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The discovery of the relationship between amino acids is
important in terms of the replacement ability, as used in
protein engineering homology studies, and gaining a better
understanding of the roles which various properties of the
residues play in the creation of a unique, stable, 3-D protein
structure. Amino acid sequences of proteins edited by
evolution are anything but random. The measure of non-
randomness, i.e. the level of editing, can be characterized
by an independence divergence value. This parameter is
used to generate binary tree relationships between amino
acids. The relationships of residues presented in this paper
are based on protein building features and not on the
physico-chemical characteristics of amino acids. This
approach is not biased by the tautology present in all
sequence similarity-based relationship studies. The roles
which various physico-chemical characteristics play in the
determination of the relationships between amino acids are
also discussed.

Key words: amino acid distance matrix/homology studies/
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Introduction

Proteins are constructed from 20 residues: some residues have
similar properties while others are rather different. The 20
residues can be grouped in several ways into overlapping or
non-overlapping groups on the basis of their physical and
chemical characteristics, such as charge, hydrophobicity, etc.
(Grantham, 1974; Miyata et al., 1979; Pongor, 1987; Rao,
1987; Stryer, 1988; Creighton, 1993). A limited number of
attempts has also been made to discover the relationships
between residues using protein building (biological) features,
e.g. their replacement ability in phylogenesis or in site-directed
mutagenesis (Fitch and Margoliash, 1967; McLachlan, 1971;
Dayhoff et al., 1978; Levin et al., 1986; Risler et al., 1988;
Tiidbs et al., 1990; Altschul, 1991; Gonnet et al., 1992;
Henikoff and Henikoff, 1992, 1993; Jones et al., 1992, 1994,
Johnson and Overington, 1993; Cserz6 et al., 1994). Residues
with a high degree of similarity in terms of their chemistry
are usually found to have similar biological properties too.
However, for the majority of the 190 different pairs of amino
acids it is a hard task to derive a natural relationship using
their physical or chemical characteristics because we do not
know whether hydrophobicity, charge, side-chain volume or
even certain secondary structure-forming abilities play the
dominant role in the structure of a given protein.

The possibility of evaluating the replacement ability from
homology studies or protein engineering is only one side of
the coin. It is equally plausible that discovering the natural
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relationship between amino acids might lead to a deeper
understanding of the roles played by various physico-chemical
properties of residues in the creation of the unique, stable, 3-D
structure of a protein.

Properties of the primary structure of proteins have been
studied in our laboratory (Vonderviszt et al., 1986; Cserz6 and
Simon, 1989; Simon and Cserz6, 1990). The results were used
to predict isomorphic amino acid replacement and various
protein structure-related parameters; they were also incorpor-
ated into conformational energy calculations of proteins
(Vonderviszt and Simon, 1986; Tiid6s er al., 1990, 1994,
Simon et al., 1991; Fiser et al., 1992; Simon, 1993; Cserz6
et al., 1994). In these studies the frequency of amino acid
pairs was analyzed; a correlation coefficient calculation was
the main tool in the statistical analysis.

Currently, the sequence database is large enough to perform
analyses at the triplet level. Here, protein sequences are
analyzed at this level and we introduce the independence
divergence calculation, a statistical method used broadly in
various areas of science (Shepp and Vardi, 1982; Csiszar and
Tusnady, 1984; Smith and Grandy, 1985) but not to date in
protein sequence studies. General mathematical methods useful
in protein analysis have been collected by Gindikin (1992),
and information about the theoretical approach is given by
Yockey and Hubert (1992). A comparison of probability
distribution based on the ‘entropy term’, a close relative of
the independence divergence value, is discussed by Press
et al. (1989).

The divergence value is a measure of the extent of the
difference between two probability distributions (Kullback,
1959; Gokhale and Kullback, 1978). If the observed relative
frequency (measured value of probability) of the ith event is
pi and a certain model would predict a probability g;, then the
divergence value D is:

D =Y p; - In(p/q,). (1)

For a perfect model p; = g;, and therefore D = 0.

The aim of this paper is 2-fold. We present binary trees
describing a hierarchically structured relationship between
amino acids as well as a resulting possible grouping of them.
We also demonstrate how independence divergence can be
used in protein sequence studies.

