-2.77 1.63 4.13 6.79 6.29 151 041 292

0.75 143 1.65 2.15 0.00-0.06 —2.31 —0.35 —1.52 —2.30 2.48 —2.23 2.25 —0.72
-1.23 119 294 —-1.10 —-0.06 0.00 2.75 —4.47 1.29 —4.41 0.38 —4.07 3.75 2.54

1.13 4.73 —1.17 —2.77 —2.31 2.75 0.00 —2.86 —2.50 —6.20 —3.35 0.30 3.98 —0.68
-0.02 -0.59 0.87 1.63 —0.35 —4.47 —2.86 0.00 —1.16 3.12 —0.27 3.61 5.84 2.25

0.51 261 —-1.37 4.13 —1.52 1.29 —2.50 —1.16 0.00 3.29 5.46 —1.05 1.64 —7.29
—2.62 —5.01 —0.72 6.79 —2.30 —4.41 —6.20 3.12 3.29 0.00 —5.14 —2.20 —1.12 —1.77

0.78 2.08 1.66 6.29 248 0.38 —3.35 —0.27 5.46 —5.14 0.00 5.45 —0.32 —4.20

293 194 —-0.92 1.51 —2.23 —4.07 0.30 3.61 —1.05 —2.20 5.45 0.00 3.07 1.74

0.05 391 0.19 0.41 225 3.75 398 5.84 1.64—-1.12-0.32 3.07 0.00 2.82
—2.66 194 0.01 292 —-0.72 2.54 —0.68 2.25 —7.29 —1.77 —4.20 1.74 2.82 0.00

but we do not have an explicit form for I'(A). We generated the matrix A as
random Gaussian number with zero expectation and standard deviation 2.5
thus the model has the flavor of spin glass processes: there is an abundance
of local maxima of the potential and the process spends the majority of the
time in the potential valleys with short time jumps between them. This
might be the case with real world parties where the different partitions are
evaluated by the well-being of the persons inside the actual groups. Our
model is the simplest possible one because it is based on pair-relations only.
Generalization to higher order interactions is straightforward.

Estimation of model parameters. The pair-potentials a;; can be esti-
mated by the maximum likelihood equation (see in [2], [16])

1
s > 1=Palr)=n() 1<i<jzn,
k: p(i.k)=p(j.k)

or by simple weighted linear regression. The probabilities b; ; = Pa((i) =
7(j)) are given in Table 3.

Corresponding relative frequencies 3;; are given in Table 4. The pair
potential model is loglinear: the logarithms of probabilities P4 () are linear
functions of the model parameters a; j. There is no direct relation between
a;; and b; ;, and the 3; ; relative frequencies are closer to the theoretical
probabilities b; ; than the estimators of a;; to a;;. The estimation of
the model parameters is a typical ill-conditioned problem and to compare
different data sets, the b; ; parameters may be more useful.

The specific feature of our data is that successive partitions can be either
the union or the splitting of the previous one. For the first part of our data
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Table 3. Probabilities of equivalence

.000 .750 .710 .018 .075 .087 .238 .108 .111 .413 .319 .024 .022 .294
.750 .000 .937 .006 .006 .051 .080 .085 .035 .256 .161 .034 .010 .123
710 .937 .000 .001 .025 .029 .101 .066 .068 .249 .155 .055 .016 .149
.018 .006 .001 .000 .005 .142 .011 .087 .001 .000 .000 .076 .301 .000
.075 .006 .025 .005 .000 .279 .541 .287 .672 .415 .342 .494 .002 .530
.087 .051 .029 .142 .279 .000 .161 .663 .139 .208 .148 .548 .001 .014
.238 .080 .101 .011 .541 .161 .000 .279 .452 .792 .776 .129 .004 .682
.108 .085 .066 .087 .287 .663 .279 .000 .257 .167 .210 .244 .000 .101
111 .035 .068 .001 .672 .139 .452 .257 .000 .278 .268 .363 .006 .678
413 .256 .249 .000 .415 .208 .792 .167 .278 .000 .816 .123 .010 .592
319 161 .155 .000 .342 .148 .776 .210 .268 .816 .000 .021 .058 .588
.024 .034 .055 .076 .494 .548 .129 .244 .363 .123 .021 .000 .005 .156
.022 .010 .016 .301 .002 .001 .004 .000 .006 .010 .058 .005 .000 .002
294 123 .149 .000 .530 .014 .682 .101 .678 .592 .588 .156 .002 .000

