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New methods for the statistical analysis of Hidden
Markov Models

László Gerencsér1, Gábor Molnár-Sáska1, György Michaletzky2, Gábor Tusnády3

Abstract— The estimation of Hidden Markov Models (HMM-
s) has attracted a lot of attention recently, see results of [29],
[30]. The purpose of this paper is to lay the foundation of a
new approach for the statistical analysis of Hidden Markov Mod-
els (HMM-s), in particular for the analysis of the maximum-
likelihood estimate, using a random mapping representation of
HMM-s, see [6]. Our analysis is applicable to HMM-s with a gen-
eral state-space and read-out space, assuming that the state pro-
cess satisfies Doebin’s condition. The key technical results are The-
orem V.1 and VI.1 giving conditions for the functions of the input-
output process of a non-linear stochastic systems to be L-mixing,
see [18]. This is then applied to HMM-s extended by the filter pro-
cess in Section VII. Three application are presented: first we state
a strong approximation theorem for finite state HMM-s, comple-
menting the results of [29] and [30]. Then the validity of Rissa-
nen’s tail condition is formulated, and finally the performance of
adaptive encoders for HMM-s is stated in Section VIII.

Keywords: Hidden Markov Models, random mappings,
Doeblin-condition, L-mixing processes, maximum-likelihood esti-
mation, strong approximation.

I. INTRODUCTION

HIDDEN Markov Models have become a basic tool for
modeling stochastic systems with a wide range of appli-

cations in such diverse areas as nano-tecnology [26], quantized
Gaussian linear regression [13], [14], telecommunication, [36],
speech recognition [25], switching systems, [12], [16], financial
mathematics [9], astronomy [3].

A good introduction to HMM-s, and stochastic systems in
general is given in [37]. For a survey of recent results on HMM-
s see [11]. An extension of HMM-s allowing dynamic memory
is given in [35].

The estimation of the dynamics of a Hidden Markov Model
is a basic problem in applications. The first basic result is due to
Baum and Petrie for finite state Markov chains with finite-range
read-outs [2]. Their analysis relies on the Shannon-Breiman-
McMillan theorem, and exploits the finiteness of both the state-
space X and the read-out space Y . Strong consistency of the
maximum-likelihood estimator for finite-state and binary read-
out HMM-s has been established by Arapasthotis and Marcus
in [1]. Strong consistency of the maximum-likelihood estimator
for continuous read-out space has been first proven by Leroux
in [30] using the subadditive ergodic theorem. An extensive
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study of HMM-s with finite state-space and continuous read-
out-space has been carried out by LeGland and Mevel in [29]
and [28] using the theory of geometric ergodicity for Markov
chains. These results have been extended to compact state-
space and continuous read-out-space by Douc and Matias in
[7]. Strong consistency for the maximum-likelihood estimate
for continous-time HMM-s with finite state-space and Gaus-
sian read-out-space has been established by Moore and Elliott
using martingale-theory in [10]. Adaptive control of HMM-s
has been considered in Duncan et al. [8].

A key element in the statistical analysis of HMM-s is a strong
law of large numbers for the log-likelihood function. All the
listed tools are quite powerful and applicable under very weak
conditions to derive strong laws of large number. The most
fertile approach seems to be that of LeGland and Mevel, based
on the use of geometric ergodicity, and leading to results such
as CLT or convergence of recursive estimators.

Now it is known form the statistical theory of linear stochas-
tic systems that these classical statistical results are not always
sufficiently informative to answer natural questions like the per-
formance of adaptive predictors. This has been pointed out by
Gerencsér and Rissanen in [23]. In fact this very problem, the
performance analysis of adaptive predictors and controllers has
lead prompted research in deriving strong approximation results
for estimators of linear stochastic systems, leading to a basic re-
sults in [19].

A main technical tool for deriving these results is the concept
of L-mixing processes, developed in [18], a generalization of
what is known as exponentially stable processes, introduced by
Caines and Rissanen in [34] and Ljung [31]. This is a concept
which, in its motivation, strongly exploits the linear algebraic
structure of the underlying stochastic system.

A key observation of the present paper is that using a ran-
dom mapping representation of HMM-s, which goes back to
Borkar [6], see also [27], the concept of L-mixing naturally ex-
tends for HMM-s. Thus e.g. if the state-process satisfies the
Doeblin-condition, then any fixed bounded measurable func-
tion of a Hidden Markov process will result in an L-mixing
process, see Proposition IV.1.

Arapasthotis and Marcus have shown in [1], that extending a
HMM process with its filter process we get a new HMM which
plays a major role in the statistical analysis of the original pro-
cess. The exponential forgetting of the filter-process has also
been established for finite-state and binary-read-out HMM-s.
An extensive analysis of the extended process has been carried
out by LeGland and Mevel in [29] and [28] in the framework of
geometric ergodicity. In the present paper the mixing properties
of the extended process will be studied.
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It is well-known that the filter process is generated by a non-
linear recursion, known as the Baum-equation, with the obser-
vation process as the input process. Uniform exponential stabil-
ity (see Definition V.1) of this non-linear dynamic system has
been shown in [29]. The key technical results given as Theorem
V.1 and VI.1 are formulated for general non-linear stochastic
systems that exhibit uniform exponential stability, driven by a
Markov-process, giving conditions under which a fixed static
function of the input-output process will be L-mixing. The ap-
plication of Theorems V.1 and VI.1 to HMM-s with finite state-
space and general read-out space, under Doeblin-condition for
the state-process, is relatively easy and will be given in Section
VII. Finally in Section VIII we compare our conditions with
those of [29] and [28] and present three applications of the new
results in the statistical analysis of HMM-s. First we state a
strong approximation theorem for finite state HMM-s with fi-
nite read-outs, considerably strengthening the classic result of
[2]. This easily generalizes to continuous read-outs, thus com-
plementing the results of [29] and [30]. The next application is
the verification of Rissanen’s tail condition (see [32]) for finite
state HMM-s with finite read-outs. Finally the performance of
adaptive encoders for HMM-s is stated in Section VIII in anal-
ogy with the results of [20].

sssssss
Now L-mixing processes play a prominent role in modern

theory of linear stochastic systems, and thus the latter result
is directly applicable to derive a simple proof of the result of
Baum and Petrie, see [2]. But it also provides the basic tech-
nical conditions, under which a very detailed characterization
of the estimator process can be given in analogy with [19]. In
particular we prove that for finite state-finite read-out HMM-s,
parametrized by θ, the ML estimate of the true parameter θ∗,
denoted by θ̂N satisfies, under simple technical conditions,

θ̂N − θ∗ =

(R∗)−1 1

N

N
∑

n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + rn,

where rn = OM (N−1) and R∗ is the Fisher-information ma-
trix.

