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Introduction

Randomness for a statistician must have some structure. In traditional com-
binatorics the word random means uniform distribution on a set which may
be the set of all graphs with n vertices, the set of all permutations of the
numbers N = (1, 2, . . . , n), the set of all partitions of N , or any other set
of simple structure. In practice the statistician meets a subset of the struc-
tures and she or he is interested in the question, what was the mechanism
which generated the sample. Uniform distribution and independence are
shapeless and they have low complexity for catching the character of sam-
ples produced by real life situations. In [12] Persi Diaconis investigated a
sample consisting of the votes in an election of the American Psychological
Association. The sample was investigated by others but without achieving
a reasonable goodness of fit, because the present collection of distribution
of permutations is not large enough. Investigating the sample we found a
hidden property leading to a new class of distributions of permutations.

Classical statistics developed around the multidimensional Gaussian dis-
tribution. Even in Euclidean space the family of useful distributions is still
meager. On other sample spaces the collection of distributions is much less
developed. Graphs appear in applications as structured relations. In many
cases rather heavy simplifications are needed for reducing the complexity of
the investigated situation to a graph. One source of our interest in graphs
is the system of metabolic interactions, which may have some fractal struc-
ture: the enzymatic interactions may be leveled, they may be sensitive for
situations, their control might be hierarchic. Changes of the concentration
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of different enzymes in a cell follow their dynamical rule what is reflected
imperfectly in the graph of enzymatic interactions.

In modern combinatorics the stochastic method is rapidly extending.
We shall use the ideas of papers [7], [8] and [9] written by Christian Borgs,
Jennifer Chayes, László Lovász, Vera T. Sós, Balázs Szegedy and Katalin
Vesztergombi in defining new classes of random permutations.

SVD of real matrices. Let M be an arbitrary digital picture: a face, a
tree, a hill or some other natural object which is not very complicated. Let
us suppose that the colours are ordered according to their wave lengths and
M is an m times n real matrix containing the codes of the colours in the
individual pixels. Let α be a random permutation of the integers 1, . . . , m
and β of 1, . . . , n. Let

R(i, j) = M
(

α(i), β(j)
)

be the randomly reordered copy of M . How can we reconstruct M from R?

One possible method is the singular value decomposition (SVD) of R
which is invariant under random permutations. The singular values of
matrices M and R are identical. We refer to them as the spectra of the
corresponding matrix. If the picture is simple, then the spectra is J-shaped:
there are few large singular values and the corresponding singular vectors
concentrate the majority of the relevant information in M. The coordinates
of the leading singular vectors of M reflect the topology of M , while the
coordinates of the singular vectors of R follow the permutations α, β. It
implies that the traveling salesman problem may be easily solved in the
space of leading eigenvectors independently of rows and columns.

Microarray analysis. The previous problem arises in microarray analysis
where the rows are genes and the columns are the different conditions used
in the experiment for controlling the expression of the genes. It is natural
to postulate that the genes and conditions are embedded in Euclidean
spaces and the expression level is a continuous function of the embedding.
Sometime we get well defined clusters when applying SVD of microarray
data: clusters in genes come from the metabolic networks of the proteins
they code and the clusters of conditions come from the structure of the
plan of the experiments. The phenomenon is known in the literature as
the chequerboard structure: after appropriate reordering, gene-expression
matrices become chequerboard like. Batches of genes express similarly under
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batches of conditions. Interestingly, rather good reorderings are supplied by
simple hierarchical clusterings of rows and columns simultaneously.

Graphs

Graph complexity. There are natural ways to assign matrices to a graph:
the off-diagonal entries reflect the connectivity and the diagonal entries may
be set to zero or to the degree multiplied by −1. In the second case the
sum in each row is zero and a non-zero vector with equal coordinates is
an eigenvector with zero eigenvalue. All eigenvalues are non-positive in the
second case. We call the matrix in first case the adjacency matrix and the
second one the Laplacian ([3], [4], [5], [10], [18], [23], [35]). For regular
graphs the spectra of the two matrices differ only by a constant.

An arbitrary graph is a free sequence of
(

n
2

)

bits. Without fathoming
the inner structure of the graph we can not catch the complexity of a graph.
In the simplest case the spectra is J-shaped: there is some topology on the
vertices and the edges follow that. For Albert–Barabási graphs ([1], [6])
the topology comes from preference: the degrees of the vertices control the
choice of the edges. According to Wigner’s semicircle law ([17], [20], [25])
for random graphs the spectra of the adjacency matrix forms a semicircle,
which is definitely not J-shaped. Incidentally: we do not know what is the
asymptotic for the spectra for random symmetrical matrices with i.i.d. off-
diagonal entries but putting the sums (multiplied by −1) in the diagonal.
If the entries of a random matrix are independent Wiener processes, the
eigenvalues λi = λi(t) follow the system of stochastic differential equation

dλi = dWi + dt
∏

j 6=i

1

λi − λj
, i = 1, . . . , n

showing that the eigenvalues repel each other. Do eigenvalues of random
graphs repel each-other? Does this depend on which eigenvalue definition
we use and what model of random graphs?

Fractals. An other intriguing question is, whether there are fractals in large
graphs? To catch the fractal behavior we propose the following potential
defined for connected graphs. For a given vertex x let y be the vertex closest
to x of degree not smaller than that of x, and let Dx be the set of vertices
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different from x that are strictly closer to x than y is. This Dx is the estate

and its size the asset of x. (If there is only one vertex with maximal degree
then its estate is empty.) The wealth Vx of x is the sum of the assets of all
vertices in Dx. Finally, the potential of the graph Γ is

Q(Γ) =
∑

V α
x V α

y dβ(x, y),

where the summation runs on all pairs (x, y) of vertices, d is the distance on
the graph and α, β > 0 are fixed constants. What is the graph which max-
imizes this potential for fixed number of vertices? For n = 254, α = 0.75,
β = 0.25 we constructed several graphs. Revealing the structure of opti-
mal graphs created by exhaustive stochastic search we generated the graph
presented in the Appendix. For this graph Q(Γ) = 14, 343. The structure
of the graph is shown in Figure 1. The empty circles represent virtual ver-
tices, which help only in building up the structure. We tend to believe that
real complexity is connected with the repelling property of the eigenvalues,
while the concentration of the eigenvalues comes from the equivalence of the
vertices.

Equivalent vertices. Equivalence of vertices have two features:

– equivalent vertices may prefer each other: the edge-density inside equiv-
alent clusters is larger than outside

– vertices belonging to equivalent clusters behave similarly.

The first case is reflected by the spectra of the Laplacian and the second
case is Szemerédi’s regularity property ([14], [21], [27], [34], [37]): we say
that the bipartite graph with vertex sets A, B is ε-regular if

∣

∣

∣

∣

E(X, Y )

|X| |Y |
− ∆

∣

∣

∣

∣

≤ ε,

holds true for all X ∈ A, Y ∈ B such that |X| ≥ ε|A|, |Y | ≥ ε|B|, where

∆ =
E(A, B)

|A| |B|

is the edge-density in the whole graph.

Regularity lemma for a statistician. Roughly speaking, Szemerédi’s
regularity lemma states that the vertices of every graph may be clustered
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Fig. 1

in such a way that the bipartite graphs corresponding to different clusters
are ε regular with a small exceptional fraction of the pairs if the number of
vertices is large enough.