Table 4. Relative frequencies of equivalence

.000 .773 737 .012 .077 .084 .243 .100 .111 .423 .326 .023 .016 .297
773 .000 .948 .004 .006 .054 .085 .079 .032 .266 .167 .030 .007 .130
736 .948 .000 .001 .027 .030 .105 .058 .066 .259 .161 .055 .011 .153
.012 .004 .001 .000 .002 .118 .011 .070 .000 .000 .000 .064 .282 .000
077 .006 .027 .002 .000 .292 .563 .314 .712 430 .366 .510 .001 .554
.084 .054 .030 .118 .292 .000 .166 .688 .154 .208 .151 .566 .000 .015
243 .085 .105 .011 .563 .166 .000 .287 .483 .794 .783 .138 .001 .706
.100 .079 .058 .070 .314 .688 .287 .000 .274 .173 .213 .274 .000 .108
111 .032 .066 .000 .712 .154 .483 .274 .000 .307 .300 .384 .003 .692
423 .266 .259 .000 .430 .208 .794 .173 .307 .000 .823 .126 .007 .610
326 .169 .161 .000 .366 .151 .783 .213 .300 .823 .000 .029 .052 .607
023 .030 .055 .064 .510 .566 .138 .274 .384 .126 .029 .000 .002 .165
.016 .007 .011 .282 .001 .000 .001 .000 .003 .007 .052 .002 .000 .001
297 130 .153 .000 .554 .015 .706 .108 .692 .610 .607 .165 .001 .000

the operations are given in Table 5. Having the information at hand that
the data were generated by the Metropolis [26] algorithm, one may develop
more efficient estimators. The abundance of inverted pairs of union and
splitting among the operators is remarkable here.
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Table 5. Operators of data in Table 1
FIRST GROUP

NAME
UNION
SPLITTING
SPLITTING
UNION
SPLITTING
UNION
UNION
SPLITTING
UNION
SPLITTING
SPLITTING
UNION
UNION
SPLITTING
SPLITTING
UNION
UNION
SPLITTING
UNION
SPLITTING
SPLITTING
UNION
SPLITTING

4
4

5,9

5,9

5,9,12

1,2,3

4

1,7,10,11, 14
1,7,10,11,14
1,2,3

4

4

5,9,12
5,7,9,10,12, 14
4

11

4

4
5,7,9,10,12,14
5,7,9,10,12, 14
11

1,2,3

1,2,3

SIGN

SECOND GROUP

13
13
7,10,11, 14
6,8,12

6,8
7,10,11, 14
6,8

2,3

2,3
7,10,11,14
6,8

6,8
7,10,11, 14
11

6,8

13

6,8

6,8

6,8

6,8

13

6,8

6,8

Independent participants. One may ask at this point whether any sim-
pler stochastic model would be able to generate the same f3; ; frequencies.
In the above model the participants are intrinsically correlated because the
whole matrix A is involved forming the probabilities of groups. The follow-
ing model emerges from the idea of independence. Let us offer the possibility
to the participants of the party to choose independently from finitely many

options, like:

— to have a delicate food,

— to play hide and seek,

— to watch TV,

— to discuss Shakespeare,
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— to make a small excursion.

With the program in hand, people having their preferences make their
choices independently in the programs and the groups are formed in a
natural way by the programs. Let us denote by w(i,r) the probability
that the i-th participant chooses the r-th possibility then

P(n(i) = 7(j)) = 3 wli,rw(j,r),

r=1
where R denotes the number of possibilities.

Nonnegative matrix factorization was investigated in [13]. We have the
constraint

> w(i,r) =1, 1<i<n,

r=1

which leads to a poor fit of our data. Interestingly, dropping the constraint,
the frequencies (3; ; has a good factorization with w(i,r) given in the Table
6. If the number of participants goes to infinity, the size of groups is the
most important feature of the distribution. It may remain bounded or slowly
increasing as it is the case in politics when the groups are the political parties
having the tendency to become of small number mostly because preference
choice. The second possibility is the square root law: the size of groups
and their number both are around the square root of n. Third possibility is
represented in chemistry: the size of groups remains small and the number
of groups increases with ¢ for example for proteins. In the independent
model the situation is easily controlled by R but in the case of pair-potential
model we do not know the answer. Our guess is the third possibility on the
argument that Q(m, A) may achieve the size n? for m with small groups.
A natural way to control the size of groups is to add a constant to the
pair-potentials, i.e. to apply the pair-potentials a;; = a;; + A. Negative
A shrinks the groups and positive A increases them. When all a; ; become
positive, all participants are in the same group with large probability. As
a matter of fact, independence is not far from the pair-potential model: it
is equivalent to the random graph model conditioned on the restriction to
graphs representing only partitions. For large ¢ we substituted all of the
a; j-s with zero and used the parameter A only. According to our computer
experiments A = 0.03 seems to be the critical value for n = 10 000.
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Table 6. Factorization of equivalence probabilities