Materials and methods

Database

Annotated and classified entries of the Protein Identification
Resource (PIR) database (release 34.00, September 1992;
Protein Identification Resource, NBRF, Georgetown University,
Washington, DC) were used after removing homologous
sequences by a filtration procedure similar to that proposed
by Hobohm et al. (1992). Some modifications have been made
to their algorithm to overcome the difficulties caused by the
size of the data set. Each protein was represented by a
400 dimension vector. The components of the vector were
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frequencies of the dipeptides AAACAD... .. YV,YW,YY.
Proteins were considered related if the correlation coefficient
of their dipeptide compositional vectors exceeded a certain
limiting value. In the removal procedure, Algorithm 2 of
Hobohm et al. (1992) was followed; however, instead of using
fixed-limit values, this limit decreased in a stepwise fashion
from 100 to 0% in steps of 1%. Proteins removed at higher
limiting values were neglected in further steps. Because a very
large number of almost identical sequences were removed
immediately during the first few steps, the procedure was
faster than that described by Hobohm et al. (1992). From the
stepwise procedure, data sets at 100, 80, 60, 40 and 20% were
selected. The 100% level represents the unfiltered database;
the 20% level represents an overfiltered database where a large
number of unrelated proteins have also been removed, since
the average correlation coefficient between the dipeptide com-
position vector of two randomly selected proteins is close to
the 20% level. Table I shows the number of sequences and
residues remaining after the various filtration levels.

Independence divergence of random sequences

The short-range non-randomness of amino acid sequences can
be measured by calculating the independence divergence value
(IDV) at the triplet level in the following way:
20 20 20
Dy=7Y, Y ¥ Py In(PiaQijs)s 2
i=lj= k=1
where P, is the observed frequency of the amino acid triplet
ij.k using a fixed frame, and Q;;; is the expected value of
P;;x assuming perfect randomness in the amino acid sequences.
The frame means two specified distances x and y between first
and second, and first and third elements of the triplets,
respectively. For example, when x = 2 and y = 5, blocks of
six subsequent residues are considered, and i represents the
first, j represents the third (3 = 1 + 2), and k represents the
sixth (6 = 1 + 5) element of the block.
In one approach, Q, ; is the product of the observed relative
frequencies of the residues in the corresponding positions of
the triplet (P;, P; and P;) and the total number of residues (NR):

Q) = NR - P; - P; - P 3

[Note that this is slightly different from the product of the
relative frequencies of the three residues in the whole database.
For instance, many sequences start with the residue methionine,
the amino acid coded by the start codon. Therefore in triplets
the relative frequency of Met is larger in the first position than
in the second and third. Methionine is not the only residue
that exhibits such an uneven distribution along the amino acid
sequence, but its frequent appearance at the N-terminus has
by far the largest effect on the statistical calculations (Cserz6
and Simon, 1989). This is also the reason why Monte Carlo
mixing of the sequences was not used, as employed in most
related studies.]

Table 1. The effect of filtration on the size of the database

Filtration level Number of sequences Number of residues
(FL) (NS) (NR)

100% 10 550 3 591 370

80% 7553 2439 205

60% 5597 1617 370

40% 2809 548 912

20% 357 28 709
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Qur earlier study showed that the short-range non-
randomness did not, in general, extend for 10 residues in the
sequences (Cserz$ and Simon, 1989). Consequently, another
reference value can be calculated from the average frequency
of residues i, j and k when they are separated by at least 20
residues in the sequence:

kL 4]

02, = (171000 Y Y Pijiese @)

x=121y=5l

where P; .., is the frequency of the triplet in which j and k
residues are separated from the i residue by x and y elements
in the sequence. The advantage of this approach is that it helps
to separate short-range regularities from a possible long-range
regularity on which the short-range one is superimposed.
[Strictly speaking, only the divergence between P;;; and Q{})
measures the independence of residues. The second case, P;j;
versus Q2. compares deviation from independence in close
and distant elements.]