A key point here is that the error term is OM (N−1). This
ensures that all basic limit theorems, that are known for the
dominant term, which is a martingale, are also valid for θ̂N−θ∗.

The finer characterization of the estimator process is not of
purely academic interest: it plays a key role in adaptive predic-
tion and model selection, see e.g. [20].

II. HIDDEN MARKOV MODELS

We consider Hidden Markov Models with a general state
space X and a general observation or read-out space Y . Both
are assumed to be Polish spaces, i.e. they are complete, separa-
ble metric spaces.

Definition II.1: The pair (Xn, Yn) is a Hidden Markov pro-
cess if (Xn) is a homogenous Markov process, with state space
X and the observations (Yn) are conditionally independent and
identically distributed given (Xn).

If X and Y are finite, say |X | = N , |Y| = M , then we have

P (Yn = yn, . . . Y0 = y0|Xn = xn, . . . X0 = x0) =

n
∏

i=0

P (Yi = yi|Xi = xi).

In this case we will use the following notations

P (Yk = y|Xk = x) = b∗x(y), B∗(y) = diag(b∗i(y)),

where i = 1, . . . , N , and ∗ indicates that we take the true value
of the corresponding unknown quantity.

Let Q∗ be the transition matrix of the unobserved Markov
process (Xn), i.e.

Q∗
ij = P (Xn+1 = j|Xn = i).

A key quantity in estimation theory is the predictive filter de-
fined by

p∗j
n+1 = P (Xn+1 = j|Yn, . . . , Y0).

Writing p∗n+1 = (p∗1n+1, . . . , p
∗N
n+1)

T , the filter process satisfies
the Baum-equation

p∗n+1 = π(Q∗T B∗(Yn)p∗n), (1)

where π is the normalizing operator: for x ≥ 0, x 6= 0 set
π(x)i = xi/

∑

j xj , see [2]. Here p∗j
0 = P (X0 = j).

In practice, the transition probability matrix Q∗ and the ini-
tial probability distribution p∗0 of the unobserved Markov chain
(Xn) and the conditional probabilities b∗i(y) of the observa-
tion sequence (Yn) are possibly unknown. For this reason we
consider the Baum-equation in a more general sense

pn+1 = π(QT B(Yn)pn), (2)

with initial condition p0 = q, where Q is a stochastic matrix,
pn is a probability vector on X , and B(y) = diag(bi(y)) is a
collection of conditional probabilities.

Continuous read-outs will be defined by taking the following
conditional densities:

P (Yn ∈ dy|Xn = x) = b∗x(y)λ(dy),

where λ is a fixed nonnegative, σ-finite measure. Let

B∗(y) = diag(b∗i(y)),

where i = 1, . . . , N.
We will take an arbitrary probability vector q as initial con-

dition, and the solution of the Baum equation will be denoted
by pn(q).

A key property of the Baum equation is its exponential sta-
bility with respect to the initial condition. This has been estab-
lished in [29] for continuous read-outs. Here we state the result
for HMM-s with positive transition probability matrix:

Proposition II.1: Assume that Q > 0, i.e. the elements of
the matrix Q are positive and bx(y) > 0 for all x, y. Let q, q′

be any two initializations. Then

‖pn(q) − pn(q′)‖TV ≤ C(1 − δ)n‖q − q′‖TV , (3)
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where ‖ ‖TV denotes the total variation norm and 0 < δ < 1.
If Q is only primitive, i.e. Qr > 0 with some positive integer

r > 1, then (3) holds with a random C.
This basic property of the prediction filter will be used to in-

troduce the concept of exponential stability and will be used
to derive general mixing properties of the extended process
(Xn, Yn, pn). This is formulated in the main result of the paper,
Theorem VI.1.

Remark II.1: The existence of an invariant initialization and
the ergodicity of the filter process has been proved under quite
general conditions in Bhatt et al. [4].

Thus, a wrong initial condition for the prediction filter is
rapidly forgotten, so that we could use any initial condition with
the same effect. On the other hand, we expect that two different
transition probability matrices and different read-out probabili-
ties will produce significantly different observation sequences,
so that we could estimate the unknown transition probability
matrix and the unknown read-out probabilities by accumulat-
ing observations.

III. REPRESENTATION OF MARKOV PROCESSES

Let the state space of a Markov chain be a Polish space X ,
and let M : X −→ X be the space of Borel-measurable map-
pings. Assume that M is equipped with a σ-algebra of its sub-
sets such that the sets {f : fx ∈ G} for any fixed x ∈ X and
G ∈ B(X ), where B(X ) is the σ-algebra of Borel sets in X , are
measurable. Let Q be a probability measure on this σ-algebra.
Let (Tn) be a sequence of i.i.d. mappings according to Q. Let
X0 be independent of (Tn). Then the process (Xn) defined by
X0 ∈ X , Xn+1 = Tn+1Xn is Markov. A converse result is
given in the following proposition:

Proposition III.1: Let (Xn) be a Markov process on a Pol-
ish space X with transition probabilities P (x,G),x ∈ X ,
G ∈ B(X ), then there exists a measure Q on M, satisfying

P (x,G) = Q{T : Tx ∈ G}.
For the proof see [27]. The representation can be given in a
constructive way but it should be noted that it is not unique.
This representation plays a key role in subsequent analysis.

Next we are going to introduce the notion of Doeblin-
condition, see [5]:

Definition III.1: Given a Markov chain (Xn) with state
space X . If there exists an integer m ≥ 1 such that

Pm(x,A) ≥ δν(A)

is valid for all x ∈ X and A ⊂ B(X ) with δ > 0 and some
probability measure ν, then we say that the Doeblin-condition
is satisfied.
Here δ can be interpreted as the weight of the i.i.d. factor of
the Markov chain. The following lemma, see [5], shows the
relation between the Doeblin-condition and the representation
of the Markov chain.

Lemma III.1: Let (Xn) be a Markov chain. The Doeblin-
condition is valid with m = 1 if and only if there exists a rep-
resentation such that Q(Tn ∈ Γc) ≥ δ, where Γc is the set of
constant mappings.

Proof: We outline the proof of [5]. First let us assume
that there exists a representation (Tn). In this case P (x,A) =

Q(T1x ∈ A) ≥ Q(T1x ∈ A|T1 ∈ Γc)Q(T1 ∈ Γc) ≥ ν(A)δ,
where ν is the probability measure.