0.23545 0.77188 - 0.06091 0.01306 0.05126 0.01362
- 0.99511 0.00546 0.03724 0.00529 - -
0.00937 0.94614 0.03934 0.00191 0.00865 0.02693 -
- 0.01632 0.10669 0.21538 - -

0.25981 - 0.62682 0.03831 - 0.37697 0.45547
0.04035 0.01241 0.37992 1.09130 - - -

0.72835 0.08377 0.12272 0.08269 - 0.14629 0.51251

- 0.05948 0.16962 0.56842 - 0.00001 0.41019

0.15838 0.03633 0.34507 0.02085 0.00001 0.63947 0.46404

0.86278 0.26262 0.15723 0.09302 0.00299 - 0.21790

0.79914 0.16356 - 0.10403 0.03747 0.00339 0.34943
- 0.01224 0.65654 0.28753 0.00381 0.22826 -

- - - - 1.30074 - 0.00391

0.60732 0.13486 - - - 0.72583 0.26880

Checkerboard model. Parties and hypergraphs are appeared as early
as 1941 in the literature [11] where 18 ladies attending on 14 parties are
investigated. It is a special case of partitions when only two groups are
considered, whether each person is present or absent in a party. In the
next table we show the application of checkerboard model to the Table 7.
We reordered slightly the ladies and parties and grouped them into 8 and
6 clusters respectively. The probabilities that a lady belonging to the ith
cluster takes part in the party belonging to the jth cluster are given in
Table 8.

There are 22 pairs of (i,7)-s with probability zero, for example i = 3,
j = 6, accordingly ladies 5, 6, 7 did not attended in parties 10, 12, 13, 14.
There are 12 pairs of (i, j)-s with probability one, for example i = 1, j = 2.
accordingly ladies 1, 3 attended in parties 3, 5, 6. For the remaining 14
pairs the range of probabilities are between 0.11 and 0.83. There is only
one pair (i = 7, j = 4) with probability 0.5 which means the maximal uncer-
tainty. In microarray analysis this is the so-called chequerboard structure.
We characterize the uncertainty of the data with the reciprocal of the delog-
arithmized averaged log-likelihood which is 1.205627. In case this quantity
equals 2, the uncertainty is maximal, for all (7, j) pairs the probabilities are
equal to 0.5. We can test the power of the model by mixing randomly the
bits in the data. In this case the uncertainty is between 1.36 and 1.42.
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Table 7. Davis — Gardner — Gardner data

1 2 4 3 5 6 7 8 9 11 10 12 13 14

11 1 2 2 2 3 3 4 ) 6 6 6 6

11 1 1 1 1 1 1 0 1 1 0 0 0 0 0

310 1.1 1 1 1 1 1 1 0 0 0 0 0

22 1 1 0 1 1 1 1 1 0 0 0 0 0 0

4 2 1 0 1 1 1 1 1 1 0 0 0 0 0 0

5 3 0 0 1.1 1 0 1 0 O 0 0 0 0 0

6 3 0 0 0 1 1 1 0 1 O 0 0 0 0 0

73 0 0 0O 0O 1 1 1 1 0 0 0 0 0 0

§ 4 0 0 0 0 0 1 0 1 1 0 0 0 0 0

94 0 0 0 0 1 0 1 1 1 0 0 0 0 0

00 5 0 0 0 0 0 O 1 1 1 0 0 1 0 0
1 5 0 0 0 0 0 0 0 1 1 0 1 1 0 0
6 5 0 0 0 0 0 O O 1 1 0 1 1 0 0
12 6 0 0 0 0 0 O O 1 1 0 1 1 1 1
36 0 0 0 0 0 0 1 1 1 0 1 1 1 1
4 7 0 0 0 0 O 1 1 0 1 1 1 1 1 1
5 7 0 0 0 0 0 0 1 1 O 1 1 1 1 1
7 8 0 0 0 0 0 0 O O 1 1 0 0 0 0
8 8 0 0 0 0 0 0 0 O0 1 1 0 0 0 0