D, values were calculated not only on the subsequent three
residues (triplet segment), but also on all possible triplets
within a sequential interval up to 10 residues using both Q;
values. Let D; 5 denote the Dy value calculated according to
Equation 2 for subsequent residues. For other triplets, D3 is
the mean of the D; values calculated for all triplets where
there is less than S residues between the first and the third
residues of the triplets. For example, Dj j, is the mean of 36
individually calculated D5 values for triplets where the relative
positions of the residues are: 1,2,3; 1,2,4; ... 1200 134
s 1,9,10.

Relationships derived from independence divergence
calculations

The calculated IDVs showed a significant deviation from
independence. This means that the 20 amino acids as a
whole are not independent. It may be that some of them are
independent. One way to find independent pairs is the unifica-
tion or amalgamation of pairs,

Any two amino acids can be unified into one pair and an
IDV can be recalculated for 19 new units, i.e. 18 of the original
residues and one artificial element formed by the unified pair.
If the distinction between any two of the residues is exactly
random, then their unification will not result in a significant
effect on the IDV. If there is no independent pair, then the
unification of the most similar two residues into one element
will cause the smallest decrease in the IDV. There are 190
ways to unify two different amino acids into one element. The
largest calculated IDV represents the smallest decrease relative
to that calculated from all 20 elements. Consequently, it
pinpoints the most similar pair out of the 20 elements. We
unified this pair first. After this first step the procedure was
repeated with the 19 remaining residues (18 individual amino
acids and one unified pair); the process was repeated until
only one unified element remained. At each step the pair of
elements (individual amino acid or group of amino acids)
leading to the maximum IDV was unified. This procedure
resulted in a binary tree that represents a sequence of groups
of amino acids; it also shows a hierarchical relationship
between individual residues. When the three residues were not
adjacent but came from a segment of four to 10 residues,
IDVs were calculated for all possible triplets of the given
segment length. The maximum IDV pinpointed the pair with
the most similar elements,



Advantage of binary trees

One may ask for the best grouping of amino acids into A
groups, where s is any given number between 1 and 20.
Combinatorial calculations show that n different elements
can be grouped into A (non-empty) groups in k different

ways, where:
k= Z (— 1) H(h = z')"]/h! - (5)

i=0

For example, when n = 20 (the number of amino acids), k is
>0.5%106 for A = 2 and k is ~4.5X10'° for h = 4. Therefore
it is practically impossible to check all possible groupings.
Our partial optimization procedure is based on the assumption
that from the best h group the best (h — 1) group can be
obtained by integrating two of the h groups into one and
leaving the other (h — 2) groups unchanged. Making several
thousand random unifications of the elements, a Monte Carlo
simulation demonstrated that partial optimization is a reason-
able approach because IDVs resulting from partial optimization
are on the top of the distribution of IDVs generated by random
groupings. Partial optimization is computationally manageable
because at each level of the tree it involves only [A(h — 1)]/2
different unifications, where h is the number of elements.
(Nevertheless, considering the five levels of filtration, the two
kinds of reference Q;;,; values and the eight different segment
lengths representing one to 36 different triplets combinations,
altogether ~10° IDV's were calculated.)

One of the advantages of this binary tree representation of
amino acid relationships is that it is not based on the comparison
of homologous sequences. Risler et al. (1988) pointed out that
there is a certain level of tautology in those calculations: the
homologous sequences are defined on the basis of sequence
similarities (not only on the basis of the same residues but
also on the similar ones) and then similarities among the
residues are derived from this data set. Our procedure, similar
to those we have published previously (Tiid8s et al., 1990;
Cserz er al., 1994), is not biased by such tautology.

Finally, some disadvantages of the procedure must also be
mentioned. At every level of the tree, two groups (or single
residues) are unified according the highest IDV, regardless of
whether the second highest value, etc., is much lower or almost
the same. To overcome such errors we considered binary trees
generated by slightly different IDVs. One may argue that there
is a ‘tie-up sale’ in the lower level of the tree because the best
candidates for pairing to a certain residue or residue groups
might already be grouped with other residues and they are
therefore not available as a single residue any longer. However,
our Monte Carlo simulation (mentioned above) indicates that
this ‘tie-up sale’ effect is present only in trees which are far
from the optimal ones.

One may also criticize the method leading to binary trees
by saying that triplets cannot accumulate all the stochastic
relationships existing in proteins. A possible extension of our
method to larger blocks is based on the random sets formed
by residues representative in the investigated block. Small-
sized sets occur significantly much more often in proteins than
one would expect assuming independence.