For a statistician the condition in the definition of ε-regularity is a
statistical test resembling to Rényi’s version of the Kolmogorov test. Let n
be an arbitrary number, for integers i between 1 and n let α(i) be arbitrary
integers between 1 and k, where k < n. Let pi,j , 1 ≤ i, j ≤ k be an
arbitrary symmetric matrix with 0 ≤ pi,j ≤ 1. We call the random graph
checkerboard graph if vertices i, j, where 1 ≤ i ≤ j ≤ n are connected with
probability pα(i),α(j) and the edges are independent. At first instance, the
regularity lemma seems to state that the collection of checkerboard graphs
is bold enough for having the power to generate all graphs. The striking
effect of the lemma is its simplicity: the random mechanisms used in a
possible rigorous formalization are quite natural and, what is more, they
are not capable of catching all the possible information out of a graph.
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The riddle of Szemerédi’s lemma is hidden in the definition of regularity.
It fixes, prescribes a test on graphs for the use of testing the hypothesis
that the graph comes from the class of checkerboard distributions. Being
true statisticians we propose to develop other tests, possibly with relevant
power for testing the hypothesis. One natural aspirant is the spectra of
the adjacency matrix: for checkerboard graphs it has to be J-shaped, and

the eigenvectors have to show clear clusters. Any deviation from these
properties may lead to rejecting the hypotheses.

A universal lemma might state that any maximum likelihood estimate
is bold enough to have the property that it is optimal for all measures in
the statistical field. You can never use the picture given by a maximum
likelihood estimate for testing the hypothesis concerning the completeness
of the investigated measures. Inside the world the statistical field they have
to be bold enough just by definition of the maximum likelihood estimate.
But we can test the hypothesis by other accordingly chosen statistics which
are usually orthogonal to the logic of the likelihood. Recently one of the
most interesting fields for an extension of the lemma are the hypergraphs.
Accordingly we have to learn the precise use of the stochastic method: it is
better to formulate minor sets of conditions under which a useful theorem
of stochastics holds true and extend it to as wide a territory as possible but
we can never forget effectiveness. In case of Szemerédi’s lemma it is the
blow up property.

Blow up property states that in a large enough graph all the small graphs
appear with a frequency proportional with their probabilities. The state-
ment is also called the Counting Lemma. Taking a large enough distance
from the details of the affair investigated we think that the situation re-
sembles quantum physics: first you choose what you are interested in, then
the analytic machinery answers your question as you like it. If we want to
ensure ε-regular colouring for all graphs then we have to choose the number
of colours enormously large. But according to our experience, checkerboard
graphs are applicable to small graphs too. The “bold enough” property
appears only for large graphs, but the property being universal for large
graphs may be present for a special family of small graphs.

Other models. Let f(x, y) be a differentiable function for 0 ≤ x, y ≤ 1 such
that 0 ≤ f(x, y) ≤ 1. Let x1, x2, . . . , xn be arbitrary numbers in (0, 1). The
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random graph connecting the vertices i, j independently with probability
pi,j = f(xi, xj) represents the function f and numbers xi. We can try to
reconstruct the model parameters f, x1, . . . , xn by a maximum likelihood
method. Maximizing the likelihood the following two-phase algorithm is
applicable:

– for given f the gradient method applies to the xi-s

– for given xi-s the function f(x, y) may be estimated by the edge-density
for |xi − x| < ε, |xj − y| < ε.

We say that the function f is the face of the graph and the xi-s are its core.
For large n and xi = i−0.5

n the spectra of the random graph is close to the
spectra of f . If f(x, y) = x+y

2 the eigengenvalues are uniformly distributed
in (1

4 , 3
4) in contrast with the chequerboard case when they are clustered

around a few points. It goes without saying that the uniform distribution
may be approximated by a discrete distribution concentrated on finitely
many points, but we may detect the difference with appropriate statistics.
What is the case with Szemerédi’s statistics

(

E(X, Y ) − F (X, Y )
)2

G(X, Y )
,

where

– E(X, Y ) is the number of edges between the disjoint sets X, Y

– F (X, Y ) =
∑

xi∈X,xj∈Y pi,j is the expected value of E(X, Y )

– G(X, Y ) = max (1,
∑

xi∈X,xj∈Y pi,j(1− pi,j) is the truncated variance of

E(X, Y )?

Of course it has to be applicable to detect the difference, but in the regu-
larity lemma the constants are chosen loosely for that aim. The spectra of
the adjacency matrix shows more characteristic effect of the checkerboard
structure than the Laplacian, but a rigid SVD of the matrix pi,j is usually
not flexible enough for detecting real structures because it poorly approx-
imates matrices with entries in the interval (0, 1). The logistic transform
pi,j = b/

(

c + exp(ai,j)
)

offers an easy bridge between real numbers and the
(0, 1) interval. More generally, we can use any monotone increasing function
for this role. The nonparametric maximum likelihood estimator is a step
function usually with a small number of steps and a remarkable portion of
the edges has probability zero or one and thus the fitted model has moder-
ately random character only on the borderline of the two subsets of edges
where we can explicitly predict their existence.
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Dynamics. The most complicated matrix pi,j is unable to reflect fine in-
teractions between the edges. We can build up systematically stochastic
models starting with a joint distribution of two or three edges or subsets
of vertices, but in case of graphs presented by real life situations the struc-
ture of stochastic interactions is mostly multifactorial. Firstly, gathering all
the available information, we can try to describe with words the character-
istic features of the investigated graph. Next we translate our own words
to mathematical formulas and we define some potential function measuring
the perfection of individual graphs and we develop algorithms to maximize
the potential following a kind of Darwinian path. The algorithms may re-
semble to the mechanisms creating the studied graphs. But typically the
optimization procedure reveals something that is rather far from our ideals
formulated originally in words. In such situation the whole procedure starts
again and we should recycle it until convergence.

The potential Q(Γ) defined by assets and wealths led to the following
procedure. We start with one vertex. Step by step, each vertex in the graph
is divided into two daughters, and in the new graph

– we join two daughter points with probability p = 0.06, if their mothers
were joined

– otherwise we join them with probability q = 0.005, and

– we join them with probability p = 0.03 if they have the same mother.

The fractal structure is imprinted in the algorithm. The reason for the low
probabilities is that the potential prefers spare graphs. One source of the
potential is

Ψ(Γ) =
∑

(x,y)∈E

fxfy,

where fx is the degree of x. In Albert–Barabási dynamics Ψ is maximal
among graphs with given degrees, which is unnatural in the majority of
cases: the hubs are in most cases separated, they are far from other hubs.

Permutations

The Thurstonean. Let F1, F2, . . . , Fn be arbitrary continuous real distri-
butions, for each 1 ≤ i ≤ n let Xi be a random variable with distribution
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Fi and let the variables X1, X2, . . . , Xn be independent. Let

π =
(

π(1), π(2), . . . , π(n)
)

be the permutation ordering the Xi-s monotone increasingly:

Xπ(1) < Xπ(2) < · · · < Xπ(n).

The model was proposed by Louis Leon Thurstone in [38] (see also in [33])
thus we call the distribution defined by the model Thurstonean.

