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Abstract

DCT Given a finite set of points in an Euclidean space the spanning tree is
a tree of minimal length having the given points as vertices. The length of the tree
is the sum of the distances of all connected point pairs of the tree. The clustering
tree with a given length of a given finite set of points is the spanning tree of an
appropriately chosen other set of points approximating the given set of points with
minimal sum of square distances among all spanning trees with the given length.

DCM A matrix of real numbers is said to be column monotone orderable if
there exists an ordering of columns of the matrix such that all rows of the matrix
become monotone after ordering. The monotone sum of squares of a matrix is the
minimum of sum of squares of differences of the elements of the matrix and a column
monotone orderable matrix where the minimum is taken on the set of all column
monotone orderable matrices. Decomposition clusters of monotone orderings of a
matrix is a clustering of the rows of the matrix into given number of clusters such
that the sum of monotone sum of squares of the matrices formed by the rows of the
same cluster is minimal.

DCP A matrix of real numbers is said to be column partitionable if there
exists a partition of the columns such that the elements belonging to the same
subset of the partition are equal in each row. Given a partition of the columns of
a matrix the partition sum of squares of the matrix is the minimum of the sum
of square of differences of the elements of the matrix and a column partitionable
matrix where the minimum is taken on the set of all column partitionable matrices.
Decomposition of the rows of a matrix into clusters of partitions is the minimization
of the corresponding partition sum of squares given the number of clusters and the
sizes of the subsets of the partitions.
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1. Introduction

The typical data structure in statistical investigation is a matrix. Data that
we have in mind have features in common with a questionnaire. The rows are the
questions that the investigator poses concerning an investigated phenomena, and
the columns correspond to the answers of the different subjects. In microarray
analysis the questions are genes or clones, and the answers are the expression levels
of the genes in different cell types or under different conditions ([5], [6], [20], [25],
[26]). Clustering of microarray measurements means grouping the elements by rows
and columns. Grouping by rows reveals the structure and organization of the basic
elements of the cell (the enzymes, the membranes, the energy buffers, etc.), while
grouping by columns leads to an understanding of the dynamics of life in the cell.
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Working with microarray measurements we developed new clustering methods that
offer novel insights into the structure of genes and their dynamics. In this paper we
present three different methods: tree clustering, monotone clustering, and partition
clustering. Each has its special power to uncover some hidden property of the data.
Tree clustering is a special case of the deconvolution problem where an unknown
multidimensional distribution is estimated from a sample corrupted by additive
Gaussian noise. Partition clustering is an extension of a stochastic model used in
graph theory and it is related to simultaneous clustering of genes and conditions
developed in recent years. The idea of monotone clustering is new, thus we describe
it in more details.

2. Decomposition of clusters forming a tree

2.1. Deconvolution problem

Let T be an Euclidean tree in the p-dimensional Euclidean space, it is a union
of connected multidimensional segments without cycles:

T =
⋃

(a,b)∈E
S(V (a), V (b)),

where E is a set of edges and V is a finite set of vertices. The abstract set V is
represented by the set of multidimensional points V and the segment S(V0, V1) is
the multidimensional interval

S(V0, V1) =
⋃

0≤t≤1

{Vt = (1 − t)V0 + tV1}

joining the points V0, V1. We call the Euclidean tree T the representation of the
abstract or graph theoretical tree consisting of V and E . Let X be the uniform
distribution on T , that is X is a mixture of uniform distributions on the segments
of T with mixing probabilities proportional to the length of the segments. Let us
suppose that we have an X1, . . . , Xn iid sample from X but the sample elements
cannot be observed directly, instead we have a sample

Yi = Xi + σZi, i = 1, . . . , n,

where σ is a positive constant and the Zi-s are independent standard normal ran-
dom variables, that is the coordinates of the Zi-s are independent one dimensional
Gaussian random variables, and (X1, . . . , Xn) and (Z1, . . . , Zn) are independent.

The deconvolution problem is to estimate T from a sample Y1, . . . , Yn. This is a
special case of a general problem where the distribution of X is not specified. In the
general setting consider the set of n-dimensional vectors F = (f(Y1), . . . , f(Yn)) ,
where f is the density function of the sample elements. The set F is convex and
bounded in the n-dimensional Euclidean space. The convexity follows from the fact
that we can swap the mixing of vectors for mixing of X-distributions.
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The log-likelihood function L =
∑n

i=1 log(f(Yi)) is a strictly concave function
on F . Thus the n-dimensional vector f∗ corresponding to the maximum likelihood
estimator is uniquely determined. According to Minkowski theorem, as any point of
F , f∗ is a convex combination of n+ 1 extremal points of F . The extremal points
of F correspond to X-s concentrated on one single point. Thus the maximum
likelihood estimator of the unknown distribution of X is concentrated on n + 1
points.

To find numerically the maximum likelihood estimator the EM-algorithm ap-
plies. For large sample size n we can use the uniform distribution on the sample,
that is the empirical distribution of the sample, as a starting distribution. Perhaps,
the empirical characteristic function can be used, however, further properties are
unknown. We met this problem in astronomy ([1]), where the unknown distribution
of X is located on an unknown segment. The speed of convergence of the estimator
of the unknown distribution of X was determined by Halász [14]. Later his theorem
was rediscovered in paper [28]. The speed of convergence is surprisingly slow, it is
1/ logn instead of 1/

√
n. The case when X is uniformly distributed on a simplex

is discussed by Perczel et al. [21], decomposition of mixtures problems of army
locators was discussed in [22].