Table 8. Structural probabilities of checkerboard model

1 2 3 4 5 6
1 0.83 1 0.75 1 0 0
2 0.67 1 1 0 0 0
3 0.11 0.78 0.67 0 0 0
4 0 0.33 0.75 1 0 0
5 0 0 0.67 1 0 0.42
6 0 0 0.75 1 0 1
7 0 0.17 0.75 0.50 1 1
8 0 0 0 1 1 0

Cluster numbers 8 and 6 seem to be large, considering the numbers
of ladies and parties but with smaller cluster numbers we were unable
to present satisfactory clustering. In statistical investigations, in cluster
analysis partitions appear mostly in the following two different aspects:
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— we may form groups from the investigated objects on the basis that any
connection is possible only inside the groups

— we may form the groups of similar objects

The second possibility is used in checkerboard model. Its extension to the
pair-potential model is a numbering f(k), k = 1,...,n, of the participants
such that

- 1<fk)<g;k=1,...,n

— forall 1 <j <gthereisal<i<csuchthat f(i) =j

— there is a g * g matrix D with entries dy, such that a;; = dy(;) ¢(;) for
al1<i<j<n

this is called blown-up of the matrix D into matrix A. We investigated
partition-clustering in [30] and interactive networks in [31]. A widely inves-
tigated process on partitions is Kingman’s coalescent process [19]. In the
Table 9. we give the groups where the first participants spent the most time.

The number of partitions. There is a recursion for P, which denotes the
number of partitions of n elements:

n
Pn+1:Z(?>f)j7 n:O,l,...,

J=0

where Py = 1. (Especially P14 = 190,899,322.) There is an explicit form

as well for P,,
n n(S n— i
=yt
P J:

where
k

S(k)=>_ (_js.

s=0
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Table 9. Most frequent partitions in SIRP.DATA

1 2 3 4 5 6 7 & 9 10 11 12 13 14
7271.18 1 110 0 0 0 O O O 0 0 0 0
1370.10 1 1.1 0 0 0 0 O 0 1 0O 0 0 o0
1134.26 1 1.1 0 0 0O 1 O 0 1 1 0 0 1
1071.91 1 0 0 00O 1 0 0 1 1 0 O 1
724.33 1 1.1 0 0 0 0 0 O 1 1 0 0 1
713.87 1 0 001 01 0 1 1 1 0 0 1
666.55 1 110 0 0 0 0 O 1 1 0 1 0
654.82 1 11 0 0 0 0 O O 1 1 0 0 0
536.01 1 110 0 0 0 1 0 O 0 0 0 0
445.13 1 0 0 01 01 0 0 1 1 0 0 1
407.04 1 0 0 00O 0 0 0 O 1 0 0 1
329.61 1 11 0 0 1 0 0 O 1 0 1 0 0
313.40 1 110 0 0O O O 1 O O O O 1
261.53 1 0 0 00O 0 0 1 O 0 0 0 1
241.93 1 1.0 0 0 1 0 1 0 1 0O 0 0 o0
229.54 1 0 0 0 00O 0 0 0 O 0 0 0 0
204.26 1 0 00001 1 1 0 1 1 0O 0 0
168.22 1 0 0 001 0 1 0 O 0 0 0 0
159.01 1 11 0 0 O 1 0 O 1 1 0 0 0
154.32 1 0 0 00O OO1T 0 1 1 1 0 0 1
118.99 1 11 0 0 1 0 O O 1 0 0 0 0
118.45 1 1.0 0 0 0 0 O 0 O 0 0 0 0
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APPENDIX

sign: vertex label d: degree, a: asset, w: wealth, n;: i-th neighbor

&
a9
=
S8
S|

w ny nNg Nz N4 N5
109 321 Al A2 A3 A4 A5
134 403 B1 B2 B3 B4 B5
152 431 C1 C2 C3 C4 Ch
149 421 D1 D2 D3 D4 D5
167 459 E1 E2 E3 E4 E5
159 451 F1 F2 F3 F4 F5
158 440 G1 G2 G3 G4 G5
143 428 H1 H2 H3 H4 H5
151 397 11 12 I3 I4 I5
155 467 J1 J2 J3 J4 J5
16 20 al bl ¢l dl el
15 20 k1 11 ml nl ol
17 8 a2 b2 2 d2 e2
16 16 k2 12 m2 n2 o2
17 12 a3 b3 ¢3 d3 e3
15 24 k3 13 m3 n3 o3
15 20 a4 bd c4 d4 ed
15 24 k4 14 m4 nd o4
15 24 ab b5 c¢b db eb
12 16 k5 15 mb nb o0b
16 16 a6 b6 c6 d6 e6
15 24 k6 16 m6 n6 o6
17 12 f1 gl hl il j1
15 12 pl ql r1 sl tl
14 16 f2 g2 h2 i2 j2
18 12 p2 g2 r2 s2 t2
16 16 f3 g3 h3 i3 j3
13 16 p3 g3 r3 s3 t3
16 20 f4 g4 h4d 4 j4
16 16 p4 g4 14 s4 t4