On the other hand assume that the Doeblin-condition is valid.
In this case we choose a random element ξ in X with distribu-
tion ν and then define Tx = ξ for all x with probability δ and
Tx = Tx with probability 1 − δ, where T is received from a
representation of a Markov chain with kernel function

P (x,A) − δν(A)

(1 − δ)
= P (x,A).

Proposition III.2: Assume that the Doeblin-condition holds
with m = 1 for a Markov chain (Xn). Then there exists an
invariant distribution π, and

|Pn(x,A) − π(A)| ≤ (1 − δ)n for ∀A ∈ B(X ). (4)
Proof: For the sake of easy reference see [5] Let (Tn) be

the representation of the process. In this case due to Lemma
III.1 the limit lim

n
T0 ◦ · · · ◦ T−nη exists with probability 1,

because Q(Tk ∈ Γc) ≥ δ > 0, and so with probability 1 there
exists k such that Tk ∈ Γc, and after using a constant mapping
the process T0 . . . T−nη does not depend on n. Further the limit
is independent from η ∈ X .

Let lim
n

T0 ◦ · · · ◦ T−nη = X∗
0 . In this case

X∗
0 = lim

n
T0 ◦ · · · ◦ T−nη = T0 ◦ T−1 ◦ · · · ◦ T−kη,

where k is such that T−k ∈ Γc. Therefore

T1X
∗
0 = T1 ◦ T0 ◦ . . . T−kη = lim

n
T1 ◦ T0 ◦ · · · ◦ T−nη

We obtained that the distribution of X∗
0 is invariant. So

|Pn(x,A) − π(A)| = |P (Xn ∈ A) − π(Yn ∈ A)| =

= |E(χA(Xn) − χA(Yn))| ≤ P (Xn 6= Yn),

where Xn = Tn . . . T1X0 and Yn = Tn . . . T1X
∗
0 .

Otherwise P (Xn 6= Yn) ≤ Q(Tk /∈ Γc, k ≤ n) ≤ (1 − δ)n,
so the statement is proved.

Now let (Xn, Yn) be a Hidden Markov process and assume
that the state space X and the observed space Y are Polish.

Lemma III.2: Assume that the Doeblin-condition holds with
m = 1 for the Markov chain (Xn). Then the Doeblin-condition
holds for (Xn, Yn) as well.

Proof: Let (Tn) be the representation of the Markov chain
as in Lemma III.1. It means that there exists a sequence of
i.i.d. mappings (Tn) such that Xn+1 = Tn+1Xn with Q(Tn ∈
Γc) ≥ δ > 0 and (Tn) is independent from the starting point
X0.

Let P (x,G) be the read-out transition kernel of the original
Markov chain (Xn), where x ∈ X and G ∈ B(Y). By Propo-
sition III.1 there is a probability measure Q′ on the space of
Borel mappings X −→ Y such that if U is a random mapping
selected according to Q′ then P (x,G) = Q′{U : Ux ∈ G}.

With the notation Yn = UnXn we get

Yn+1 = Un+1Tn+1Xn.
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It is easy to see that the random mapping
(

T
UT

)

is a repre-
sentation for

(

X
Y

)

. Obviously if Tn ∈ Γc(X → X ), then
UnTn ∈ Γc(X → Y), and thus

Q × Q′{
(

T

UT

)

∈ Γc{X × Y → X × Y}} ≥ δ,

and taking into account Lemma III.1, the lemma follows.
Remark III.1: Let (Xn) be a Markov chain. The Doeblin-

condition is valid with m ≥ 1 if and only if there exists a
representation such that Q(Tn . . . Tn−m+1 ∈ Γc) ≥ δ, where
Γc is the set of constant mappings. Thus Proposition III.2
and Lemma III.2 also valid if the Doeblin-condition holds for
m ≥ 1.

IV. MARKOV CHAINS AND L-MIXING PROCESSES

Now we are going to introduce a class of processes called
L-mixing processes which have been used extensively in the
statistical analysis of linear stochastic systems, see [18]. First
of all we need the definition of M -boundedness.

Definition IV.1: A stochastic process (un) (n ≥ 0) taking its
values in an Euclidean space is M -bounded if for all q ≥ 1

Mq(u) = sup
n≥0

E1/q‖un‖q < ∞. (5)

Let (Fn) and (F+
n ) be two sequences of monoton increasing

and monoton decreasing σ-algebras, respectively, such that Fn

and F+
n are independent for all n.

Definition IV.2: A stochastic process (Xn) taking its values
in a finite-dimensional Euclidean space is L-mixing with re-
spect to ((Fn), (F+

n )), if it is M -bounded and with

γq(τ) = sup
n≥τ

E1/q‖Xn − E(Xn|F+
n−τ )‖q (6)

we have

Γq =

∞
∑

τ=0

γq(τ) < ∞. (7)

The definition of L-mixing extends to parameter dependent pro-
cesses in a natural way. Let θ ∈ D ⊂ R

p, where D is a compact
domain.

Definition IV.3: A stochastic process (un(θ)) (n ≥ 0) taking
its values in an Euclidean space is uniformly M -bounded if for
all q ≥ 1

sup
θ∈D

Mq(u(θ)) = sup
n≥0,θ∈D

E1/q‖un(θ)‖q < ∞. (8)

Definition IV.4: A stochastic process (Xn(θ)) taking its val-
ues in a finite-dimensional Euclidean space is L-mixing uni-
formly in θ with respect to ((Fn), (F+

n )), if it is uniformly M -
bounded and for every q ≥ 1 we have with

γq(τ) = sup
n≥τ,θ∈D

E1/q‖Xn(θ) − E(Xn(θ)|F+
n−τ )‖q (9)

Γq =

∞
∑

τ=0

γq(τ) < ∞. (10)

The following lemma is useful in checking if a process is
L-mixing, see e.g. [18].

Lemma IV.1: Let X be a random variable with E‖X‖q < ∞
for all q ≥ 1, and let G ⊂ F be a σ-algebra and let η be a G
measurable random variable. Then we have

E1/q‖X − E(X|G)‖q ≤ 2E1/q‖X − η‖q. (11)
The first new result of this paper is given in the following propo-
sition:

Proposition IV.1: Let (Xn) be a Markov chain with state
space X , where X is a Polish space, and assume that the Doe-
blin condition is valid for m = 1. Furthermore let g : X −→ R

be a bounded, measurable function. Then the process

Un = g(Xn)

is L-mixing.
Proof: Let

Fn = σ{X0, Tk : k ≤ n},

F+
n = σ{Tk : k ≥ n + 1}.