In the previous discussion the variance σ was supposed to be known which
is not the case in practice. It can be estimated in the usual way as the sum of
square of errors but it can not be too small: our proposition is 10∆/n as a lower
bound for σ where ∆ is the diameter of the sample. The overestimation of σ
has a smoothing effect on the distribution of X . We have no version of the EM-
algorithm applicable to direct estimation of the unknown tree, hence we substitute
the maximum likelihood method with the least square one. We approximate the
likelihood of a sample point by

1
Lσp−1

exp
(
− d2

2σ2

)
,

where L denotes the length of the tree, p is the dimension, and d is the distance of
the sample point from the tree.

2.2. Least square estimator

Imagine that the sample elements Yi, i = 1, . . . , n are towns in a multidimen-
sional universe and the unknown tree is a highway system to be built. The towns
will be connected to the highway system with segments S(Yi, Ui), where Ui is the
closest point of the highway system to the town Yi. The total travelling cost is

C(T ) = h log(L) +
1
n

n∑
i=1

d2(Yi, Ui),

where L =
∑

(a,b)∈E d(V (a), V (b)) is the total length of the highway, d denotes
the Euclidean distance, and h is a positive constant. The highway problem is to
minimize C(T ) for given Yi-s and h.
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Given a tree T a next aspirant is the spanning tree of the set U1, . . . , Un

to minimize C(T ). Without any smoothing this step is not effective in itself. A
possible smoothing is the use of trees with fixed number k of vertices, where k is
much more smaller then n. Fixing the number of vertices any optimization method
is applicable while we tacitly use the spanning tree of vertices. An initial set of
vertices is provided by k-means clustering. In a certain sense tree clustering is an
extension of k-means clustering: in both cases the sample elements are approximated
by a structured center. In k-means clustering the center is a finite set and in tree
clustering it is the tree. In McQueen’s algorithm for k-means clustering two steps
are alternating:

– assignment: having a center the sample elements are ordered into new clusters
– centering: having a clustering of the sample elements the new cluster centrums

are calculated as averages.
In tree clustering the assignment step is finding the closest points Ui to the sample
elements Yi on the tree T . We do not see how can we build up a new tree with given
number of vertices from the Ui-s. Each Ui is located on one edge (ai, bi) of T and
it is defined by a parameter 0 ≤ ti ≤ 1 on S(V (ai), V (bi)). The centering problem
is to find an appropriate representation of T using the abstract set {(ai, bi, ti),
i = 1, . . . , n}.

2.3. Testing tree structures

Although maximum likelihood estimator and a minimum of the cost function
C(T ) under given constraints exist for any set of points the hypothesis that the
distribution of X is uniform on a tree has to be tested. The test statistics is
the difference between the free and the tree maximum likelihoods. In practice we
generate the cut point of the statistics applying bootstrapping.

2.4. Reconstruction of Kauffman networks
applying trees

The tree structure as dendrogram appears in hierarchical clustering. Tech-
nically a dendrogram is different from tree clustering, but in spirit both methods
lead to similar structure of the clusters. The ultimate goal in microarray analysis is
to discover gene networks and the interaction structure of genes. In paper [24] we
considered 280 different genes under 28 different conditions and the structure built
by tree clustering was used for gene network building. In Kauffman’s network the-
ory ([16], [23]) gene interactions are modelled by Boolean functions. Interestingly
the tree structure appears in the Boolean functions as well (see [17], where the new
class of Boolean functions is called nested canalyzing ones).
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3. Decomposition clusters of monotone orderings

3.1. Numbering the columns

A matrix is a real valued function on the Cartesian product of two finite sets.
Let us denote the first set by R, it is the set of rows, and the second one by C, which
is the set of columns. For any pair of element r ∈ R, c ∈ C let us denote by a(r, c)
the value of the function, which is the element of the matrix A in row r and column
c. Let us denote the number of elements of the set R by n and that of C by p. A
numbering of the columns of a matrix is an invertible function mapping the set C
into the set of the first p positive integers:

π : C → {1, . . . , p}.

We denote the number assigned to the element c ∈ C by π(c). For all c ∈ C, π(c)
is an integer between 1 and p and any integer between 1 and p appears exactly
once among the numbers π(c), the function π is one-to-one. Let us denote by ci the
element of C for which π(ci) = i, 1 ≤ i ≤ p. We say that a numbering π is monotone
if the sequences

ti = a(r, ci), i = 1, . . . , p

are monotone for all r ∈ R. We say that a matrix is column monotone orderable if
there exists a monotone numbering of the columns of the matrix.

Observe that our terminology incorporates some ambiguity coming from the
fact that usually we imagine the columns and rows of a matrix as something be-
ing already ordered. When they are ordered, the monotone numbering means a
reordering. The crucial step here is the numbering: in the beginning the columns
are labelled by a simple character c, after the numbering we denote them by ci.
Accordingly, we imagine that the set of columns has no order at all. The ordering
or numbering is our task. If there is a monotone numbering then, in a certain sense,
it is a natural order of the columns.

Let us denote the set of column monotone orderable matrices by M(C,R).
The monotone sum of squares of a matrix A is the minimum of the sum∑

r∈R, c∈C
(a(r, c) −m(r, c))2

taken on M ∈ M(R, C), where m(r, c) stands for the element of M in row r and
column c. We denote this quantity by W (A):

W (A) = min
M∈M(R,C)

∑
r∈R, c∈C

(a(r, c) −m(r, c))2.