B R O0"OoOBERETRTTER SO QA0 TY SN EHOQW R S

QU UL UL UL T UL UL UL UL UL UL UL UL UL UL UL UL UTUTD OO OYOy OOy O O O

ng
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H6
16

J6

sign

u
v
A
X
ab
B1
B2
b2
cl
c2
D1
d2
n2
D3
d3
e3
f1
F2
3
q2
g4
g6
qb6
r2
H4
r4d
rb
r6
s2
ib

d
)
5
5
5)
4
4
4
4
4
4
4
4
4
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4
4
4
4
4
4
4
4
4
4
4
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16
17
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12
16
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ni
5
pd
6
pb6
05
b2
b2
B3
25
08
d3
11
11
d3
26
03
25
3
08
05
04
07
08
H2
rd
04
03
13
08
07

n2
g5
ad
g6
q6
A2
11
12

35
11
d1
D2
26
al

14
28
2
F3
07
28
14
G6
H3
g2
28
13
35
13
25

n3
h5
rH
h6
r6
A6
c4
d4

C1
C2
nl
02
D2
n3

E3
F1
s3

11
G4
G6
02
40
h4

H5
H6
12
I5
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SH)
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APPENDIX (CONTINUED)

sign d @ w ny ng ng ng sign d a w ny ne ng ng sign d a w Ny ng
s 400 35 I1 I5 32 440 a5 13 dlf4 E5 300 €5
j1. 400 03 07 J1 33 440 gb h3 s3 t6 o6 3 0 0 A4
t1 400 26 J1 40 34 440 k2 bl o4 g5 E6 3 00 e6 06
J5 400 i1 j5 t5 35 400 h3 F1 300 pl
j6 400 05 14 J6 36 440 m2pl gl rl F3 300 p3
01 440 m6 p2td j5 37 440 14 m3 o6 h6 p4 3 0 0 F4
03 400 a2 33 440 d4 n6 o2 mbf5 300 F5
04 400 a4 gb 39 440 f4 gl g2i2 pb 3 00 H2
05 400 pb6 Al 300 k1 15 6 300 F6
06 440 o3 h4 h5 il A2 3 0 0 k2 gl 300 Gl
09 440 a4 11 ¢6 5 a3 3 0 0 A3 g3 300 40
10 440 14 bsoel i6 k3 3 00 E5 g3 300 G5
12 440 e p3 g3 t2 ki 3 00 A5 G4 300 g4
13 400 j3 A6 3 00 k6 G5 300 ¢gb
14 400 ql bl 3 00 D4 Hl 300 r1 j4
15 440 a3 k4 nl1 d6 B3 3 0 0 b3 hi 300 J2
16 440 ol p6j2 j3 B4 3 00 bd 02 h2 300 G2
17 440 n3 el e6 g4 b5 3 0 0 B5 H3 300 t6
18 440 b3 nd sl tbh B6 300 16 e4 r3 300 J3
19 440 kI b4 h1 n5 C1 3 0 0 ml h5 3 00 I6
20 440 a2 15 ¢5 o5 C2 3 0 0 m2 h6 300 I4
21 440 ml psbi3 s6 C3 3 00 ¢c3 m3 I1 300 sl
22 440 kb k6 12 ¢4 m4d 3 00 C4 2 300 i2
23 440 al ab g3 t3 ¢ 3 0 0 D6 i3 300 02
24 440 m6 p2sd4d s6 c6 300 E1 4 300 s4
25 4 0 0 b6 nd 300 i4 I6 300 i6
26 4 00 d6 ds 300 D5 2 300 G3
27 440 md ed p4i4 D6 3 0 0 nb6 t2 300 I3
28 400 k4 El 300 ol J3 300 t3
29 440 b6 e5 6 j4 e2 3 0 0 E2 t4 300 J4
30 440 k3 16 ¢c3 2 E3 300 o3

31 44013 d5 h2r3 o4 300 E4