Let n ≥ m and n−m = τ . To approximate the process g(Xn),
first we approximate Xn by X+

n,m, where

X+
n,m = Tn . . . Tm+1X

∗, (12)

and X∗ is a constant. Obviously X+
n,m is F+

m measurable. Fur-
thermore

P (Xn 6= X+
n,m) ≤ Q(Tk is not constant for m+1 ≤ k ≤ n) ≤

(1 − δ)n−m.

So

E1/q‖g(Xn) − g(X+
n,m)‖q ≤ 2KP 1/q(Xn 6= X+

n,m) ≤

2K(1 − δ)
n−m

q ,

where K is an upper bound for |g|. Due to Lemma IV.1 we have

γq(τ, U) ≤ 4K(1 − δ)
τ
q ,

and thus
Γq(U) ≤ 4K

1

1 − (1 − δ)
1
q

,

and the statement is proved.

V. EXPONENTIALLY STABLE RANDOM MAPPINGS I.
Now we formulate a general concept of exponential stability

motivated by Proposition II.1. Let X be an arbitrary abstract
set, and let Z be a closed subset of a Banach space (e.g. Z ⊂
L1(R) can be the set of density functions). Let f : X × Z −→
Z be a Borel-measurable function, and for a fixed sequence
(xn)n≥0, xn ∈ X consider the recursion

zn+1 = f(xn, zn), z0 = ξ. (13)

Let the solution be denoted by zn(ξ).
Definition V.1: The mapping f is uniformly exponentially

stable if for every sequence (xn)n≥0, xn ∈ X

‖zn(ξ) − zn(ξ′)‖ ≤ C(1 − %)n‖ξ − ξ′‖, (14)
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where C > 0, 1 > % > 0 are independent of the sequence (xn).
Under reasonable technical conditions this condition is satis-
fied for the Baum-equation and its derivatives, see [29]. Let
z(n,m, ξ) denote the solution of (13) initialized at zm = ξ with
m ≤ n. Let us consider an arbitrary discrete sequence defined
by recursion of the form

zn+1 = fn(zn) (15)

with the same starting point z0 = ξ. Extending a simple ana-
lytical lemma given in [17] from continuous to discrete time we
get

Lemma V.1: For the sequence (zn) and (zn) we have

zn − zn =

n−1
∑

m=0

(z(n,m + 1, f(xm, zm)) − z(n,m + 1, fm(zm))).

Proof: Due to the definition of zn and zn we have

zn = z(n, 1, f(x0, z0)) and zn = z(n, n, fn−1(zn−1))

Using

z(n,m + 1, fm(zm)) = z(n,m + 2, f(xm+1, zm+1)),

for m = 0, . . . , n − 2, we obtain the statement of the lemma.

A trivial corollary is the following key lemma:
Lemma V.2: For the solution of (13) we have

zn = ξ +

n−1
∑

m=0

(z(n,m + 1, f(xm, ξ)) − z(n,m + 1, ξ)).

Proof: Let f be the constant mapping, so that zn ≡ ξ.
Due to Lemma V.1 we have

zn = ξ +

n−1
∑

m=0

(z(n,m + 1, f(xm, ξ)) − z(n,m + 1, ξ))

Define the process (Zn) by

Zn+1 = f(Xn, Zn), Z0 = ξ, (16)

where (Xn) is a Markov chain with unique invariant distribu-
tion π . To prove M -boundedness of (Zn) we impose following
conditions:

Condition V.1: Let the distribution of X0 be π0. Assume

dπ0

dπ
≤ C1.

Condition V.2: Assume for all ξ ∈ Z and for any q ≥ 1

Eπ‖Z1(ξ)‖q ≤ K1(ξ) < ∞,

or equivalently
∫

X

‖f(x, ξ)‖qdπ(x) ≤ K1(ξ) < ∞, (17)

where π is the unique stationary distribution of (Xn) and K1(·)
is a measurable function.

Lemma V.3: Assume Condition V.1. Then we have

dπn

dπ
≤ C1 for all n. (18)

Proof: For an arbitrary set A ⊂ X

πn(A) =

∫

X

χAdπn =

∫

X

Pn(x,A)dπ0 ≤

≤
∫

X

Pn(x,A)C1dπ = C1π(A),

since π is the stationary distribution, so the lemma is proved.
Lemma V.4: Assume Condition V.1 and V.2. Then we have

E‖f(Xn, ξ)‖q ≤ K1(ξ)C1. (19)
Proof: We have

E‖f(Xn, ξ)‖q =

∫

X

‖f(x, ξ)‖qdπn ≤

∫

X

‖f(x, ξ)‖qC1dπ ≤ K1(ξ)C1,

due to Lemma V.3 and Condition V.2.
Lemma V.5: Let the mapping f(x, z) be uniformly exponen-

tially stable, and let Condition V.1 and V.2 hold. Then the pro-
cess (Zn) defined by (16) with any fixed constant Z0 = ξ is
M -bounded.

Proof: Using Lemma V.2 and the exponential stability of
f we have

‖Zn‖ ≤ ‖ξ‖ +

n−1
∑

m=0

C(1 − %)n−m−1‖f(Xm, ξ) − ξ‖. (20)

Since q ≥ 1 and f(Xm, ξ) is M -bounded, we have

E
1
q ‖Zn‖q ≤

‖ξ‖ +

n−1
∑

m=0

C(1 − %)n−m−1(E
1
q ‖f(Xm, ξ)‖q + ‖ξ‖) ≤

‖ξ‖ + C((K1(ξ)C1)
1
q + ‖ξ‖)1

%
,

so the lemma is proved.
Consider now processes of the form Vn = g(Xn, Zn), where
g is a measurable function. We need the following technical
condition:

Condition V.3: g(x, z) is a measurable function on X × Z
such that it is Lipschitz-continuous in z for every x with an x-
independent Lipschitz constant L.

Theorem V.1: Consider the process (Xn, Zn), where (Xn)
satisfies the Doeblin-condition with m = 1, and (Zn) is de-
fined by (16) with a uniformly exponentially stable mapping f
and an arbitrary constant initial condition ξ. Assume that X0

is independent of {Tn}, n ≥ 1, and Conditions V.1 and V.2
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hold. Furthermore let g(x, z) be a bounded function satisfying
Condition V.3 Then

Vn = g(Xn, Zn)

is an L-mixing process.
Remark V.1: Theorem V.1 is valid also if the Doeblin-

condition for (Xn) with m > 1 is assumed.
Proof: The process Vn = g(Xn, Zn) is obviously M -

bounded. Now let n ≥ m, τ = n − m, Fn,F+
n , and X+

n,m

be the same as in the proof of Proposition IV.1, except that the
distribution of X∗ be stationary and

F+
n = σ{X∗, Ti : i ≥ n + 1}.