The relationship of individual amino acids given by the
trees can be converted into an amino acid distance matrix in
several ways. In one of the simplest cases the (i,j) element of
the distance matrix is defined as:

M(ij)= A+ B-2C (6)

Binary trees of amino acids

if residues ¢ and j appear in the tree at levels A and B
respectively (branch tops) and they become part of a unified
element at level C (the closest junction). These distance
matrices can be compared with other similarity or distance
matrices from the literature by calculating correlation coeffi-
cients. For this comparison all matrices were prepared accord-
ing to Johnson and Overington (1993).

One obvious disadvantage of this very simple transformation
is that it does not distinguish between unifications taking place
near the top or near the bottom of the tree. Nevertheless,
despite the scaling uncertainty due to the limited optimization
during tree building and the simplicity of the transformation,
these matrices give reasonable correlations with other amino
acid distance and similarity matrices and thus can be used in
homology and protein engineering studies.

Results and discussion

Binary trees obtained after various levels of data filtration and
for various segment lengths have been created.

Figure 1 shows the binary trees calculated for decapeptide
segments at the 100, 60 and 20% filtration levels, and those
calculated for three-, six- and nine-membered oligopeptide
segments at the 60% filtration level using Q1)) as a reference.

Figure 2 shows the binary trees calculated for heptapeptide
segments using both Q! and Q7 references at the 60%
filtration level. These were selected as representative trees
because the matrices calculated from them gave the highest

® ©

Fig. 1. (a—c) Binary trees calculated for decapeptide segments using QH’,\ as

the reference at the 100, 60 and 20% filtration levels. (d—f) Binary trees
caleulated for three-, six- and nine-membered oligopeptide segments at the
60% filtration level using QE";-.];( as the reference.
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Fig. 2. Binary trees calculated for heptapeptide segments using both o
(a) and 0%} (b) as references at the 60% filtration level.

average correlation coefficients with the other matrices obtained
from trees representing various segment sizes and various
levels of filtration. Table II shows the two distance matrices
calculated from the trees of Figure 2 by Equation 6. We
would like to emphasize that the trees represent the primary
information and Equation 6 is only one of the many ways of
transforming trees into matrices.

It can be seen that the lack of filtration (100% level) results
in rather similar trees to those obtained after 60% filtration,
while the trees generated after 20% filtration (keeping only a
fraction of the original database) differ significantly from them
(Figure 1). Thus, homologous proteins presented in such a
large database do not influence the results significantly. This
discovery has great practical importance because, as we
discussed earlier (Vonderviszt et al., 1986; Cserzb and Simon,
1989), there is no reliable way to obtain a perfectly filtered
database. Even if only one protein remains from the whole
database, it might contain repetitive sequence elements due to
gene duplication. However, to avoid any bias, the results from
the unfiltered database will not be discussed further here.
Therefore we shall discuss the results obtained after the 80,
60 and 40% levels of filtration.

The binary trees in Figure 1 also show that the results
obtained from triplets in which the residues are separated by
a few residues are rather similar, regardless of the lengths of
the segment (the sequential distance between the first and the
third residues); however, they differ slightly from the results
obtained using adjacent residues (tripeptides). This justifies
our decision to use statistics not only on tripeptide segments.

To understand the roles that various physico-chemical
characteristics play in the determination of the relationships
between the amino acids, all 48 trees were analyzed. A
decomposition of these trees is shown in Table III. One obvious
result that can be seen in all 48 trees obtained from the eight
oligopeptides with different lengths after the 80, 60 and 40%
levels of filtration and using Q{! and Q{3 as references, was
that seven hydrophobic residues (F, I, L, M, V, W and Y)
were in one group in 47 of the cases. When Q) was used as
a reference basis, only one out of the 24 cases showed different
patterns; in 23 of the cases the residues mentioned above

Table II. Distance matrices for amino acids calculated from the binary trees of Figure 2a (lower left of table) and b (upper right of table)