It is easy to see that if the distributions Fi are exponentials with para-
meters λi then

P
(

π(a + 1) = t | π(1), π(2), . . . , π(a)
)

=
λt

∑

i/∈La
λi

,

a = 0, 1, . . . , n − 1, t /∈ La,

where La =
{

π(1), π(2), . . . , π(a)
}

with L0 = ∅.

If Yt, t = 1, 2, . . . , are i.i.d. with distribution

P (Y1 = t) = pt, t = 1, 2, . . . , n,

and we delete all elements from the sequence that we have seen earlier, then
the remaining random numbers form a permutation in N with the same
distribution as the exponential Thurstonean one, whenever

pt =
λt

∑n
i=1 λi

.

Interestingly, in these two models the EM-algorithm [24] leads to different
iterations. In the general case the Baum–Welch algorithm [29] leads to the
following iteration. For the sake of simplicity let us suppose that π is the
identity. In this case we have to calculate the conditional distributions

Qi(t) = P (Xi < t | X1 < X2 < · · · < Xn), i = 1, 2, . . . , n.

In the forward phase of the algorithm we calculate recursively the condi-
tional distributions

Gi(t) = P (Xi < t | X1 < X2 < · · · < Xi)

by
gi(t) = fi(t)Gi−1(t),
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where fi = F ′
i , gi = G′

i. Similarly, for

Hi(t) = P (Xi < t | Xi < Xi+1 < · · · < Xn)

hi(t) = fi(t)Hi+1(t)

holds true where hi = H ′
i while G1 = F1, Hn = Fn. Then

qi(t) = fi(t)Gi−1(t)Hi+1(t),

where qi = Q′
i and G0 = Hn+1 = 1.

Let us denote by Tn the set of all Thurstonean random permutations
with n elements. A possible generalization is to drop the independence of
the Xi-s. Let Gn be the set of n-dimensional Gaussian distributions with
expectation µ and covariance Σ. Gn is described by

(

n + 1

2

)

+ n − 2

parameters, which suggests that for n = 2, 3 the model is overparametrized.
Indeed, for n = 2, Σ may be reduced to the identity matrix and G2 = T2 =
P2 where Pn stands for the set of all possible distributions of permutations
on N . If n = 3, then the distribution rendering half probability to the
permutations (1, 2, 3), (3, 2, 1) is definitely not in T3 yet, it is in G3 for
µ equals zero and with a covariance ensuring that X1 = 2X2, X3 = 0 or
X1 = −X3, X2 = 0. For large n the set Tn should be larger than Gn, for the
number of degree of freedoms goes to infinity more rapidly in the first case.
In the Gaussian case a possible reduction of the number of parameters is
the control on the rank of Σ as it is usual in factor analysis and principal
component analysis. But the covariance of π is unable to catch the rank
of Σ, it is visible only in the covariance of π−1. Permutations in practice
mostly come from some one-to-one correspondence between two different
unordered sets. The row-ordering and column-ordering of the chequerboard
representing the permutations usually is lurking behind. If X has some
multidimensional stochastic structure one cannot find it in π, because π(i)
gives the coordinates of the i-th element of the ordered sample answering
the question: who stays on the i-th position. But the order of coordinates
in X is arbitrary. In contrary, π−1(j) tells us where the j-th coordinate Xj

is in the ordered sample which is a nearly linear function of the values of
the coordinates, hence the covariances of X and π−1 are close to each other.
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Statistics. Models and statistics on a structure are the two legs of any
inference. All models have their natural statistics or sufficient statistics
and for a given family we can test the goodness of fit of the whole family.
For permutations the primary marginals are the positions of a subsets of
the elements among the whole set: here a void mark is substituted for the
elements outside the group, this means that the order of the elements of the
chosen group is filled in with some void marks:

∗ ∗ ∗ 3 ∗ 5 1 ∗ ∗ ∗ ∗ 4 ∗ 2 ∗

means that π(4) = 3, π(6) = 5, π(7) = 1, π(12) = 4, π(14) = 2. Dropping
the stars we get the permutation of the chosen elements which is another
marginal. We say that the permutation 35142 is the shrunken version of
the original one into the set (1, 2, 3, 4, 5). For one element only the filled
marginals contain information, one is tempted to use these one-element
positions as aspirants for the unknown distributions in the Thurstonean
case. Turning to the inverse, other one-element marginals appear and
the distribution, having simultaneously a given row marginal and a given
column marginal is of the form

P (π) = κ

n
∏

i=1

a∆
i,π(i),

where the matrix A = (ai,j) is an arbitrary doubly stochastic matrix, ∆ is
a positive number, and κ is the normalizing factor. It is well known that
for any doubly stochastic A there is at least one permutation with positive
probability. We call the distribution simple rook distribution because repre-
senting the permutations on a chequerboard the probability of the permu-
tation is proportional to the product of the numbers in the occupied pixels.
For simple rook distributions the sufficient statistics are

ν(i, j) = #
{

π(i) = j
}

, 1 ≤ i, j ≤ n,

which are simultaneously the matrices of unnormed row and column mar-
ginals. The statistics ν(i, j) are useful for distributions

P (π) = κ exp
(

− d2(π, π0)/T
)

,

where d is some distance function, π0 is the centrum of the distribution, T is
a positive constant, and κ is the norming factor. The family was introduced
by Mallows in [22] (see also [15], [28] and [36]).
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Row cuttings. Let us say that an element of Pn has the property of row

cutting at a if

P (π | La) = f
(

π(1), π(2), . . . , π(a)
)

g
(

π(a + 1), . . . , π(n)
)

holds true with some a variate function f and (n − a) variate function g,
where 2 ≤ a ≤ n− 2. We denote by Ra the set of all distributions with the
property row cutting at a. Row cutting at a means that the permutations
(

π(1), π(2), . . . , π(a)
)

,
(

π(a+1), π(a+2), . . . , π(n)
)

are conditionally inde-
pendent on the statistics La. We say that a random permutation is row-free

if it has the row cutting property for all a. It is easy to see that row-free
random permutations have the form

P (π) =
n−1
∏

a=0

c
(

π(a + 1), La

)

,

where the conditional probabilities c(u, V ) are concentrated on u ∈ N \ V .
The degree of freedom of the set R of row-free permutations is

rn =
n

∑

a=1

(a − 1)

(

n

a

)

=
(n

2
− 1

)

2n + 1.

The set Cb is the set of all distributions with the property column cutting
at b, and the set C of column-free permutations is similarly defined with
substituting π−1 for π. A possible representation of n element permutations
is putting rooks on the n by n chequerboard: here the properties of row- and
column-freeness are symmetrical. The sample presented by Persi Diaconis
happens to be in a certain sense inside of the intersection of the sets R and C.
Our main theorem states that the degree of freedom of the intersection is

νn =
n−1
∑

a=1

a2.