Let an approximation of (Zn) be defined recursively by

Z+
k+1,m = f(X+

k,m, Z+
k,m), (21)

where Z+
m,m = z∗ is a constant.

Obviously, Z+
n,m is F+

m-measurable. Let m′ = n − [ τ
2 ] and

let B denote the event that no coupling occurs in the interval
(m,m′]:

B = {ω : for m < k ≤ m′ Tk /∈ Γc}.

Due to the Doeblin-condition

P (B) ≤ (1 − δ)m′−m = (1 − δ)[
τ
2 ].

Now consider the event

BC = {ω : ∃k, m < k ≤ m′ Tk ∈ Γc}.

On BC we have X+
k,m = Xk for all k ≥ m′. Consider the

following process:

Z+
k+1,m = f(Xk, Z+

k,m) for m′ < k ≤ n, (22)

with starting point at time m′ Z+
m′,m.

The process (Zk) considered for m′ ≤ k ≤ n satisfies
Zk+1 = f(Xk, Zk) with starting point at time m′ Zm′ .

On the set BC by the exponential stability of f we have

‖Z+
n,m − Zn‖ ≤ C(1 − %)[

τ
2 ]‖Z+

m′,m − Zm′‖. (23)

Hence for q ≥ 1

E
1
q ‖g(Xn, Zn) − g(X+

n,m, Z+
n,m)‖q ≤

E
1
q (χB‖g(Xn, Zn) − g(X+

n,m, Z+
n,m)‖q)

+E
1
q (χBC‖g(Xn, Zn) − g(Xn, Z+

n,m)‖q) (24)

As g(x, z) is bounded, the first term on the right hand side can
be bounded from above trivially

E
1
q (χB‖g(Xn, Zn) − g(X+

n,m, Z+
n,m)‖q) ≤

E
1
q (χB(2K)q) = 2KP

1
q (B), (25)

where ‖g(x, z)‖ ≤ K.

Consider the second term of the expression (24).

E
1
q (χBC‖g(Xn, Zn) − g(Xn, Z+

n,m)‖q) ≤
E

1
q ‖g(Xn, Zn) − g(Xn, Z+

n,m)‖q ≤
E

1
q (L‖Zn − Z+

n,m‖)q ≤
E

1
q (LC(1 − %)[

τ
2 ]‖Z+

m′,m − Zm′‖)q =

LC(1 − %)[
τ
2 ]E

1
q ‖Z+

m′,m − Zm′‖q (26)

The second inequality is due to the Lipschitz-continuity of g,
and the third inequality follows from the exponential stability of
f . Using the Minkowski inequality, Condition V.2 and Lemma
V.5 (the distribution of X∗ is stationary) we have that Zm′ and
Z+

m′,m are M -bounded

E
1
q ‖Z+

m′,m−Zm′‖q ≤ E
1
q ‖Z+

m′,m‖q+E
1
q ‖Zm′‖q ≤ S, (27)

and so
E

1
q ‖g(X+

n , Z+
m,n) − g(Xn, Zn)‖q ≤

2K(1 − δ)
[τ/2]

q + K ′(1 − %)[τ/2], (28)

where K ′ = LCS.
Now we are going to apply Lemma IV.1 and obtain

γq(τ) ≤ 2(2K(1 − δ)
[τ/2]

q + K ′(1 − %)[τ/2]). (29)

Thus

Γ(q) =

∞
∑

τ=0

γq(τ) ≤

∞
∑

τ=0

(4K(1 − δ)
[τ/2]

q + 2K ′(1 − %)[τ/2]) < ∞, (30)

hence the claim of the theorem follows.

VI. EXPONENTIALLY STABLE RANDOM MAPPINGS II.

In this section we consider an extension of Theorem V.1 for
unbounded g. For this we will need to prove the existence of a
stationary distribution for the process (Xn, Zn). For not neces-
sarily Markovian, but strictly stationary process (Xn) and (Zn)
defined by (16), Has’minskii’s criteria gives a necessary and
sufficient condition for the existence of stationary distribution
on (Xn, Zn) as follows:

Proposition VI.1: Let X ,Y be Polish spaces, and let (Xn)
be a stationary process. Consider the recursion (16), where f is
a continuous function. The process (Xn, Zn) has a stationary
distribution if and only if there exists an initial value ξ, such
that

1

N

N
∑

n=1

P (|Zn| > c) −→ 0

uniformly in N , when c → ∞.
A continuous time version of this theorem has been stated and
proved in Thereom 2.1 of Chapter II of [24]. The proof of the
discrete time proposition given above follows the same path.
In our case it seems to be difficult to check the condition of
Has’minskii, hence we follow a different path.
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In our case the process (Xn, Zn) is Markov. A representation
of this Markov process is

(x, z) −→ (Tx, f(x, z)). (31)

Lemma VI.1: Assume that the Doeblin-condition holds with
m ≥ 1 for the Markov process (Xn), f is uniformly exponen-
tially stable mapping and Condition V.2 holds. Then the process
(Xn, Zn) has a stationary distribution.

Proof: Define X−n as the limit

X−n = lim
k→∞

T−n ◦ · · · ◦ T−n−kη, (32)

with any fixed η. It has been shown in Proposition III.2 that the
limit is well-defined. It is easy to see that the process (X−n) is
stationary. Denote the mapping f(xn, ·) : Z −→ Z by fxn

and
let be

Z∗
0 = lim

n
fX−1

◦ · · · ◦ fX−n
ξ. (33)

We prove that the limit exists. Take a realization of (X−n)
denoted by (x−n). Consider the difference

‖fx−1
◦ · · · ◦ fx−n

ξ − fx−1
◦ · · · ◦ fx−m

ξ‖, (34)

where n < m. Using notations like in Lemma V.1 with ϕ =
z(−n − 1,−m − 1, ξ) we have

‖fx−1
◦ · · · ◦ fx−n

ξ − fx−1
◦ · · · ◦ fx−m

ξ‖ =

‖fx−1
◦ · · · ◦ fx−n

ξ − fx−1
◦ · · · ◦ fx−n

ϕ‖ ≤
C(1 − %)n‖ξ − ϕ‖, (35)

where the last inequality is due to the exponential stability of f .
Thus

E
1
q ‖fX−1

◦ · · · ◦ fX−n
ξ − fX−1

◦ · · · ◦ fX−m
ξ‖q ≤

C(1 − %)n
(

‖ξ‖ + E
1
q ‖Z(−n − 1,−m − 1, ξ)‖q

)