A C D E 3¢ G H I K L M N P Q R S T v W Y

A 12 9 10 22 1 13 20 15 21 21 13 1 18 18 8 8 20 19 22
C 9 17 14 12 11 21 10 19 9 9 21 13 22 22 20 20 10 9 12
D 14 23 15 27 8 4 25 20 26 26 4 10 23 23 17 17 25 24 27
E 11 20 15 24 9 19 22 5 23 23 19 11 8 8 18 I8 22 21 24
F 20 29 30 27 21 31 14 29 21 21 31 23 32 32 30 30 14 3 0
G 2 7 16 13 22 12 19 14 20 20 12 2 17 17 9 9 19 18 21
H 9 0 23 20 29 7 29 24 30 30 0 14 27 27 21 21 29 28 31
1 16 25 26 23 12 13 25 27 19 19 29 21 30 30 28 28 0 11 14
K 11 20 15 0 27 13 20 23 28 28 24 16 3 3 23 23 27 26 29
L 19 28 29 26 21 21 28 17 26 0 30 22 31 31 29 29 19 18 21
M 19 28 29 26 21 21 28 17 26 0 30 22 3 31 29 29 19 18 21
N 14 23 0 15 30 16 23 26 15 29 29 14 27 27 21 21 29 28 31
P 4 5 18 15 24 2 5 20 15 23 23 18 19 19 1 7! 21 20 23
Q 15 24 19 12 31 17 24 27 12 30 30 19 19 0 26 26 30 29 32
R 15 24 19 12 31 17 24 27 12 30 30 19 19 0 26 26 30 29 32
S 13 10 27 24 33 11 10 29 24 32 32 27 9 28 28 0 28 27 30
T 13 10 27 24 i3 11 10 29 24 32 32 27 9 28 28 0 28 27 30
v 16 25 26 23 12 18 25 0 23 17 17 26 20 27 27 29 29 11 14
W 18 27 28 25 2 20 27 10 25 19 19 28 22 29 29 31 31 10 3
Y 20 29 30 27 0 22 2 12 27 21 21 30 24 31 31 33 33 12 2
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Table ITI. Decomposition of binary trees obtained after various levels of filtration (FL), various lengths of oligopeptide (LO) using two kinds of reference,