Monotone sum of squares of column monotone orderable matrices is zero. For
other matrices it is strictly positive. We shall denote by π(A) any numbering with
monotone sum of squaresW (A). This is not uniquely defined. We shall refer to π(A)
as optimal numbering of A. One natural ambiguity here comes from monotonicity
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itself: a monotone sequence may be either decreasing or increasing. Thus for any
monotone numbering π the numbering

ν(c) = p+ 1 − π(c), c ∈ C

is also monotone. If C itself is the set of the first p positive integers, then the
numbering π is a permutation and has an inverse π−1 that is defined by π−1(π(i))= i
for all 1 ≤ i ≤ p.

If the set of rows R has only one element, then the matrix is called a row
vector. Any matrix with only one row is monotone orderable. For any numbering
π of the columns of the matrix A and any row

t = (ti = a(r, ci), i = 1, . . . , p)

listing the elements of the row according to the numbering π. The monotone regres-
sion of the sequence t is the monotone sequence m = (mi, 1 ≤ i ≤ p) minimizing
the quadratic error

p∑
i=1

(ti −mi)2.

We shall denote the minimum by wπ(r) and the sum of the minimums taken for all
rows will be denoted by Wπ(A):

Wπ(A) =
∑
r∈C

wπ(r) =
∑
r∈C

min
m

p∑
i=1

(ti −mi)2.

We gather the minimizing row vectors m into a matrix Mπ. This matrix will be
referred as the monotone approximation of A with respect to the ordering π. As
it is easily seen, W (A) is the minimum of Wπ(A) taken on all numberings. The
monotone regressions of the rows according to the optimal numbering π(A) form
together the monotone matrix M minimizing the sum

∑
r∈R,c∈C(a(r, c)−m(r, c))2.

Clustering of the rows of a matrix is a function ρ mapping the set R of the
rows of the matrix into the set of first k positive integers:

ρ : R → {1, . . . , k},

where k, the number of clusters is a given number between 1 and n. We say that k
is the size of ρ. Let us denote the number assigned to the element r ∈ R by ρ(r).
All the numbers ρ(r) are integers between 1 and k and all integers between 1 and
k appear at least once among the numbers ρ(r), the function ρ is not a one-to-one
mapping of R to the set {1, . . . , k}, if k < n. For any 1 ≤ i ≤ k let us denote by Ri

the subset of R having the number i : ρ(r) = i for all r ∈ Ri. Let us denote by Ai

the matrix formed by the rows r ∈ Ri. As a function Ai of the Cartesian product
of Ri and C is a restriction of the function A on the Cartesian product of R and C:
it has the same columns as A but it contains only the rows numbered by i.
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Decomposition clusters of monotone orderings of the matrix A is a clustering
of the rows of A minimizing the sum

C(ρ) =
k∑

i=1

W (Ai)

on the set of all clusterings with size k, where W (Ai) is the monotone sum of squares
of the submatrix Ai of A defined by the clustering.

The function W (Ai) implicitly refers to the optimal numbering πi = π(Ai) of
the columns of Ai. Observe that the optimal numberings πi, i = 1, . . . , k belonging
to different clusters need not be the same. Actually, in practical cases they are
rather different. In clusterings the number of clusters is a quantity to be minimized,
too. Let us denote by Wk(A) the minimum of C(ρ) on clusterings with size k. As
it is easily seen, this is a monotone decreasing sequence:

W1(A) ≥ W2(A) ≥ . . . ≥ Wn(A) = 0.

There is a basic asymmetry in the whole setup here between rows and columns.
Numbering of the columns is one-to-one and the order represented by the numbering
is crucial. We can use any mapping of C onto the real numbers having the only
property that different columns have different numbers. Clustering of the rows is
actually a partition. The order of the clusters formed by the rows has no importance.
We shall take any pair of clusterings resulting the same partition of rows to be
equivalent. In this sense there exists only one clustering for k = n resulting row
vector submatrices Ai having zero monotone sum of squares.

3.2. Monotone regression

Monotone regression is minimization of
p∑

i=1

(ti −mi)2

for given positive number p and sequence t = (t1, . . . , tp) on monotone sequences
m = (m1, . . . ,mp). For monotone increasing m the algorithm is the following. The
monotone regression itself is a clustering of the real numbers ti into consecutive
clusters having monotone increasing averages. Starting with

bll1 = 1, mve1 = t1

for all i = 2, . . . , p we take the following steps: we start with

blli = 1, mvei = ti.

If ti < mvei−1/blli−1 then set j = i− 1 and repeat the following steps. If

mvei/blli < mvej/bllj



clustering methods in microarrays 207

then set

mvei = mvei + mvej , blli = blli + bllj , j = j − bllj

until j < 1. After this procedure the variables blli give the block lengths and mvei

give the block sums for equal mi-s. (Notation bll comes from block length, mve
from monotone averages.)

This is a dynamical programming solution of the problem. Starting with
the trivial solution for one-element sequences we add step by step one element to
the vector and amalgamate it into the last block as long as its average becomes
large enough. Solving the problem in the same way for decreasing sequences and
taking the minimum of the two sums of errors we get the monotone regression. The
algorithm has two outputs: the monotone sequence m and an indication showing
that increasing or decreasing sequences give the minimum. The number of steps
needed in the algorithm is linear in p for all inputs t.