, (36)

and by Lemma V.5 the sequence fx−1
◦ · · · ◦ fx−n

ξ is Cauchy
in Lq-norm, hence it converges. Thus Z∗

0 is well-defined when
convergence is interpreted in Lq-norm for any q ≥ 1. Consider
now the pair

X0 = lim
n

T0 ◦ T−1 ◦ · · · ◦ T−nη, (37)

Z∗
0 = lim

n
fX−1

◦ · · · ◦ fX−n
ξ. (38)

We prove that the distribution of (X0, Z
∗
0 ) is invariant, i.e. it

is the same as the distribution of (T1X0, fX0
Z∗

0 ). Let X1 =
T1X0 and Z1 = fX0

Z∗
0 As

X1 = T1 lim
n

T0 ◦ · · · ◦ T−nη = T1 ◦ T0 ◦ T−1 ◦ · · · ◦ T−kη,

where k is such that T−k ∈ Γc. Therefore

X1 = lim
n

T1 ◦ T0 ◦ · · · ◦ T−nη

as in Proposition III.2, and

Z1 = fX0
Z∗

0 = fX0
◦ lim

n
fX1

◦ · · · ◦ fX−n
ξ =

lim
n

fX0
◦ · · · ◦ fX−n

ξ, (39)

since fX0
is continuous in z. Thus the distribution of (X0, Z

∗
0 )

is the same as the distribution of (X1, Z1), so the statement is
proved.

Let the distribution of the process (X∗
0 , Z∗

0 ) be denoted by
µ, and for an arbitrary initialization let the distribution of
(Xn, Zn) be µn. To generalize the results of Theorem V.1 to
unbounded g-s we need conditions, generalizing Condition V.2.

Condition VI.1: Let the initial value of (Zn), i.e. Z0 be
a random variable with distribution ρ, independent of (Xn),
where the distribution of Xn is stationary, and E

1
q ‖Z0‖q < ∞

for q ≥ 1 and for any such Z0 let us have E‖Z1‖q < ∞ or
equivalently

∫

X×Z

‖f(x, ξ)‖qdπ(x)dρ(ξ) < ∞. (40)

Condition VI.2: For the stationary distribution of (Zn) we
have

E
1
q ‖Z1‖q < ∞ for all q ≥ 1. (41)

A simple variant of Lemma V.5 is the following:
Lemma VI.2: Let the mapping f(x, z) be uniformly expo-

nentially stable, and let Conditions V.1, V.2 and VI.1 hold. Fur-
ther assume that E

1
q ‖Z0‖q < ∞ for all q ≥ 1. Then the process

(Zn) is M -bounded.
Proof: Following the proof of Lemma V.5, we have

E
1
q ‖Zn‖q ≤ E

1
q ‖Z0‖q+

n−1
∑

m=0

C(1 − %)n−m−1(E
1
q ‖f(Xm, Z0)‖q + E

1
q ‖Z0‖q) ≤

E
1
q ‖Z0‖q + C(E

1
q ‖f(Xm, Z0)‖q + E

1
q ‖Z0‖q)

1

%
. (42)

Due to the condition of the lemma Z0 is M -bounded, and
Lemma V.4 implies the M -boundedness of f(Xm, Z0) with
Z0 = ξ.

Due to Condition VI.2 the statement of Lemma VI.2 holds
with stationary initialization.

Consider now the process Vn = g(Xm, Zn), where g is a
measurable function. We need the following conditions for the
function g.

Condition VI.3: Assume that for all q ≥ 1

∫

X

sup
z∈Z

‖g(x, z)‖qdπ(x) ≤ Mq < ∞. (43)

Lemma VI.3: Conditions V.1 and VI.3 imply that the process
g(Xn, Zn) is M -bounded, i.e. for all q ≥ 1

E‖g(Xn, Zn)‖q < ∞. (44)
Proof:

E‖g(Xn, Zn)‖q =

∫

X×Z

‖g(x, z)‖qdµn(x, z) ≤

∫

X×Z

sup
z∈Z

‖g(x, z)‖qdµn(x, z) =

∫

X

sup
z∈Z

‖g(x, z)‖qdπn(x) ≤



NEW METHODS FOR THE STATISTICAL ANALYSIS OF HIDDEN MARKOV MODELS 8

∫

X

sup
z∈Z

‖g(x, z)‖qC1dπ(x) ≤ MqC1. (45)

Remark: If we replace Condition VI.3 with the follow-
ing conditions then Lemma VI.3 still holds true: the Radon-
Nikodym derivative of µ0 w.r.t. µ is bounded, say

dµ0

dµ
≤ K. (46)

and
∫

X×Z

‖g(x, z)‖qdµ(x, z) ≤ M ′
q. (47)

(46) implies Condition V.1 and with a proof similar to Lemma
V.3 we have

dµn

dµ
≤ K for all n,

thus indeed
E‖g(Xn, Zn)‖q ≤ KM ′

q. (48)

Condition VI.3 is motivated by Legland and Mevel [29] and
easier to verify in practice as it will be seen in the next section.

We are going to generalize Theorem V.1 to unbounded g.
Theorem VI.1: Consider the process (Xn, Zn), where (Xn)

satisfies the Doeblin-condition with m = 1, and let (Zn) be
defined by (16) with a uniformly exponentially stable mapping
f . Let Z0 be a random variable with

E
1
q ‖Z0‖q < ∞ (49)

and let X0 be independent of (Tn). Let Condition V.1, V.2,
VI.1 and VI.2 hold for the process (Xn, Zn), and assume that
Condition V.3, VI.3 is satisfied for the function g(x, z). Then

Vn = g(Xn, Zn)

is an L-mixing process.
Remark VI.1: Theorem VI.1 holds if the Doeblin-condition

holds with m > 1.
In Theorem V.1 the initialization of the process (Zn), i.e. Z0

was constant and the approximation of the process constructed
with Z+

m,m = z∗. However, in Theorem VI.1 g is unbounded,
thus the proof of V.1 does not work, see (25). Indeed we initial-
ize the process from a random point and make the approxima-
tion using stationary distribution. This is the reason of Condi-
tions VI.1 and VI.2.