We call the elements in the intersection free distributions. Exponential
Thurstonean distributions are row-free and the simple rook distribution
is free. A possible set of sufficient statistics for free distributions is the
following:

ν(a, b) =
a

∑

i=1

I
(

π(i) ≤ b
)

, 1 ≤ a, b ≤ n − 1,

µ(a, b) =
a

∑

i=1

I
(

π(i) ≤ b, π(a + 1) = b + 1
)

, 1 ≤ a, b ≤ n − 2.
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If all permutations have positive probabilities then a free distribution has
the form

P (π) =
n−2
∏

a=1

g(a, π(a + 1), µ
(

a, π(a + 1)
)

n−1
∏

a=1

n−1
∏

b=1

f
(

a, b, ν(a, b)
)

In the intersection of the sets Ra, Cb the distributions have the form

P (π) = α(πb
a)β

(

πb̄
a

)

γ
(

πb
ā

)

δ
(

πb̄
ā

)

,

where α, β, γ, δ are positive functions, and

πb
a denotes the shrunken version of

(

π(1), π(2), π(a)
)

to the set (1, 2,
. . . , b)

πb̄
a denotes the shrunken version of

(

π(1), π(2), π(a)
)

to the set (b + 1,
b + 2, . . . , n)

πb
ā denotes the shrunken version of

(

π(a + 1), π(a + 2), π(n)
)

to the set
(1, 2, . . . , b)

πb̄
ā denotes the shrunken version of

(

π(a + 1), π(a + 2), π(n)
)

to the set

(b + 1, b + 2, . . . , n).

The product of the four functions in P (π) means that random permutations
in the intersection of Ra and Cb have the property that the events in the four
quarters of the chequerboard are conditionally independent whenever the
subsets of rows and columns occupied inside them is given and the occupied
rows and columns in the left upper quarter are conditionally independent
from the ones in the right lower quarter under the condition that the number
of rows and columns is given. (Observe that the number of rows should be
equal to the number of columns.)

Structural zeros in row-free distributions may appear independently:
any conditional probability C(u, V ) may be zero as long as there is at least
one permutation with positive probability. For free distributions structure
zeros may be generated by the parameters f, g, but the intersection of row-
free and column-free distributions with structural zeros is larger than this
set. For n = 4 the uniform distribution concentrated on permutations such
that only the permutations 1234, 2341, 2413, 2431, 3124, 3142, 3241, 4321
is free. However, for any set of the structural parameters f(a, b, c), g(a, b, c)
such that the probabilities of the above eight permutations are positive, all
permutations have positive probabilities.
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Estimation of the parameters of row-free random permutations is
straightforward: the estimators of the conditional probabilities c(u, V ) are
the corresponding conditional relative frequencies. For free random permu-
tations there are two iterative procedures:

– we can use alternating divergence projections on the sets R, C or

– we can apply iterative fitting procedures on the statistics ν(a, b), µ(a, b).

An exact implementation of these algorithms consume n! steps what renders
them to small n-s. Metropolis algorithm and Bayes machine apply both
for generating i.i.d. free samples and estimating model parameters. As an
estimator of the expectations in the likelihood equations we may use the
averages of i.i.d. samples generated by the iteratively changing parameters.

Let M ⊂ N be such that 2 ≤ |M | ≤ n − 2. Let us denote by LM

the set
{

π(i), i ∈ M
}

. We say that the random permutation has the M -
cutting property if the ordered numbers

(

π(i), i ∈ M
)

and
(

π(i), i /∈ M
)

are conditionally independent on LM . Random permutations having M -
cutting property for all M are the simple rook distributions. The number
of model parameters may be reduced by controlling the rank of the matrix A.
The rank has to be at least 2 because if it is equal to 1 then all elements
of A are equal.

Partitions

Once upon a time there was a party with 14 participants labeled by in-
tegers from 1 to 14. As it is usual in parties they formed groups which
were sensed and recorded by devices offered by our modern technology.
The data can be found on the home page of G. Tusnády as SIRP DATA
(http://www.renyi.hu/˜tusnady/). The first part is given in Table 1.

Each record of the data represents one grouping (partition) formed in
the course of the party. The first number means the time in hours when
the actual grouping occurred and the next 14 integers denote the partition.
Each set of a partition is labelled by its smallest number what we call leading
member.

For example

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.900159 1 1 1 4 5 5 5 5 5 5 11 5 11 5
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Table 1. First 24 records of SIRP.DATA

TIME 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.019238 1 1 1 4 5 6 5 6 5 5 5 6 13 5
0.064438 1 1 1 4 5 6 5 6 5 5 5 6 4 5
0.107385 1 1 1 4 5 6 5 6 5 5 5 6 13 5
0.119281 1 1 1 4 5 6 7 6 5 7 7 6 13 7
0.127421 1 1 1 4 5 5 7 5 5 7 7 5 13 7
0.159595 1 1 1 4 5 6 7 6 5 7 7 5 13 7
0.244247 1 1 1 4 5 6 1 6 5 1 1 5 13 1
0.246863 1 1 1 4 5 4 1 4 5 1 1 5 13 1
0.393910 1 2 2 4 5 4 1 4 5 1 1 5 13 1
0.466802 1 1 1 4 5 4 1 4 5 1 1 5 13 1
0.506604 1 1 1 4 5 4 7 4 5 7 7 5 13 7
0.518243 1 1 1 4 5 6 7 6 5 7 7 5 13 7
0.519593 1 1 1 4 5 4 7 4 5 7 7 5 13 7
0.576503 1 1 1 4 5 4 5 4 5 5 5 5 13 5
0.707155 1 1 1 4 5 4 5 4 5 5 11 5 13 5
0.716638 1 1 1 4 5 6 5 6 5 5 11 5 13 5
0.727348 1 1 1 4 5 6 5 6 5 5 11 5 11 5
0.733247 1 1 1 4 5 4 5 4 5 5 11 5 11 5
0.834109 1 1 1 4 5 6 5 6 5 5 11 5 11 5
0.900159 1 1 1 4 5 5 5 5 5 5 11 5 11 5
0.918424 1 1 1 4 5 6 5 6 5 5 11 5 11 5
0.998953 1 1 1 4 5 6 5 6 5 5 11 5 13 5
1.155627 1 1 1 4 5 1 5 1 5 5 11 5 13 5
1.252516 1 1 1 4 5 6 5 6 5 5 11 5 13 5

means that after 0.900159 hours from the beginning of the party the follow-
ing groups were sensed by our detectors: 1 + 2 + 3, 4, 5 + 6 + 7 + 8 + 9 +
10 + 12 + 14, 11 + 13. Poor 4, seemingly a lonely person walked alone, the
noisy central body 5 + 6 + 7 + 8 + 9 + 10 + 12 + 14 was situated around
the dinner table, while 1+2+3 had a very important discussion in a secret
corner and 11 + 13 were playing table tennis. There is a natural way to
order a graph to partitions: the vertices are the participants and they are
connected whenever they belong to the same group. However, partitions
are special graphs, because they contain only disjunct complete subgraphs
called sometime a clique.
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Visualization of partitions. In multidimensional data analysis a general
idea is to compress objects whenever they have something common. The
trouble is that without any constraints the population shrinks to a single
point. We use multidimensional covariance standardization as a constraint:
the data are centered by subtracting their average, dividing them by the
standard deviation and using covariances to keep the scales finite and non-
zero. The effect resembles opening an umbrella: the wires spread out what
the canopy pulls together.

In a good party there are appropriate places for people willing to do
something together. But to use different positions for each subset is pro-
hibitive: there is a combinatorial explosion. We restrict our algorithm to
pairs: all pairs of the participants have same special meeting point and the
groups are located at the average of the positions of their pairs. The formal
description of the algorithm is the following.