0" and 0
LO FL Tree decomposition
n 3 40 ((ALQRNLEKNL((((C,HLS,TND.NNGP)((FY),W)L(LV)LLM)))
D 4 40 (((ALQ.R))(EK))(((C.H)L(S,TNUD.NLG, P, (((F.Y), W), (LV).(L.M))))
o L 40 (((ALLQR,((D,N),(EKN),(((FY),W)L(LV))LLMN).(((C.H).S.TH.(G,P)))
n 6 40 ((((A(Q,R)),((D,N),(E.K))), (((F,Y ), W),(1,V)),(LM))),(((C,H),(S,T)).(G.P)))
n 7 40 ((((A QR ((D,NY,(E KN, (((F.Y ), W),(LVI)LLMNL((C.H).S.T)).(G.P)))
o 8 40 (((ALQ.R)(E,K)),((((C,G),P),((D,N),(H,(S,T)L((((EY),W),(LV)),(L,M)))
h 9 40 (((ALQ.R)(EK)).((((C.G),P),((D,N),(HL(S, T, (((F.Y),W)(LV)).(L.M))))
o 10 40 (((ALQ.R)).(E,K)),((((C.G),P),((D,N},(H,(S, TN, ((((FY),W),(LV).(LM))))
ot 3 60 (((ALQ.R)L(E, KN, ((((C,H)L(S,TILD,NNLGPIL((FY), W), (LV)),(LM))))
n 4 60 ((((A(Q.R)),((D,N)(EKN),(((F.Y),W),(LV),(LM)),(((C,H).(5.T)).(G.P))
o 5 60 ((((A(Q.R)),((D,N)L(E,K))),(((FY),W),(L,V)),(L,MN),(((C.H).(S.T).(G.P))
D 6 60 ((A,((((C.H),(S,T),P),G,(((D,N),((EK).(QRN),((((FY),W),(LV)),(LM))))
h 7 60 ((A(((C.H),(8,T)),P),GNL(D,N),((E,K)(QRNL((FY),W),(LV)),(L,M))))
n 8 60 ((A,((((C.H),(S,T),P).GN.((D,N),((E,K)(QRM).(((EY),W).(LV)),(LM)))
o 9 60 ((((AL(Q,R)),((DN)EKN.((EY),W)(LV)LLMNLI(CH).S.T).P).G)
h 10 60 (((AL(Q.R))((((C.H),(S.T)),P),G),(((D,N),(E,K)),((((EY), W),(LV)),(L.M))))
on 3 80 (((ALE KL (QRMLL V(LM (((CH)(FY),W)).(D,N))(G,(P(ST))))
oW 4 80 ((((A(Q,RL((D,NYL(EKN)((((FY),W).(LV)).LM),(((CH)(S.T).(G.P))
(h 5 80 ((A(CHLS, TG, P)L((DN)(EKLQRNLEY),W)LLV)).(LM))
o 6 80 ((A((((C.H),(S,T),P),GN((D.N),(EK)(QRN(((EY),W),(LV)),(LM))))
o 7 80 ((A,((((C,H)(S,T),P),G))(((D.N),((E,K)(QRN)(((FY),W),1),V),(LM))))
on 8 80 (((AG)(((C,H)L(S.T)).P)),((D,N),((E.K),(QRN).((((F.Y),W),1),V),(L.M))))
o 9 80 (((A,G),(((C;H),(S, T))P)(((D.N),(EK)(QRN((((FY),W).D,V),(LM))))
( 10 80 (((ACQ.RN((((C,H),(S,T)),P),G)).(((DN),(E.K))((((F, Y),W),1),V),(L.M))))
0@ 3 40 (A (K(QR)N,E)L((((C,8), TH(D,(HNN)L(G.P))(((FY),V),(LW)),(LM)))
) 4 40 ((((AL(K(Q,R)),E),(((C.(S.T)),(D,(H.N))),(G.PY)),(((F.Y),W),(1(M,V))).L))
oY 5 40 (((A (B, (K, (Q.RN)((((C,H)(S,T)).(D,N)),(G,PY)), (((F.Y),W),(LV)).(LM)))
2 6 40 ((((AL((C,H),(S, TG, P)),(DN,(E(K, (QRNNEY),W),AV).LM)))
o 7 40 ((((AUCH)S, TG, PYL(D.N)ELKAQRNNFEY),W)LLV))L(LM))
2) 8 40 ((((ALL(C,H), (S, TGP ((DN)(E (K, QRN ((F,Y),W)LLV).(LM)))
Q@ 9 40 (AP, T)LC,G)) (D, (H,N)LEK (QRNNMEY),W)LAV)LLM)))
oW 10 40 ((((AL((C,H)(S, TG PIL((DNYLELK QRN EY),WLAV)LLM)))
o@ 3 60 (((CAKL(QR)LEN(((((C,HYNL(S,T),D)(G,P)), (R Y),W),(LV)).(LM)))
o 4 60 (((AL(E,(K(QRIN),((((C,(H,N)),D),(S, TGP ((F.Y),W),(LV).(LM))
7 5 60 ((((ALC,G))(P(S,T))(DHNLE (KAQRNDDMUEY),W).(LV)).(L.M)))
2 6 60 (((AE(K(QRN)L((D,(HN)),G), (B8, TN, ((C.LM)(EY),W),(LV))
oW 7 60 (AL (PLS,T1)),G),(D,(H,N))),(E,(K,(Q.R))),((CLLM)((FY),W),(LV)))
o@ 8 60 (((((A(P.(S.T)),G)(D,(HN))), (E,(K,(QR)N,((C(LM)(FY),W),(LV))))
o® 9 60 (((((ALP(S.T)),G).(D,(HN)LE(K(QRN)LC,(LM)((FEY),W),(LV))
o 10 60 ((((ALP(S,TIN,GLD(HN)LE (K (QRNN,(C,LM)((FY),W),(LV))
o@ 3 80 (((AL(B, (K(QRN)L((D,(HN))(S, TGP (C, (B Y),W)).(LV)(LM))
o® 4 80 (((AL(E, (K (QRIN).((((C,(H,N)).DY(S. TG, P, (((F,Y),W),(LV)),(L,M)))
o® 5 80 ((((A(S,T)),((C,G), P, ((D,(HN))(E(K,R), QNN (((F.Y),W),(LV),(L,M)))
) 6 80 ((CAL(E,((K,R),QN).((D,(HN))(G,(PAS THIMNLC((F, Y ), W), (LV)),(LM)))
2) ¥ 80 ((((AL(P(S,T)),G),((D,(HN))(E(K.R)Q)L((C(F Y),W),(LV)),(LM)))
%) 8 80 ((((A(P(S, TG, ((DL(HN))L(E (K, R)QNNC,(F.Y), W), (LV),(L,M)))
2 9 80 ((((AL(P(S.T))).G). (D, (HN)),(E, (K, R),QNLC,(((FY), W), (LV)))(L.M)))
o2 10 80 ((((AL(P(S,T))),G),((D,(H,N)),(E,(K,R),Q)N,((C,((FY),W),(LV))).(L.M)))