3.3. Monotone sum of squares

For any numbering π of the columns of the matrix A and any row r ∈ R first
we form the sequence

t = (ti = a(r, ci), i = 1, . . . , p)

from the elements of the row r ∈ R according to the numbering π and calculate
the monotone regression m of the sequence t. For further reference we gather the
corresponding monotone sequences m into the column monotone orderable matrix
Mπ and the indicator of monotonicity, which is a boolean function µ defined on R:
µ(r) if true if m is increasing and false otherwise. The sum of errors of monotone
regression on rows of A according to the numbering π is denoted by Wπ(A). Given
the matrix A this function is defined on the numberings of the columns of A. For
the sake of simplicity here we denote the function by w(π). The simplest way to
minimize a combinatorial function is the use of genetical optimization [10], [13].
Without going into details we remark that in genetical optimization first we have
to generate a subset of the set where the function to be optimized is defined. The
subset is called population. We generate the starting population in the following
way.

A natural aspirant for numbering the columns is the column average: let ave(c)
be the average of the elements of the c-th column of matrix A. As it is easily seen, the
numbering need not be restricted on integers, thus ave(c) is formally a permitted
numbering. For any real valued numbering f(c) let as define the corresponding
integer valued numbering π by

f(c1) < · · · < f(cp),

i.e. π is the numbering resulting such order of columns where the values of the
function f are increasing. We shall use only functions having different values on
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different columns. In genetical programming we use real valued numberings. The
starting population is defined as

f(c) = ave(c) + κσz(c),

where z(c), c ∈ C are standard normal variables generated independently for each
element of the population, κ is a parameter of the algorithm (we use κ = 1/3) and

σ =
√

1
np

∑
r,c

(a(r, c) − ave(c))2.

Once a starting population is formed, the typical step in a possible version
of the genetical optimization is the following. Let us choose two numberings π1, π2

from the population in such a way that w(π1) ≤ w(π2). Next define the new real
valued numbering f(c) by coin tossing: for each column c let f(c) be equal to
f1(c) with probability 0.5 otherwise let it be f2(c) (fi-s are the corresponding real
valued numberings). In this step a certain mutation is also applicable: add if you
want a random normal variable to f(c) with zero expectation and with a variance
appropriately chosen. The definite step of the algorithm is the substitution of the
second numbering by the new one in case w(π) < w(π2). There are many natural
stopping rules for the algorithm: we may terminate it either if the frequency of
substitutions becomes small or if the difference between the maximum and minimum
of w(π) in the population is small. Nevertheless the simplest way to terminate the
algorithm is counting the steps. After stopping the final result of the algorithm is
the numbering π in the population minimizing the function w(π).

3.4. Gradient methods

There are many natural perturbations of a numbering π, the most popular
perhaps is the switch of two elements: choose two different columns c1, c2 and set
π∗(c2) = π(c1), π∗(c1) = π(c2). We propose the following method of inserting
instead this switch. Imagine, that there are p numbered places where the columns
as guests may have a rest. Pick up one guest and move it to an arbitrary other
place making empty place for it shifting the whole block between the new and old
places with one step. Trying first all possibilities choose the perturbation resulting
the best improvement in w(π) if it has any, and stop the algorithm otherwise.

3.5. Multidimensional monotone curves

Let us fix an order for the rows, presently it has no importance what is the
actual order. Each column c gives a point D(c) in the n-dimensional space, the
coordinates of D(c) are the matrix elements in that column. What can we do with
p points in the multidimensional space? Even in the multidimensional space we may
figure out some version of monotone regression. A curve in the multidimensional
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space is a mapping of the real line into the multidimensional space. We say that
the curve is a multidimensional monotone curve, if the mapping is monotone in all
coordinates. Let γ be an arbitrary monotone curve in the multidimensional space.
Given the curve γ and the finite set of points D = {D(c), c ∈ C} let us define the
function

∆(γ,D) =
∑
c∈C

d2(γ,D(c)),

where d(γ,D(c)) is the Euclidean distance of the point D(c) from the curve γ (which
is the infimum of the distances between points of γ and the point D(c)). We can
show that the infimum of ∆(γ,D) taken on all monotone curves equals to W (A).
This observation results the following algorithm.

Having a numbering of the columns we can build up a monotone curve in the
multidimensional space in the following way. Let Mπ be the monotone approxi-
mation of A according to ordering π. Let us drop the index π for a while and let
us denote the points in the multidimensional space corresponding to M by M(c),
c ∈ C. The numbering π gives a labelling ci of the columns, let us label in the same
way the points M(c) and define the mapping γ from reals into the multidimensional
space first on integers between 1 and p as γ(i) = M(ci), i = 1, . . . , p. Next define
the function γ(t) for i ≤ t ≤ i+ 1, 1 ≤ i < p by linear interpolation between points
γ(i) and γ(i+ 1) and for other real numbers by linear extrapolation between points
γ(1) and γ(p). This function is monotone.

The next step in the algorithm is to order numberings of columns to monotone
curves γ. The whole algorithm consists of these two steps: to any numbering π we
get a multidimensional monotone curve γ and to any multidimensional monotone
curve γ we construct a new numbering π. The whole algorithm stops when the
numbering does not change. Given a multidimensional monotone curve γ a real
valued numbering of columns is provided by the real valued argument of the func-
tion parameterizing the monotone curve at closest point on to curve to the points
corresponding to the matrix A.