Let S be the number of different partitions occurring in the party and
let xk, yk be the coordinates of the point representing the k-th partition
(k = 1, 2, .., S). The initial values of the coordinates are random standard
normal numbers. The iteration consists of the following steps:

Step 1. Opening the umbrella (Schmidt orthogonalization):

x̃k =
xk − x

w(x)
,

where

x =
1

S

S
∑

k=1

xk,

and

w(x) =

√

√

√

√

S
∑

k=1

(xk − x)2;

ỹk =
y∗k − c(xy) ∗ x̃k

w(y)
,
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where

y∗k = yk − y,

y =
1

S

S
∑

k=1

yk,

c(xy) =
S

∑

k=1

y∗k ∗ x̃k,

w(y) =

√

√

√

√

S
∑

k=1

(

y∗k − c(xy) ∗ x̃k

)2
.

Step 2. Positioning pairs of persons (averaging the partitions where
the given pair happens to be in the same group):

ui,j =

∑

k : p(i,k)=p(j,k) x̃k ∗ tk
∑

k : p(i,k)=p(j,k) tk
,

vi,j =

∑

k : p(i,k)=p(j,k) ỹk ∗ tk
∑

k : p(i,k)=p(j,k) tk
,

where p(i, k) denotes the leading person of the group containing the i-th
person in the k-th partition and tk is the duration of the k-th partition.

Step 3. Dynamics (relocating the partitions with the gradient of the
pairs they unite):

xnew
k = x̃k − γ ∗ xxk,

where γ denotes a small positive constant (it controls the speed of the
algorithm) and

xxk =
∑

i,j : p(i,k)=p(j,k)

ui,j ,

ynew
k = ỹk − γ ∗ yyk,

where

yyk =
∑

i,j : p(i,k)=p(j,k)

vi,j .
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The pair potential model. Our data are generated by the distribution

PA(π) =
1

Γ(A)
exp

(

Q(π, A)
)

,

where the potential Q(π, A) is defined by

Q(π, A) =
∑

1≤i<j≤c : π(i)=π(j)

ai,j ,

and
Γ(A) =

∑

exp
(

Q(π, A)
)

is the scaling factor where the summation runs over all partitions π. The
matrix A = ai,j is symmetric and given by Table 2. The maximum of the
potential Q(π, A) is 39.64 and it is attained for the partition

π = {1, 1, 1, 4, 5, 6, 5, 6, 5, 5, 5, 6, 13, 5}.

The distribution can be sampled by the Metropolis algorithm [26], which
is based on a graph where the vertices are the partitions. We say that two
partitions are connected by an edge whenever one is formed by the other
with uniting two of its groups. The price of the edge is the product of the
numbers of persons in the united groups. The distance of two arbitrary
vertices is the price of the cheapest path between them. This is

d(π1, π2) =
n

∑

i=1

n−1
∑

j=1

n
∑

k=j+1

(

ν(i, j)ν(i, k) + ν(j, i)ν(k, i)
)

,

where

ν(i, j) =
n

∑

k=1

I
(

π1(k) = i, π2(k) = j
)

,

where n is the number of persons.

Concerning the partition function Γ(A) one can prove that

EA exp
(

Q(π, B)
)

=
Γ(A + B)

Γ(A)
,

and

Γ(A) ≤
n−1
∏

i=1

n
∏

j=i+1

(

1 + exp(ai,j)
)

,
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Table 2. Model parameters of SIRP.DATA

0.00 −3.08 −0.40 0.23 0.75 −1.23 1.13 −0.02 0.51 −2.62 0.78 2.93 0.05 −2.66
−3.08 0.00 −4.63 1.18 1.43 1.19 4.73 −0.59 2.61 −5.01 2.08 1.94 3.91 1.94
−0.40 −4.63 0.00 4.31 1.65 2.94 −1.17 0.87 −1.37 −0.72 1.66 −0.92 0.19 0.01

0.23 1.18 4.31 0.00 2.15 −1.10 −2.77 1.63 4.13 6.79 6.29 1.51 0.41 2.92
0.75 1.43 1.65 2.15 0.00 −0.06 −2.31 −0.35 −1.52 −2.30 2.48 −2.23 2.25 −0.72

−1.23 1.19 2.94 −1.10 −0.06 0.00 2.75 −4.47 1.29 −4.41 0.38 −4.07 3.75 2.54
1.13 4.73 −1.17 −2.77 −2.31 2.75 0.00 −2.86 −2.50 −6.20 −3.35 0.30 3.98 −0.68

−0.02 −0.59 0.87 1.63 −0.35 −4.47 −2.86 0.00 −1.16 3.12 −0.27 3.61 5.84 2.25
0.51 2.61 −1.37 4.13 −1.52 1.29 −2.50 −1.16 0.00 3.29 5.46 −1.05 1.64 −7.29

−2.62 −5.01 −0.72 6.79 −2.30 −4.41 −6.20 3.12 3.29 0.00 −5.14 −2.20 −1.12 −1.77
0.78 2.08 1.66 6.29 2.48 0.38 −3.35 −0.27 5.46 −5.14 0.00 5.45 −0.32 −4.20
2.93 1.94 −0.92 1.51 −2.23 −4.07 0.30 3.61 −1.05 −2.20 5.45 0.00 3.07 1.74
0.05 3.91 0.19 0.41 2.25 3.75 3.98 5.84 1.64 −1.12 −0.32 3.07 0.00 2.82

−2.66 1.94 0.01 2.92 −0.72 2.54 −0.68 2.25 −7.29 −1.77 −4.20 1.74 2.82 0.00

but we do not have an explicit form for Γ(A). We generated the matrix A as
random Gaussian number with zero expectation and standard deviation 2.5
thus the model has the flavor of spin glass processes: there is an abundance
of local maxima of the potential and the process spends the majority of the
time in the potential valleys with short time jumps between them. This
might be the case with real world parties where the different partitions are
evaluated by the well-being of the persons inside the actual groups. Our
model is the simplest possible one because it is based on pair-relations only.
Generalization to higher order interactions is straightforward.

Estimation of model parameters. The pair-potentials ai,j can be esti-
mated by the maximum likelihood equation (see in [2], [16])

1

S

∑

k : p(i,k)=p(j,k)

1 = PA

(

π(i) = π(j)
)

1 ≤ i < j ≤ n,

or by simple weighted linear regression. The probabilities bi,j = PA

(

π(i) =
π(j)

)

are given in Table 3.

Corresponding relative frequencies βi,j are given in Table 4. The pair
potential model is loglinear: the logarithms of probabilities PA(π) are linear
functions of the model parameters ai,j . There is no direct relation between
ai,j and bi,j , and the βi,j relative frequencies are closer to the theoretical
probabilities bi,j than the estimators of ai,j to ai,j . The estimation of
the model parameters is a typical ill-conditioned problem and to compare
different data sets, the bi,j parameters may be more useful.