Proof: The proof is analogous to the proof of Theorem
V.1. Let the distribution of X+

m,m and Z+
m,m be stationary,

which exists due to Lemma VI.1. Consider the expression (24).
The estimation of the second part is the same, but Lemma VI.2
is applied to prove the M -boundedness of Z+

m′,m and Zm′ in
(27). Consider the first term. By the Hölder inequality we get

E
1
q (χB‖g(Xn, Zn) − g(X+

n,m, Z+
n,m)‖q) ≤

(E
1
r (χB)rE

1
s ‖g(Xn, Zn) − g(X+

n,m, Z+
n,m)‖qs)

1
q , (50)

where r, s > 0 and 1
r + 1

s = 1. Due to Minkowski inequality
we have

E
1

qs (‖g(Xn, Zn) − g(X+
n , Z+

n,m)‖)qs ≤

E
1

qs ‖g(Xn, Zn)‖qs + E
1

qs ‖g(X+
n , Z+

n,m)‖qs (51)

and by Lemma VI.3 the right hand side is majorized by

P
1

qr (B)(2MqC1)
1

sq ≤ 2K1P
1
q (B) (52)

and we can continue the proof of Theorem V.1 using K1 instead
of K.

VII. APPLICATION TO HIDDEN MARKOV MODELS

This section demonstrates the relevance of the previous re-
sults for estimation of Hidden Markov Models. Consider a
Hidden Markov Process (Xn, Yn), where the state space X is
finite and the observation space Y is continuous, i.e. let Y be
a general measurable space with a σ-field B(Y) and a σ-finite
measure λ. Assume that the transition probability matrix and
the conditional read-out densities are positive, i.e. Q∗ > 0 and
b∗i > 0 for all i, y. Then the process (Xn, Yn) satisfies the
Doeblin-condition.

Let the invariant distribution of (Xn) be ν and the invariant
distribution of (Xn, Yn) be π following the notations used in
Theorem VI.1. Then

πi(dy) = νib
∗i(y)λ(dy), (53)

where πi denotes the components of π.
The logarithm of the likelihood function is

n−1
∑

k=1

log p(yk|yk−1, . . . y0, θ) + log p(y0, θ), (54)

where θ is the parameter of the model parameterizing the tran-
sition matrix Q and the conditionally read-out densities bi(y).
Usually the entries of Q are part of θ.

The k-th term in (54) for k ≥ 1 can be written as

log
∑

i

bi(yk)P (i|yk−1, . . . , y0, θ) = log
∑

i

bi(yk)pi
k.

Now write
g(y, p) = log

∑

i

bi(y)pi, (55)

then we have

log p(yN , . . . , y0, θ) =

N
∑

k=1

g(yk, pk) + log p(y0, θ). (56)

Let the running value of the transition probability matrix Q
and the running value of the conditional read-out densities be
also positive, i.e. Q > 0, bi(y) > 0, respectively.

With the notation pi
n = P (Xn = i|Yn−1, . . . , Y0) we have

pn+1 = π(QT B(Yn)pn) = f(Yn, pn).

We use capital letters for random variables and lower cases for
their realizations, i.e. X is a random variable and x is a realiza-
tion of X . The only exception is p, where the meaning depends
on the context.
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Theorem VII.1: Consider a Hidden Markov Model
(Xn, Yn), where the state space X is finite and the obser-
vation space Y is continuous, a measurable subset of R

d.
Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Let the
initialization of the process (Xn, Yn) be random, where the
Radon-Nikodym derivate of the initial distribution π0 w.r.t the
stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (57)

Assume that for all i, j ∈ X
∫

| log bj(y)|qb∗i(y)λ(dy) < ∞. (58)

Then the process g(Yn, pn) is L-mixing.
Proof: Identify (Xn, Yn) with (Xn) and (pn) with (Zn)

in Theorem VI.1. The exponential stability of f follows from
Proposition II.1. As pn is a probability vector Condition V.2,
VI.1, VI.2 and the momentum condition of the initialization
(49) are trivially satisfied.

We prove that Condition VI.3 is satisfied. Let [x]− =
max{−x, 0} and [x]+ = max{x, 0}. On one hand

∑

j

bj(y)pj ≥ min
i

bi(y),

leads to

[log
∑

j

bj(y)pj ]− ≤ [log min
i

bi(y)]−,

or

[g(y, p)]− ≤ max
i

[log bi(y)]− ≤ max
i

| log bi(y)|. (59)

On the other hand the inequality
∑

j

bj(y)pj ≤ max
i

bi(y),

leads to

[log
∑

j

bj(y)pj ]+ ≤ [log max
i

bi(y)]+,

or

[g(y, p)]+ ≤ max
i

[log bi(y)]+ ≤ max
i

| log bi(y)|. (60)

Since the right hand sides in (59) and (60) are independent of
p we get

sup
p

|g(y, p)| ≤ max
i

| log bi(y)|. (61)

Combining (58) and (61) we get that for all i ∈ X
∫

(

sup
p

|g(y, p)|q
)

b∗i(y)λ(dy) < ∞. (62)

Since
∫

sup
p

|g(y, p)|qdπ =

N
∑

i=1

νi

∫
(

sup
p

|g(y, p)|q
)

b∗i(y)λ(dy),

(63)

the finiteness of the left hand side follows.
Now, only Condition V.3 remained to be checked, i.e. that

g(y, p) = log
∑

i

bi(y)pi is Lipschitz-continuous in p. For an

arbitrary fix y ∈ Y we have

‖∂g(y, p)

∂p
‖ = ‖ 1

∑

j

bj(y)pj
(b1(y), . . . bN (y))T ‖ ≤ (64)

√
N max

i
bi(y)

∑

j

bj(y)pj
≤

√
N max

i

1

pi
=

√
N(min

i
pi)−1. (65)

It is easy to see that pi has a positive lower bound. Let

ε = min
i,j

qij > 0. (66)

Due to the Baum-equation (2) we have

pn+1 = π(QT B(yn)pn) =
QT B(yn)pn

1T QT B(yn)pn
,

where 1T = (1, . . . , 1)T . As Q is a stochastic matrix,
1T QT B(yn)pn = 1T B(yn)pn, and due to (66)

QT B(yn)pn ≥ ε11T B(yn)pn.

Thus

pn+1 ≥ ε11T B(yn)pn

1T B(yn)pn
= ε1 (67)

and we get

‖∂g(y, p)

∂p
‖ ≤

√
N

ε
. (68)

Hence the function g(y, p) is Lipschitz continuous.
Thus Theorem VI.1 implies that g(Yn, pn) is an L-mixing

process.
Remark VII.1: Since the positivity of Q implies that the sta-

tionary distribution of (Xn) is strictly positive in every state and
the densities of the read-outs are strictly positive Condition (57)
is not a strong condition. For example for the random initializa-
tion we can take a uniform distribution on X and an arbitrary
set of λ a.e. positive density functions bi

0(y).
To analyze the asymptotic properties of the right hand side of

(56) Theorem VII.1 seems to be relevant. Under the conditions
of Theorem VII.1 g(y, p) is an L-mixing process and the law of
large numbers is valid for such processes, see [18]. This implies
the existence of the limit of (56).