3.6. Building up numberings

Given a numbering π of columns we can build up a new numbering in the fol-
lowing way. Let us apply a trivial dynamical application of the algorithm presented
in the subsection 3.4. In that paragraph we found an optimal new value of π(c)
for any c ∈ C. Now we extend the basic set of columns step by step following the
ordering π.
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3.7. McQueen’s algorithm

In the previous sections we investigated the question of calculatingW (A) for a
given matrix A, that means the numbering of the columns of A. Having a clustering
ρ of the rows we apply this step in the centering step of McQueen’s algorithm for
the submatrices Ai, 1 ≤ i ≤ k, where k is the size of ρ.

Now we turn our attention to clustering rows. Given any finite set of num-
berings {Π : π} of columns we can build up a clustering of rows in the assignment
step of McQueen’s algorithm in the following way: for any row r ∈ R let we choose
the ordering minimizing wπ(r) in π ∈ Π.

It may readily happen that some clusters become empty or they reach such
a small number of elements what we count unnatural. This is the right time in the
algorithm to reduce the set of clusters. We are planning to measure somehow the
consistency of clusters, concluding in some cases that we ought to divide one cluster
into parts. A natural way for doing that is just to reiterate the whole procedure
recursively on the submatrix of the cluster. Presently we do not know how hard is
the problem to determine Wk(A). Typically we get local minima in sense that our
algorithms or some of them stop at a system of clusterings and numberings while the
value of the risk function is not the best one found by different initializations. One
specific feature of such situations is that applying many algorithms parallel they can
improve situations after each other. It is a returning problem in clustering, what
to do with a batch of different clusterings having quite good clustering power. How
can we decide that in what sense are they different and one should like to use all of
them wisely reaching somehow a unified solution. McQueen’s algorithm provides a
solution for the problem: let us form a pool from all numberings provided by the
clusters and let us run the McQueen’s algorithm step by step leaving only one of the
numberings from the pool. In course of this algorithm we determine the smallest
increase in the penalty function of clustering (here it is the sum of monotone sum
of squares of submatrices Ai formed by the clustering). We drop the numbering
giving the smallest increase and reiterate the step as long as the number of clusters
reaches the wanted level.

For detecting the interrelations of clusters the following matrix is useful. The
matrix of distances of clusters is a square matrix having k rows and columns. The
element of the matrix in the i-th row and j-th column is the square average of the
monotone errors of rows belonging to the i-th cluster calculated with respect to the
numbering of the j-th cluster. Let us observe that these errors are calculated in
course of McQueen’s algorithm. We use the spanning tree presented by this matrix
parallel with the spanning tree given by directed monotone distances of numberings
of the clusters. Given any directed monotone distance on a finite set, the spanning
tree is a tree having the points of the set as vertices and minimizing the sum of
directed distances on edges appropriately directed.
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3.8. Initializations

How can we build up a new clustering? Following the lines of monotone
sum of squares we may define a new function serving as some distance between
points of multidimensional space. This is the directed monotone distance defined
in the following way. Let t and u be two row vectors of A, they are points in the
multidimensional space. The directed monotone distance of t and u is defined only
in case when the coordinates of t are not constant, i.e. there are differences among
the coordinates of t. (Let us remark, that constant rows may be eliminated from A
as a first step.) Given the coordinates of u, the rank numbers of u are given by a
mapping ψ from the reals onto the positive integers such that (remember that u is
a p-dimensional vector having coordinates (u(c), c ∈ C))

(i) for all pairs c and c′ in C if u(c) < u(c′), then ψ(u(c)) < ψ(u(c′)),
(ii) the set {ψ(u(c)), c ∈ C} is an interval of integers containing the number 1 as

an element.

The numbers
{ψ(u(c)), c ∈ C}

are the rank numbers of u. The largest ψ(u(c)) equals the number of different values
among the coordinates u(c), c ∈ C. The extended monotone regression of the vector
t with respect to u is the vector m having the same dimension and the same rank
numbers as u and minimizing ∑

c∈C
(t(c) −m(c))2.

Let us denote the minimum by EMR(t | u). Directed monotone distance d(t | u) is
defined in the following way:

d(t | u) =
EMR(t | u)∑
c∈C(t(c) − t0)2

,

where t0 is the average of the numbers t(c), c ∈ C.
Given the directed monotone distance d(t | u) we use the spanning tree defined

by the distance of rows. There are many algorithms for constructing a spanning
tree, in one of them edges are added to a forest greedily choosing step by step the
pair having minimal distance and keeping the forest property. In this algorithm we
can stop when the number of trees equals to k, and forming clusters from trees.
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3.9. The main algorithm

Having the following three algorithms:

(i) initialization for a finite set Π of orderings
(ii) assignment: calculating a clustering ρ to any set Π of orderings
(iii) centering: calculating the orderings πi, 1 ≤ i ≤ k to any clusterings ρ of size k

the general algorithm is the following: start with (i) and iterate (ii) and (iii) until
stopping. The only formal step needed here serving as a junction between (ii) and
(iii) is to form a set Π from a vectors of orderings πi, 1 ≤ i ≤ k onto Π. Being in a
finite setup the stopping rule is fixation.

3.10. Confidence intervals

A possible statistical model of the algorithms presented here is the following.
We have the following ingredients:

(i) a clustering ρ of rows with size k
(ii) a numbering πi of columns for all 1 ≤ i ≤ k such that for all positive integers j

between 1 and p the number j is taken exactly once by πi

(iii) a positive real number σ giving the standard error of experiments

a(r, c), r ∈ R, c ∈ C

(iv) a row monotone increasing matrix B indexed by R as row index but with
integers between 1 and p as column index: b(r, i) ≤ b(r, i + 1) for all r ∈ R
and 1 ≤ i < p.