The specific feature of our data is that successive partitions can be either
the union or the splitting of the previous one. For the first part of our data
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Table 3. Probabilities of equivalence

.000 .750 .710 .018 .075 .087 .238 .108 .111 .413 .319 .024 .022 .294

.750 .000 .937 .006 .006 .051 .080 .085 .035 .256 .161 .034 .010 .123

.710 .937 .000 .001 .025 .029 .101 .066 .068 .249 .155 .055 .016 .149

.018 .006 .001 .000 .005 .142 .011 .087 .001 .000 .000 .076 .301 .000

.075 .006 .025 .005 .000 .279 .541 .287 .672 .415 .342 .494 .002 .530

.087 .051 .029 .142 .279 .000 .161 .663 .139 .208 .148 .548 .001 .014

.238 .080 .101 .011 .541 .161 .000 .279 .452 .792 .776 .129 .004 .682

.108 .085 .066 .087 .287 .663 .279 .000 .257 .167 .210 .244 .000 .101

.111 .035 .068 .001 .672 .139 .452 .257 .000 .278 .268 .363 .006 .678

.413 .256 .249 .000 .415 .208 .792 .167 .278 .000 .816 .123 .010 .592

.319 .161 .155 .000 .342 .148 .776 .210 .268 .816 .000 .021 .058 .588

.024 .034 .055 .076 .494 .548 .129 .244 .363 .123 .021 .000 .005 .156

.022 .010 .016 .301 .002 .001 .004 .000 .006 .010 .058 .005 .000 .002

.294 .123 .149 .000 .530 .014 .682 .101 .678 .592 .588 .156 .002 .000

Table 4. Relative frequencies of equivalence

.000 .773 .737 .012 .077 .084 .243 .100 .111 .423 .326 .023 .016 .297

.773 .000 .948 .004 .006 .054 .085 .079 .032 .266 .167 .030 .007 .130

.736 .948 .000 .001 .027 .030 .105 .058 .066 .259 .161 .055 .011 .153

.012 .004 .001 .000 .002 .118 .011 .070 .000 .000 .000 .064 .282 .000

.077 .006 .027 .002 .000 .292 .563 .314 .712 .430 .366 .510 .001 .554

.084 .054 .030 .118 .292 .000 .166 .688 .154 .208 .151 .566 .000 .015

.243 .085 .105 .011 .563 .166 .000 .287 .483 .794 .783 .138 .001 .706

.100 .079 .058 .070 .314 .688 .287 .000 .274 .173 .213 .274 .000 .108

.111 .032 .066 .000 .712 .154 .483 .274 .000 .307 .300 .384 .003 .692

.423 .266 .259 .000 .430 .208 .794 .173 .307 .000 .823 .126 .007 .610

.326 .169 .161 .000 .366 .151 .783 .213 .300 .823 .000 .029 .052 .607

.023 .030 .055 .064 .510 .566 .138 .274 .384 .126 .029 .000 .002 .165

.016 .007 .011 .282 .001 .000 .001 .000 .003 .007 .052 .002 .000 .001

.297 .130 .153 .000 .554 .015 .706 .108 .692 .610 .607 .165 .001 .000

the operations are given in Table 5. Having the information at hand that
the data were generated by the Metropolis [26] algorithm, one may develop
more efficient estimators. The abundance of inverted pairs of union and
splitting among the operators is remarkable here.
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Table 5. Operators of data in Table 1

NAME FIRST GROUP SIGN SECOND GROUP

UNION 4 + 13
SPLITTING 4 ‖ 13
SPLITTING 5, 9 ‖ 7, 10, 11, 14
UNION 5, 9 + 6, 8, 12
SPLITTING 5, 9, 12 ‖ 6, 8
UNION 1, 2, 3 + 7, 10, 11, 14
UNION 4 + 6, 8
SPLITTING 1, 7, 10, 11, 14 ‖ 2, 3
UNION 1, 7, 10, 11, 14 + 2, 3
SPLITTING 1, 2, 3 ‖ 7, 10, 11, 14
SPLITTING 4 ‖ 6, 8
UNION 4 + 6, 8
UNION 5, 9, 12 + 7, 10, 11, 14
SPLITTING 5, 7, 9, 10, 12, 14 ‖ 11
SPLITTING 4 ‖ 6, 8
UNION 11 + 13
UNION 4 + 6, 8
SPLITTING 4 ‖ 6, 8
UNION 5, 7, 9, 10, 12, 14 + 6, 8
SPLITTING 5, 7, 9, 10, 12, 14 ‖ 6, 8
SPLITTING 11 ‖ 13
UNION 1, 2, 3 + 6, 8
SPLITTING 1, 2, 3 ‖ 6, 8

Independent participants. One may ask at this point whether any sim-
pler stochastic model would be able to generate the same βi,j frequencies.
In the above model the participants are intrinsically correlated because the
whole matrix A is involved forming the probabilities of groups. The follow-
ing model emerges from the idea of independence. Let us offer the possibility
to the participants of the party to choose independently from finitely many
options, like:

– to have a delicate food,

– to play hide and seek,

– to watch TV,

– to discuss Shakespeare,
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– to make a small excursion.

With the program in hand, people having their preferences make their
choices independently in the programs and the groups are formed in a
natural way by the programs. Let us denote by w(i, r) the probability
that the i-th participant chooses the r-th possibility then

P
(

π(i) = π(j)
)

=
R

∑

r=1

w(i, r)w(j, r),

where R denotes the number of possibilities.

Nonnegative matrix factorization was investigated in [13]. We have the
constraint

R
∑

r=1

w(i, r) = 1, 1 ≤ i ≤ n,

which leads to a poor fit of our data. Interestingly, dropping the constraint,
the frequencies βi,j has a good factorization with w(i, r) given in the Table
6. If the number of participants goes to infinity, the size of groups is the
most important feature of the distribution. It may remain bounded or slowly
increasing as it is the case in politics when the groups are the political parties
having the tendency to become of small number mostly because preference
choice. The second possibility is the square root law: the size of groups
and their number both are around the square root of n. Third possibility is
represented in chemistry: the size of groups remains small and the number
of groups increases with c for example for proteins. In the independent
model the situation is easily controlled by R but in the case of pair-potential
model we do not know the answer. Our guess is the third possibility on the
argument that Q(π, A) may achieve the size n2 for π with small groups.
A natural way to control the size of groups is to add a constant to the
pair-potentials, i.e. to apply the pair-potentials ãi,j = ai,j + ∆. Negative
∆ shrinks the groups and positive ∆ increases them. When all ãi,j become
positive, all participants are in the same group with large probability. As
a matter of fact, independence is not far from the pair-potential model: it
is equivalent to the random graph model conditioned on the restriction to
graphs representing only partitions. For large c we substituted all of the
ai,j-s with zero and used the parameter ∆ only. According to our computer
experiments ∆ = 0.03 seems to be the critical value for n = 10 000.
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Table 6. Factorization of equivalence probabilities

0.23545 0.77188 – 0.06091 0.01306 0.05126 0.01362
– 0.99511 0.00546 0.03724 0.00529 – –

0.00937 0.94614 0.03934 0.00191 0.00865 0.02693 –
– – 0.01632 0.10669 0.21538 – –

0.25981 – 0.62682 0.03831 – 0.37697 0.45547
0.04035 0.01241 0.37992 1.09130 – – –
0.72835 0.08377 0.12272 0.08269 – 0.14629 0.51251

– 0.05948 0.16962 0.56842 – 0.00001 0.41019
0.15838 0.03633 0.34507 0.02085 0.00001 0.63947 0.46404
0.86278 0.26262 0.15723 0.09302 0.00299 – 0.21790
0.79914 0.16356 – 0.10403 0.03747 0.00339 0.34943

– 0.01224 0.65654 0.28753 0.00381 0.22826 –
– – – – 1.30074 – 0.00391

0.60732 0.13486 – – – 0.72583 0.26880

Checkerboard model. Parties and hypergraphs are appeared as early
as 1941 in the literature [11] where 18 ladies attending on 14 parties are
investigated. It is a special case of partitions when only two groups are
considered, whether each person is present or absent in a party. In the
next table we show the application of checkerboard model to the Table 7.
We reordered slightly the ladies and parties and grouped them into 8 and
6 clusters respectively. The probabilities that a lady belonging to the ith
cluster takes part in the party belonging to the jth cluster are given in
Table 8.