The decomposition of binary trees from Figure 2 is printed in bold.

formed a separate group. When Q% was used as the reference,
the seven hydrophobic residues were together in all 24 cases,
but in 11 of these cases they were also accompanied by Cys.
Indeed cysteine is a very special residue. In proteins it appears
partly as a rather polar cysteine and partly as an apolar half
cystine. Further, because —SH is the most reactive group, a
high percentage of cysteine appears in the active center of the
protein and it can bind, like His, a lot of ligands and metal
ions, e.g. the zinc finger protein family. Our sequence-level
analyses cannot distinguish between the large variety of forms,
and this may cause uncertainty in the position of the Cys
residue in the binary trees. It is also worth mentioning here
that Y is always in the hydrophobic branch of the trees, and
in all 48 cases F and W are its closest relative. This suggests
that from the point of view of editing the primary structures,
the aromatic and not the weak polar character of Y plays a

significant role. Another interesting feature is that Ala, Gly
and Pro never join with the other hydrophobic residues. These
amino acids usually appear in trees at very low levels,
indicating that they are at a large distance from most of the
other residues. Note that their appearance at such a low level
is due to the differences of these residues from the other large
groups of residues rather than their similarities with each other.

S and T, as well as L and M, appear 47 times as closest
relatives. They are reported as the best replacing pairs in the
literature. The next most common pair is Q and R, which can
be seen together a total of 42 times. R is charged, but because
it appears very often on the surface of the protein and its
charge is neutralized by counter ions, this pairing is not strange.
However, the pairs K and R, E and Q, and N and Q would be
less surprising.

The pair E, K appeared together in all cases when the
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Table TV. Correlation coefficients between the two distance matrices (see Table II) in bold and any pairs of other similarity and distance matrices

Reference® o 1 2 3 4 5 6 7 8 9 10 11 12 13 4 - 15 16 17 18
1 63

2 75 73

3 63 97 M2

4 6 79 68 73

5 66 88 81 92 70

6 61 76 . .77 2571475

7 66 88 83 8 78 94 75

8 64 88 77 8 75 90 8 92

9 67 8 78 88 76 91 82 93 98

10 63 88 78 90 76 92 69 88 83 84

11 63 TR T2 7 AT ) AT A T B9 Bl B 102801082

12 7 19 B3t ST P ra B o B9 A 86 o83 1 B3, B o TS

13 68 87 8 8 74 8 81 8 90 91 84 74 83

14 66 78 8 78 58 83 8 79 76 77 77 68 18 19

15 65 64 8 63 56 73 66 T4 6 71 70 68 75 71 75

16 61 65 8 63 63 75 59 80 76 7 0 69 81 76 69 78

17 31 6 40 61 S4 55 61 61 67 66 50 46 50 59 48 35 4l

18 46 39 73 4l 23 52 49 44 42 42 49 45 49 49 63 67 49 15
0 8 60 78 59 57 6 50 67 63 64 63 57 75 65 65 69 62 25 51

#References are as follows: 1, Altschul (1991); 2, Cserz8 et al. (1994); 3, Dayhoff er al. (1978); 4, Fitch and Margoliash (1967); 5, Gonnet et al. (1992
6, Grantham (1974); 7, Henikoff and Henikoff (1992); 8, Henikoff and Henikoff (1993); 9, Johnson and Overington (1993); 10, Jones et al. (1992); 11, Jones
et al. (1994); 12, Levin et al. (1986); 13, McLachlan (1971); 14, Miyata et al. (1979); 15, Pongor (1987); 16, Rao (1987); 17, Risler ez al. (1988); 18, Tiid8s

et al. (1990).