With these ingredients the stochastic model is defined as

a(r, c) = ε(r)b
(
r, πρ(r)(c)

)
+ σz(r, c),

where the random variables ε(r), r ∈ R are iid standard ±1 and the variables z(r, c),
r ∈ R, c ∈ C are independent standard normals, and σ is a positive constant.

Let us say that the row monotone increasing matrix B is blocked with respect
to the clustering ρ of size k of rows if for all 1 ≤ i ≤ k there is a partition Pi of
integers between 1 and p into consecutive intervals having the following property:
all numbers b(r, i), b(r, j) are equal if i and j belong to the same element of the
partition Pρ(r). For such cases we should like to detect the block structure of the
theoretical matrix B according to the basic rules of statistical confidence intervals;
which is to minimize the probability of events

(i) declaring difference in cases there is equality
(ii) declaring equality in cases there is difference.
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Our solution is the following. We evaluate a system of partitions Pi, 1≤ i≤ k
using the increases in monotone sums caused by forcing equalities in extended mono-
tone regressions dictated by Pi, 1 ≤ i ≤ k. For a predetermined level of increase we
determine the largest possible partitions.

3.11. Preprocessing matrices

Decomposition clusters of monotone orderings formally may be used for any
real matrix but some preprocessing may be advisable. The algorithm is powerful
on matrices having equivalent columns in the sense that the rank numbers in rows
are close to random, all permutations may appear among them. In case the scale
used in different columns is different, the algorithm may miss the point. A general
preprocessing is the quantile transformation for the columns, or any of it’s version.
The simplest solution is just to transform linearly all columns into interval (0, 1).

4. Decomposition clusters of partitions

4.1. Ordered partitions

Let C be a finite set of p elements and let q be a positive integer such that
q ≤ p. The function

β : C → {1, . . . , q},

is said to be an ordered partition if all integers between 1 and q appear at least
once among the β(c)-s. We say that the number q is the size of β. Two ordered
partitions α and β are different, if there is an element c of C such that α(c) �= β(c).
We shall denote by Bp the set of all ordered partitions of p elements, and by Gp the
number of elements of Bp. An easy recursion may help to evaluate Gp:

Gp(q) =
p−q+1∑

s=1

(
p

s

)
Gp−s(q − 1),

where Gp(q) is then number of elements in Bp with size q (especially Gp(1) = 1,
Gp(p) = p!).
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4.2. Normal variables

Let β be an ordered partition of the set C. We say that the random variables
Z = (z(c), c ∈ C) follow the ordered partition normal law according to β if the
z(c)-s are independent normal variables with expectation Ez(c) = µ(β(c)) and with
variance σ, where

µ(1) < µ(2) < · · · < µ(q),

and q is the size of β.
A possible estimate of β from Z is the following. We fix two positive constants

u, v called center and range. Let us determine for each 1 ≤ s ≤ p the statistics

Qs = min
t1,...,ts

∑
c∈C

min
j

(z(c) − tj)2.

Let κ be determined by

κ = min
{
s :
∣∣∣∣ Qs

p+ 1 − s
− uσ2

∣∣∣∣ < vσ2

}
,

if there is any k with the required property, otherwise we define κ by

κ = min
{
s :

Qs

p+ 1 − s
− uσ2 < vσ2

}
.

(Observe that Qp = 0.)

4.3. Simultaneous coloring

A coloring of a finite set is an unordered numbering of the elements of the
set. Simultaneous coloring of the set of rows and columns of a matrix is a pair
(ρ(r), β(c)) of colorings of the sets (R, C) having the following properties:

(i) there are integers k ≥ 1, q ≥ 1 such that 1 ≤ ρ(r) ≤ k for all r ∈ R,
1 ≤ β(c) ≤ q for all c ∈ C

(ii) all integers between 1 and k appear at least once among ρ(r)-s and all integers
between 1 and q appear at least once among β(c)-s.

Two simultaneous colorings are equivalent if they give the same partitions
of the sets R, C respectively. We refer to the numbers k, q as the sizes of the
colorings. In a seminal paper [27] Szemerédi proved a structural property of graphs:
the vertices of all graphs have coloring such that the edges joining vertices colored
with a given pair of colors behave as they were random. We refer to the papers [4],
[8], [11], [19] showing the effect of Szemeredi’s regularity lemma in graph theory.
Rephrasing Szemerédi’s random graph model for real matrices we get the following
stochastic model:

a(r, c) = b (ρ(r), β(c)) + σ (ρ(r), β(c)) z(r, c), r ∈ R, c ∈ C,
where
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(i) the pair (ρ, β) is a simultaneous coloring of R, C with sizes k, q
(ii) the matrices (b(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ q), (σ(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ q) are

arbitrary real valued matrices
(iii) the elements of the random matrix (z(r, c), r ∈ R, c ∈ C) are independent

standard normal.

Actually in Szemerédi’s theorem the distribution of the elements of the submatrices
Aij = (a(r, c), ρ(r) = i, β(c) = j) is arbitrary but for our aim the reduction to
Gaussian distribution is admissible.

We say that the matrix A has a noiseless Szemerédi structure, if σ is zero, and
denote by N (k, q) the set of all matrices having noiseless Szemerédi structure with
coloring sizes k, q. Singular value decomposition applies in finding the colorings: let
B = V D the singular value decomposition of B = (b(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ q),
then

b(i, j) = (vi, dj),

where (·, ·) denotes the scalar product, (v1, . . . , vk), (d1, . . . , dq) are s-dimensional
vectors, and s is the rank of B. From a(r, c) = b(ρ(r), β(c)) it follows that the
same vectors provide singular value decomposition of A, if it is noiseless. Exposed
to noise, these vectors may be found by simultaneous clustering of vectors in the
singular value decomposition of A.