There are 22 pairs of (i, j)-s with probability zero, for example i = 3,
j = 6, accordingly ladies 5, 6, 7 did not attended in parties 10, 12, 13, 14.
There are 12 pairs of (i, j)-s with probability one, for example i = 1, j = 2.
accordingly ladies 1, 3 attended in parties 3, 5, 6. For the remaining 14
pairs the range of probabilities are between 0.11 and 0.83. There is only
one pair (i = 7, j = 4) with probability 0.5 which means the maximal uncer-
tainty. In microarray analysis this is the so-called chequerboard structure.
We characterize the uncertainty of the data with the reciprocal of the delog-
arithmized averaged log-likelihood which is 1.205627. In case this quantity
equals 2, the uncertainty is maximal, for all (i, j) pairs the probabilities are
equal to 0.5. We can test the power of the model by mixing randomly the
bits in the data. In this case the uncertainty is between 1.36 and 1.42.
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Table 7. Davis – Gardner – Gardner data

1 2 4 3 5 6 7 8 9 11 10 12 13 14
1 1 1 2 2 2 3 3 4 5 6 6 6 6

1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0
3 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0
2 2 1 1 0 1 1 1 1 1 0 0 0 0 0 0
4 2 1 0 1 1 1 1 1 1 0 0 0 0 0 0
5 3 0 0 1 1 1 0 1 0 0 0 0 0 0 0
6 3 0 0 0 1 1 1 0 1 0 0 0 0 0 0
7 3 0 0 0 0 1 1 1 1 0 0 0 0 0 0
8 4 0 0 0 0 0 1 0 1 1 0 0 0 0 0
9 4 0 0 0 0 1 0 1 1 1 0 0 0 0 0

10 5 0 0 0 0 0 0 1 1 1 0 0 1 0 0
11 5 0 0 0 0 0 0 0 1 1 0 1 1 0 0
16 5 0 0 0 0 0 0 0 1 1 0 1 1 0 0
12 6 0 0 0 0 0 0 0 1 1 0 1 1 1 1
13 6 0 0 0 0 0 0 1 1 1 0 1 1 1 1
14 7 0 0 0 0 0 1 1 0 1 1 1 1 1 1
15 7 0 0 0 0 0 0 1 1 0 1 1 1 1 1
17 8 0 0 0 0 0 0 0 0 1 1 0 0 0 0
18 8 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Table 8. Structural probabilities of checkerboard model

1 2 3 4 5 6
1 0.83 1 0.75 1 0 0
2 0.67 1 1 0 0 0
3 0.11 0.78 0.67 0 0 0
4 0 0.33 0.75 1 0 0
5 0 0 0.67 1 0 0.42
6 0 0 0.75 1 0 1
7 0 0.17 0.75 0.50 1 1
8 0 0 0 1 1 0

Cluster numbers 8 and 6 seem to be large, considering the numbers
of ladies and parties but with smaller cluster numbers we were unable
to present satisfactory clustering. In statistical investigations, in cluster
analysis partitions appear mostly in the following two different aspects:
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– we may form groups from the investigated objects on the basis that any
connection is possible only inside the groups

– we may form the groups of similar objects

The second possibility is used in checkerboard model. Its extension to the
pair-potential model is a numbering f(k), k = 1, . . . , n, of the participants
such that

– 1 ≤ f(k) ≤ g; k = 1, . . . , n

– for all 1 ≤ j ≤ g there is a 1 ≤ i ≤ c such that f(i) = j

– there is a g ∗ g matrix D with entries du,v such that ai,j = df(i),f(j) for
all 1 ≤ i < j ≤ n

this is called blown-up of the matrix D into matrix A. We investigated
partition-clustering in [30] and interactive networks in [31]. A widely inves-
tigated process on partitions is Kingman’s coalescent process [19]. In the
Table 9. we give the groups where the first participants spent the most time.

The number of partitions. There is a recursion for Pn which denotes the
number of partitions of n elements:

Pn+1 =
n

∑

j=0

(

n

j

)

Pj , n = 0, 1, . . . ,

where P0 = 1. (Especially P14 = 190, 899, 322.) There is an explicit form
as well for Pn,

Pn =
n

∑

j=1

jn δ(n − j)

j!
,

where

δ(k) =

k
∑

s=0

(−1)s

s!
.
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Table 9. Most frequent partitions in SIRP.DATA

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7271.18 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1370.10 1 1 1 0 0 0 0 0 0 1 0 0 0 0
1134.26 1 1 1 0 0 0 1 0 0 1 1 0 0 1
1071.91 1 0 0 0 0 0 1 0 0 1 1 0 0 1
724.33 1 1 1 0 0 0 0 0 0 1 1 0 0 1
713.87 1 0 0 0 1 0 1 0 1 1 1 0 0 1
666.55 1 1 1 0 0 0 0 0 0 1 1 0 1 0
654.82 1 1 1 0 0 0 0 0 0 1 1 0 0 0
536.01 1 1 1 0 0 0 0 1 0 0 0 0 0 0
445.13 1 0 0 0 1 0 1 0 0 1 1 0 0 1
407.04 1 0 0 0 0 0 0 0 0 0 1 0 0 1
329.61 1 1 1 0 0 1 0 0 0 1 0 1 0 0
313.40 1 1 1 0 0 0 0 0 1 0 0 0 0 1
261.53 1 0 0 0 0 0 0 0 1 0 0 0 0 1
241.93 1 1 0 0 0 1 0 1 0 1 0 0 0 0
229.54 1 0 0 0 0 0 0 0 0 0 0 0 0 0
204.26 1 0 0 0 0 1 1 1 0 1 1 0 0 0
168.22 1 0 0 0 0 1 0 1 0 0 0 0 0 0
159.01 1 1 1 0 0 0 1 0 0 1 1 0 0 0
154.32 1 0 0 0 0 0 1 0 1 1 1 0 0 1
118.99 1 1 1 0 0 1 0 0 0 1 0 0 0 0
118.45 1 1 0 0 0 0 0 0 0 0 0 0 0 0
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random graphs, The Annals of Applied Probability, 16 (2006), 295–309.

[19] J. F. C. Kingman, Origins of the coalescent: 1974–1982, Genetics, 156 (2000),
1461–1463.

[20] W. König, Orthogonal polynomial ensembles in probability theory, Probability

Survey, 2 (2005), 385–447.

[21] L. Lovász and B. Szegedy, Szemerédi’s regularity lemma for the analyst, manuscript
(2006).

[22] C. L. Mallows, Non null ranking models I. Biometrika, 44 (1957), 114–130.

[23] B. D. McKay, The expected eigenvalue distribution of a large regular graph, Linear

Algebra and its Applications, 40 (1981), 203–216.

[24] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions, John Wiley
&Sons (New York, 1997).