Consider now a finite state-finite read-out HMM. This case
follows from Theorem VII.1, but the integrability condition
(58) is simplified due to the discrete measure.

Theorem VII.2: Consider the Hidden Markov Model
(Xn, Yn), where X and Y are finite. Assume that the process
(Xn, Yn) satisfies the Doeblin condition. Let the running
value of the transition probability matrix Q be positive and
bi(y) ≥ δ > 0 for all i, y. Then with a random initialization on
X × Y we have that g(Yn, pn) is an L-mixing process.
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VIII. ESTIMATION OF HIDDEN MARKOV MODELS

!!! Add text.
In the sequel we compare the results with those of Legland

and Mevel, [29]. For easier reference we restate the results col-
lecting the relevant conditions.

Proposition VIII.1: Consider a Hidden Markov Process
(Xn, Yn), where the state space X is finite and the observation
space Y is continuous. Let the transition probability matrix of
the unobserved Markov chain be primitive and the conditional
read-out densities be positive, i.e. let there exist a positive inte-
ger r such that Q∗r > 0, and let b∗i(y) > 0, respectively. For
the running parameter assume also that Qr > 0 and bi(y) > 0
for all i. Furthermore assume that for all i ∈ X

∫ max
j∈X

bj(y)

min
j∈X

bj(y)
b∗i(y)λ(dy) < ∞, (69)

and for all i, j ∈ X
∫

| log bj(y)|b∗i(y)λ(dy) < ∞. (70)

Then the process g(Yn, pn) is geometrically ergodic
Geometric ergodicity also implies the existence of limit in

(56).
Remark VIII.1: Condition (69) is a Lipschitz condition in the

mean in the following sense. Due to (64) for an arbitrary fix
y ∈ Y the function ‖∂g(y, p)/∂p‖ is bounded uniformly in p

‖∂g(y, p)

∂p
‖ ≤

√
N max

i

bi(y)
∑

j

bj(y)pj
≤

√
N

maxi bi(y)

minj bj(y)

since
∑

j

pj = 1, thus L(y) =
√

N maxi bi(y)/minj bj(y) is

an y-dependent Lipschitz constant. Condition (69) states that
the Lipschitz constant L(y) is bounded in average.

Example: Consider an example with finite state space X and
read-out space R. Assume that the process (Xn) satisfies the
Doeblin-condition with m = 1 and let the running value of the
transition probability matrix be positive, i.e. Q > 0. Let the
read-outs be continuous with normal density functions, i.e.

bi(y) =
1√

2πσi

exp(− (y − mi)
2

2σi
),

where (mi, σi)s are the parameters. Assume that σ1 ≤ · · · ≤
σN . Let denote the true parameter by (m∗

i , σ
∗
i ). Since log bi(y)

is quadratic in y, (58) is satisfied as the momentums of the nor-
mal distribution exist. Hence Theorem VII.1 is applicable, and
the limit of the log-likelihood function (56) exists.

On the other hand Condition (69) of Proposition VIII.1 may
not be satisfied if σ1 < σN . Indeed, for large y-s the integrand
of (69) is

C exp

(

− (y − mN )2

2σ2
N

+
(y − m1)

2

2σ2
1

− (y − m∗
i )

2

2(σ∗
i )2

)

,

where C is a constant, which is integrable only if

− 1

σ2
N

+
1

σ2
1

− 1

(σ∗
i )2

< 0

for all i, i.e. if

(σ∗
i )2 >

(σ1σN )2

(σN )2 − (σ1)2
, (71)

Consider a finite state-finite read-out HMM, parameterized
by θ, where |X | = N and |Y| = M and θ containing
the elements of the transition probability matrix and the read-
out probabilities. Thus θ is an N 2 + NM − 2N dimen-
sional vector with coordinates between 0 and 1. Furthermore
let the ML estimate of the true parameter θ∗ be denoted by
θ̂N . Due to [29] the gradient process ∂pn(θ)/∂θ is also ex-
ponentially stable, thus Theorem VI.1 yields that the process
∂g(Yn, pn(θ))/∂θ is an L-mixing process. Similarly it can be
shown that ∂2g(Yn, pn(θ)/∂θ2 is also an L-mixing process.

The arguments of [19] yield the following result.
Theorem VIII.1: Consider the Hidden Markov Model

(Xn, Yn), where X and Y are finite. Let Q,Q∗ > 0 and
bi(y), b∗i(y) ≥ δ > 0 for all i, y. Let θ̂N be the ML estimate
of θ∗. Then θ̂N − θ∗ can be written as

−(R∗)−1 1

N

N
∑

n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + rn, (72)

where rn = OM (N−1), and R∗ is the Fisher-information ma-
trix.

Remark VIII.2: For the continuous version of Theorem
VIII.1 more conditions are needed, which is out of the scope
of this paper: identifiability conditions needed for the read-
out densities, see [30], and further smoothness and integrability
conditions needed for the gradient process to be L-mixing.
A key point here is that the error term is OM (N−1). This en-
sures that all basic limit theorems, that are known for the dom-
inant term, which is a martingale, are also valid for θ̂N − θ∗.

In the sequel we are going to present some consequences of
this result. The tail-condition in Rissanen-theorem, see in [32],
for the error term of the estimation θ is satisfied, see [22].

Theorem VIII.2: Under the condition of Theorem VII.1 we
have

∞
∑

N=1

P (N
1
2 (θ̂N − θ∗) > c log N)) < ∞, (73)

where c > 0 is an arbitrary constant
The negative logarithm of the conditional probability

− log p(yn|yn−1, . . . , y1, θ)

can be interpreted as a code length, see [33]. An adaptive en-
coding procedure is obtained if we set θ = θ̂n−1. Following
[20] we get the following result:

Theorem VIII.3: Let sn be

− log p(yn|yn−1, . . . , y1, θ̂n−1) + log p(yn|yn−1, . . . , y1, θ
∗).

Under the conditions of Theorem VIII.1 we have

Eθ∗(sn) =
1

2n
p(1 + o(1)), (74)

where p = dim θ. Furthermore

lim
N→∞

1

log N

N
∑

n=1

sn =
p

2
(75)
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with probability 1.
This result can be used for model selection for HMM-s, see

[15], [21].
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