We applied spectral methods for graph clustering in [3], the idea to apply
spectral methods for Szemeredi theorem if discussed in [2]. Biclustering and co-
clustering is widely used for microarrays [7], the method is originated by [15]. The
main difference between the two models is that in biclustering only homogeneous
submatrices are picked out and the whole checkerboard structure is not used yet.
But the two theories are converging, the argumentation of [18] is very close to our
presentation.

4.4. Partition clusterings

There is no need to use the same partition β for all row clusters in Szemerédi’s
model. Furthermore for a fixed column partition we may drop the condition of
the model that the expected values in one subset of the partition are the same
in different rows. The first person performing clustering was Cinderella, who was
obliged to decompose the mixture of thousands of seeds. A computerized Cinderella
has a data matrix: the columns represent the seeds thus her matrix has thousands
of columns. The rows represent the different parameters of the seeds. Cinderella
collected the physical characteristics of the seeds in the first 12 rows and in other
72 rows she listed the concentration of different types of proteins in the seeds.
Using the first 12 rows she got the well known types of seeds: corn, rye, wheat,. . . ,
etc. but the representation of the seeds in protein space led to completely different
clusters. Working on her PhD thesis, Cinderella wanted to describe the two different
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clusterings. But her Wicked Step Mother mixed the rows, too. Thus she forced
Cinderella to discover partition clustering.

Let ρ(r), r ∈ R be a coloring of the rows with size k and let β1, . . . , βk be
arbitrary colorings of columns. The sum of square errors of the system is defined
by
∑k

i=1 G(Ai), where Ai is the submatrix formed from rows ρ(r) = i and

G(Ai) =
∑

r : ρ(r)=i

∑
c∈C

(a(r, c) − bi(r, βi(c))
2
,

where

bi(r, j) =

∑
c:βi(c)=j a(r, c)∑

c:βi(c)=j 1
.

Colorings or unordered partitions are clusterings. In partition clustering the
columns of the submatrix Ai are clustered into qi clusters as multidimensional points
according to βi around the centrums (b(i, j), j = 1, . . . , qi), where qi is the size of
βi. The row clustering ρ is using the column clusterings βi as cluster centers: in
the assignment step of McQueen’s algorithm for each row r ∈ R we can choose the
best partition minimizing the quantity

gi(r) =
∑
c∈C

(a(r, c) − bi(r, βi(c))2.

We shall denote the partition of columns given by βi with Pi. All details of the
calculations are easily extendable to the general case whenever we are given the
system P1, . . . ,Pk of partitions of columns. One possible source for such a system
is the experimental design: they are the designers of microarray measurements who
can tell to statisticians how to form partitions from conditions. Nevertheless there
are statistical methods helping the search of partitions. Namely it is the likelihood
function which may direct the search: systems with good likelihood are statistically
more acceptable than those with poor likelihood. Some caution is, however needed:
partitions with large size have to penalized for counterbalancing their power in
likelihood.

4.5. Row couplings

Let us construct for any pairs r, s ∈ R the set Q(r, s) of two-dimensional
points Qc, c ∈ C having coordinates (a(r, c), a(s, c)). For pairs r, s : ρ(r) = ρ(s) = i
the set Q(r, s) is clustered into qi clusters where qi is the size of βi, otherwise it
has some checkerboard structure formed by the two involved clusters. A statistic
capturing cluster pairs is

K(r, s) =
∑
c∈C

t∑
i=1

d
(
Qc, Qc(i)

)
,
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where t ≥ 1 is a parameter of the statistic, d is the Euclidean distance, and Qc(i)

is the i-th nearest neighbor of Qc in Q(r, s). The goodness of a clustering ρ of the
rows is quantified by

Q =
∑

ρ(r)=ρ(s)

K(r, s).

For fixed size k we can determine the minimizing clustering by genetic optimization.

4.6. Finding hidden structure in a large data set

Let us consider a sample where p-dimensional random variables from mixtures
are observed. The different mixtures are defined with the help of given partitions
defined on the set {1, . . . , p}. Knowing the partitions, we can use the information
about known connections among coordinates of the multivariate observations. It is
supposed that independent uniform random variables are belonging to each set of
a partition, further an observed variable is a function of these hidden variables and
a p-dimensional normal random variable.

The values of a p-dimensional random variable Y are observed and Y is
given as

Y = V(δ) + Z,

where Z is a p-dimensional normal random variable with independent coordinates,
0 means and unknown standard deviations σj , j = 1, . . . , p, δ is a random variable
with integer values 1, . . . , k and P (δ = i) = pi,

∑k
i=1 pi =1. V(δ) and Z are inde-

pendent random variables. V(δ) is a mixture of random variables V(i), (i = 1, . . . , k)
and they are independent of δ. To define the random variables V(i) (i = 1, . . . , k)
some further notations are needed. For each i (i = 1, . . . , k) there is given a partition
(βi,1, . . . , βi,p) with partition size qi.

Independent uniform [0, 1] random variables U (i)
j (j = 1, . . . , qi, i = 1, . . . , k)

are assigned to the partitions. The p-dimensional random variable V(i) is defined
as

V(i) =
(
g
(
U

(i)
βi,1

,Θ1

)
, . . . , g

(
U

(i)
βi,p

,Θp

))
, (1)

where g(u,Θ) is a given function and Θ1, . . . ,Θp are unknown multidimensional
parameter vectors.