product of the frequencies of the single residues [Q{})] was
used as a reference but in none of the 24 cases when Q%
was used as reference; however, they remained close to each
other in the latter case. As we have mentioned, charges are
usually neutralized by counter ions when they appear on the
surface of the protein. There is a similar but less significant
asymmetry in the case of the C, H pair. These residues
appeared next to each other in 21 out of the 24 cases when
Q{1 was used as the reference, and only six times in the other
24 cases when Qf7, was used. Note that these are the cases
where C is joined to the hydrophobic residues 11 times. The
C, H pair is a very complicated case, not just because there
are two covalent forms of Cys but also because the pK of His
is so close to neutral that both charged and neutral His are
common in the proteins.

In general, while the hydrophobic residues (except A, G
and P) are separated from the polar and charged residues,
which are rather mixed up in the various trees, indicating that
charge is less important in the editing of the amino acid
sequences than hydrophobicity.

Table IV compares the two distance matrices calculated
from the binary trees in Figure 2 by Equation 6 and some
other matrices from the literature. This matrix shows that there
are significant differences between any pairs of distance (or
similarity) matrices. Some high correlation coefficient values
are the consequence of using very similar methods and/or
databases. Just as various secondary structure predictions
produce different quality results in different proteins, one
should expect that certain distance matrices used in alignment
or protein engineering studies may work better in one case,
while a second matrix may give a better result in another case.
In general it is hard to rank the matrices. From a simple
statistical point of view, those matrices based on the analysis
of larger databases are usually better.

Table II shows two distance matrices. They were calculated
from the same database using similar methods. Both matrices
were generated by calculating IDVs, with the only difference
being two different ‘random’ residue triplet distributions as a
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reference. Therefore it is not surprising that the two matrices
Q"D and Q™ give the highest correlation coefficient value with
each other. 0V and Q® exhibit the highest similarity with the
matrix of Cserz8 et al. (1994), 75 and 78% respectively, which
was calculated from the non-random pairing of amino acids
in a data set similar to that used in this study.

It is worth mentioning that a matrix calculated by the same
method as used by Cserz8 et al. (1994) but on a smaller data
set (Tiid8s et al., 1990) gives one of the lowest correlation
coefficient values with Q") and Q¥ (46 and 51% respectively),
indicating the importance of an appropriate database (see
Table V).

This is one of the reasons why we analyzed the large PIR
database instead of the Protein Data Bank [which contains
much more detailed information but on a relatively small
and specialized subset of proteins, based mainly on small
crystallizable (water-soluble) proteins]. It has been discussed
previously that the results of statistical analyses may not be
applied to members of a larger data set (Simon and Cserz6,
1990). It was demonstrated recently that only a similarity
matrix based exclusively on the analyses of a protein sequence
database can be used to predict transmembrane helices in
membrane-bound proteins (Cserzb et al., 1994).

In this work, two rather similar distance matrices have been
suggested to add to the list of several similar matrices in the
literature. The question as to which matrix should be used in
a homology or protein engineering study cannot be answered
a priori. In practice, several approaches should be applied and
the result provided by most of the unrelated approaches has
the highest probability of being valid. There are a large number
of distance matrices in the literature, but the number of methods
by which these matrices were calculated are rather limited.
From this viewpoint it is important to note that the two
matrices in Table IT were generated in a completely new way.

Polypeptides with random amino acid sequences do not
generally fold into a unique, stable conformation; proteins
have edited amino acid sequences. If the level of editing, i.e.
the measure of non-randomness, is an important feature of the



amino acid sequence of a protein, one can expect that those
amino acid replacements found to be acceptable to the protein
cause little alteration in the level of editing. Our study argues
in favor of this expectation. Our data presented in Figure 2
and Table II may be used in homology studies, protein
engineering and all other cases where the grouping of amino
acids is necessary. We also wish to demonstrate the usefulness
of the independence divergence calculation in sequence
analysis and call the reader’s attention to this method.
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