[25] M. L. Mehta, Random matrices, 3rd edn, New York Cademic Press (2004).



64 V. Csiszár, L. Rejtő and G. Tusnády

[26] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,
Equations of state calculations by fast computing machines, Journal of Chemical

Physics, 21 (1953), 1087–1092.

[27] T. Nepusz, L. Négyessy, G. Tusnády and F. Bazsó, Predicting key areas and un-

charted connections in the cerebral cortex using Szemerédi’s regularity lemma, man-
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Appendix

sign: vertex label d: degree, a: asset, w: wealth, ni: i-th neighbor

sign d a w n1 n2 n3 n4 n5 n6 sign d a w n1 n2 n3 n4 n5

A 6 109 321 A1 A2 A3 A4 A5 A6 u 5 16 16 f5 g5 h5 i5 j5
B 6 134 403 B1 B2 B3 B4 B5 B6 v 5 17 12 p5 q5 r5 s5 t5
C 6 152 431 C1 C2 C3 C4 C5 C6 w 5 16 12 f6 g6 h6 i6 j6
D 6 149 421 D1 D2 D3 D4 D5 D6 x 5 17 16 p6 q6 r6 s6 t6
E 6 167 459 E1 E2 E3 E4 E5 E6 a6 4 0 0 05 A2 A6
F 6 159 451 F1 F2 F3 F4 F5 F6 B1 4 0 0 b2 l1 c4
G 6 158 440 G1 G2 G3 G4 G5 G6 B2 4 0 0 b2 l2 d4
H 6 143 428 H1 H2 H3 H4 H5 H6 b2 4 0 0 B3
I 6 151 397 I1 I2 I3 I4 I5 I6 c1 4 0 0 25 35 C1
J 6 155 467 J1 J2 J3 J4 J5 J6 c2 4 0 0 08 11 C2
a 5 16 20 a1 b1 c1 d1 e1 D1 4 0 0 d3 d1 n1
b 5 15 20 k1 l1 m1 n1 o1 d2 4 0 0 11 D2 02
c 5 17 8 a2 b2 c2 d2 e2 n2 4 0 0 11 26 D2
d 5 16 16 k2 l2 m2 n2 o2 D3 4 0 0 d3 a1 n3
e 5 17 12 a3 b3 c3 d3 e3 d3 4 0 0 26
f 5 15 24 k3 l3 m3 n3 o3 e3 4 0 0 03 14 E3
g 5 15 20 a4 b4 c4 d4 e4 f1 4 0 0 25 28 F1
h 5 15 24 k4 l4 m4 n4 o4 F2 4 0 0 f3 f2 s3
i 5 15 24 a5 b5 c5 d5 e5 f3 4 0 0 08 F3
j 5 12 16 k5 l5 m5 n5 o5 q2 4 0 0 05 07 11
k 5 16 16 a6 b6 c6 d6 e6 g4 4 0 0 04 28 G4
l 5 15 24 k6 l6 m6 n6 o6 g6 4 0 0 07 14 G6
m 5 17 12 f1 g1 h1 i1 j1 q6 4 0 0 08 G6 02
n 5 15 12 p1 q1 r1 s1 t1 r2 4 0 0 H2 H3 40
o 5 14 16 f2 g2 h2 i2 j2 H4 4 0 0 r4 g2 h4
p 5 18 12 p2 q2 r2 s2 t2 r4 4 0 0 04 28
q 5 16 16 f3 g3 h3 i3 j3 r5 4 0 0 03 13 H5
r 5 13 16 p3 q3 r3 s3 t3 r6 4 0 0 13 35 H6
s 5 16 20 f4 g4 h4 i4 j4 s2 4 0 0 08 13 I2
t 5 16 16 p4 q4 r4 s4 t4 i5 4 0 0 07 25 I5
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Appendix (continued)

sign d a w n1 n2 n3 n4 sign d a w n1 n2 n3 n4 sign d a w n1 n2

s5 4 0 0 35 I1 I5 32 4 4 0 a5 l3 d1 f4 E5 3 0 0 e5
j1 4 0 0 03 07 J1 33 4 4 0 q5 h3 s3 t6 o5 3 0 0 A4
t1 4 0 0 26 J1 40 34 4 4 0 k2 b1 o4 g5 E6 3 0 0 e6 o6
J5 4 0 0 i1 j5 t5 35 4 0 0 h3 F1 3 0 0 p1
j6 4 0 0 05 14 J6 36 4 4 0 m2 p1 g1 r1 F3 3 0 0 p3
01 4 4 0 m6 p2 t4 j5 37 4 4 0 l4 m3 o6 h6 p4 3 0 0 F4
03 4 0 0 a2 38 4 4 0 d4 n6 o2 m5 f5 3 0 0 F5
04 4 0 0 a4 g5 39 4 4 0 f4 q1 g2 i2 p5 3 0 0 H2
05 4 0 0 p6 A1 3 0 0 k1 l5 f6 3 0 0 F6
06 4 4 0 o3 h4 h5 i1 A2 3 0 0 k2 g1 3 0 0 G1
09 4 4 0 a4 l1 c6 f5 a3 3 0 0 A3 g3 3 0 0 40
10 4 4 0 l4 b5 e1 i6 k3 3 0 0 E5 q3 3 0 0 G5
12 4 4 0 e2 p3 g3 t2 k5 3 0 0 A5 G4 3 0 0 q4
13 4 0 0 j3 A6 3 0 0 k6 G5 3 0 0 q5
14 4 0 0 q1 b1 3 0 0 D4 H1 3 0 0 r1 j4
15 4 4 0 a3 k4 n1 d6 B3 3 0 0 b3 h1 3 0 0 J2
16 4 4 0 o1 p6 j2 j3 B4 3 0 0 b4 o2 h2 3 0 0 G2
17 4 4 0 n3 e1 e6 q4 b5 3 0 0 B5 H3 3 0 0 t6
18 4 4 0 b3 n4 s1 t5 B6 3 0 0 l6 e4 r3 3 0 0 J3
19 4 4 0 k1 b4 h1 n5 C1 3 0 0 m1 h5 3 0 0 I6
20 4 4 0 a2 l5 c5 o5 C2 3 0 0 m2 h6 3 0 0 I4
21 4 4 0 m1 p5 i3 s6 C3 3 0 0 c3 m3 I1 3 0 0 s1
22 4 4 0 k5 k6 l2 c4 m4 3 0 0 C4 I2 3 0 0 i2
23 4 4 0 a1 a5 q3 t3 c5 3 0 0 D6 i3 3 0 0 02
24 4 4 0 m6 p2 s4 s6 c6 3 0 0 E1 I4 3 0 0 s4
25 4 0 0 b6 n4 3 0 0 i4 I6 3 0 0 i6
26 4 0 0 d6 d5 3 0 0 D5 j2 3 0 0 G3
27 4 4 0 m4 e4 p4 i4 D6 3 0 0 n6 t2 3 0 0 I3
28 4 0 0 k4 E1 3 0 0 o1 J3 3 0 0 t3
29 4 4 0 b6 e5 f6 j4 e2 3 0 0 E2 t4 3 0 0 J4
30 4 4 0 k3 l6 c3 f2 E3 3 0 0 o3
31 4 4 0 l3 d5 h2 r3 o4 3 0 0 E4