A simple example is when only two partitions are given, one is (1, . . . , 1) and
the other one is (1, 2, . . . , p). Then the random variable δ has two values. When
δ = 1 each coordinate of V(1) depends on the same uniform variable and when δ = 2
the coordinates of V(2) are depending on p independent uniform variables.

Let us remark that using uniform random variables is not a restriction of the
model since a quantile function of an arbitrary distribution can be incorporated in
function g.
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The origin of the model is the attempt to assess microarray data. In micro-
arrays thousands of gene expressions are measured under different conditions. Con-
sidering one gene, suppose that its expression level is measured under p different
conditions. An example is measuring gene expression levels during the life of an
organism at p different time. Other examples are when gene expression levels are
considered in case-control studies. If the expression levels of a gene are not af-
fected by conditions then they are referred as equally expressed, otherwise they are
differentially expressed. Partitions of the p conditions are given according to the
experiment. In this application the partition (βi,j = 1, j = 1, . . . p) is always a
possibility, since most genes are expressed identically under different conditions.

4.7. Estimating the hidden variables

We present a method to estimate the parameters and the hidden variables
of the model. At first we estimate the model parameters with the help of the
maximum likelihood method and then we use conditional expectation to estimate
the values of the hidden uniform variables. Knowing the parameters of the model
for each observation the probability that it belongs to any of the k partitions can
be estimated using the Bayes’ rule. Observations can be classified according to the
most probable partitions.

Suppose that it is given a sample of n elements y1,y2, . . . ,yn from the above
model with k previously specified partitions. Set y� = (y�,1, . . . , y�,p), � = 1, . . . , n.
Our goal is to estimate the parameters Θj , σj , (j = 1, . . . , p), pi, (i = 1, . . . , k) and
the values of hidden variables.

The sample comes from a mixture of distributions with likelihood function

n∏
�=1

(
k∑

i=1

pifi(y�)

)
(2)

where fi(y�) is the density function of V(i) defined in (1). It is easy to see that

fi(y�) =
qi∏

t=1

∫ 1

0

∏
j:βi,j=t

1
σj
ϕ

(
y�,j − g(u,Θj)

σj

)
du, (3)

where ϕ denotes the density function of a standard normal random variable. The
maximum likelihood method can be used to estimate the model parameters. Using
the estimated model parameters Θj , σj , pi, (j = 1, . . . , p, i = 1, . . . , k) for each y�,
� = 1, . . . , n it is possible to estimate the posterior probability that the corresponding
hidden variable from the i-th partition as

p�,i = P (δ = i | Y = y�) =
pifi(y�)∑k

m=1 pmfm(y�)
i = 1, . . . k.

Conditional expectation can be used to estimate the value of the hidden variable.
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Theorem. For � = 1, . . . , n, j = 1, . . . , p

Û�,j = E
(
U

(δ)
j | Y� = y�

)
=

k∑
i=1

p�,i



∫ 1

0
u

∏
m: βi,m=βi,j

ϕ
(

y�,m−g(u,Θm)
σm

)
du

∫ 1

0

∏
m: βi,m=βi,j

ϕ
(

y�,m−g(u,Θm)
σm

)
du


 .

The proof of the theorem is based on the following simple lemma:

Lemma. Let ξ, η1, . . . , ηn be independent random variables with continuous
density functions fξ, fη1 , . . . , fηn , respectively. Let g1, . . . , gn : R → R be continuous
functions. Then

E(ξ | g1(ξ) = η1, . . . , gn(ξ) = ηn)

=

∫∞
−∞ u fξ (u) fη1 (g1 (u)) . . . fηn (gn (u)) du∫∞
−∞ fξ (u) fη1 (g1 (u)) . . . fηn (gn (u)) du

.
(4)

5. Concluding remarks

Let A = (a(r, c), r ∈ R, c ∈ C) be an arbitrary data matrix, and let us denote
its row vectors by Yc. Let us denote by Th(A) the minimum of the travelling
cost C(T ) defined in subsection 2.2. It depends on A and h (in Section 2 we
identified C with {1, . . . , p}). In subsection 3.1 we defined Wk(A) as the minimum
of the sum of monotone sum of squares of row clusterings into k clusters. In the
subsection 4.3 N (k, q) was the set of noiseless matrices: let us denote now by Skq(A)
the minimum of sum of square errors of the approximating noiseless matrices. The
three statistics Th(A), Wk(A) and Skq(A) quantify the goodness of fit of our different
clustering methods. We have discussed already some goodness-of-fit procedures of
the models leading to these statistics. In a certain sense clustering data matrices is
pattern recognition: the structure of the clusters are the patterns to be identified.
In microarray measurements the whole set of possible questions is determined by
nature but the set of answers, the set of conditions under what the gene expressions
are measured is unto the design of the experimenters. In a good design the structure
of the expected answers is determined by the design itself. The general way of
model checking is error analysis: to test whether the deviations in the data follow
the noise structure imprinted in the model. In case of DCP and DCM we have an
adhoc method, the coupling of rows, which was originally a test for DCP and led us
to DCM. In DCP for rows belonging to the same cluster the coupled picture itself
shows clusters, where columns belonging to the same subset of the partition form
one cluster. It was our expectation to see in our data the clusters but we have seen
instead the monotone curves of DCM.
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