Publications (see [html] for selected publications)
pdfreaders.org
  1. Three Different Formalisations of Einstein’s Relativity Principle
    The Review of Symbolic Logic, to appear. (2017)
    Coauthors: J. X. Madarász, and M. Stannett.
    [pdf]

  2. On some symmetry axioms in relativity theories
    Symmetry: Culture and Science 26:(4) pp. 405-420. (2015)
    [arXiv]
  3. Axiomatizing Relativistic Dynamics using Formal Thought Experiments
    Synthese: 192:(7) pp. 2183-2222 (2015)
    Coauthor: Attila Molnár.
    [Springer] [philsci-archive]

  4. What properties of numbers are needed to model accelerated observers in relativity?
    In: Beziau J-Y, Krause D, Arenhart J B (eds.)
    Conceptual Clarifications: Tributes to Patrick Suppes (1922-2014)
    London: College Publications, pp. 161-174. (2015)
    [arXiv]

  5. Logic and relativity theory
    Synthese 192:(7) pp. 1937-1938. (2015)
    [Springer]

  6. The Existence of Superluminal Particles is Consistent with Relativistic Dynamics
    Journal of Applied Logic 12:(4) pp. 477-500. (2014)
    Coauthor: J. X. Madarász.
    [ScienceDirect] [arXiv]

  7. Faster than light motion does not imply time travel
    Classical and Quantum Gravity 31:(9) Paper 095005. 11 pp. (2014), IF:3.562*.
    Coauthors: H. Andréka, J. X. Madarász, I. Németi and M. Stannett.
    [IOP Publishing] [arXiv] [pdf]

  8. Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?
    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 10 (2014), 005, 21 pages, IF:1.243*
    Coauthors: M. Stannett and J. X. Madarász.
    [SIGMA] [arXiv]

  9. A note on ``Einstein's special relativity beyond the speed of light by James M. Hill and Barry J. Cox''
    Proceedings of the Royal Society A 469(2154):6pp. (2013) IF: 2.378*
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [Royal Society Publishing] [arXiv]

  10. The existence of superluminal particles is consistent with the kinematics of Einstein's special theory of relativity
    Reports on Mathematical Physics 72(2):pp.133-152 (2013) IF: 0.756*
    [arXiv]

  11. Special Relativity over the Field of Rational Numbers
    International Journal of Theoretical Physics 52(5):pp.1706-1718 (2013) IF: 1.086*
    Coauthor: J. X. Madarász.
    [Springer] [arXiv]

  12. Existence of Faster Than Light Signals Implies Hypercomputation Already in Special Relativity
    Lecture Notes in Computer Science 7318: pp. 528-538. (2012)
    Coauthor: P. Németi.
    [Springer] [arXiv]

  13. Closed Timelike Curves in Relativistic Computation
    Parallel Process. Lett. 22(03): 15pp. (2012)
    Coauthors: H. Andréka and I. Németi.
    [worldscientific] [arXiv]

  14. A logic road from special relativity to general relativity
    Synthese 186(3):pp.633-469 (2012) IF: 0.696
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [Springer] [arXiv] [pdf]

  15. On Logical Analysis of Relativity Theories
    Hungarian Phil. Review; 54 2010/4; 2011; pp.204-222.
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [arXiv]

  16. A Geometrical Characterization of the Twin Paradox and its Variants
    Studia Logica 95(1-2):pp.161-182 (2010), IF(2012):0.342*
    Special Issue: The Contributions of Logic to the Foundations of Physics.
     [Springer] [arXiv] [pdf]

  17. New Challenges in the Axiomatization of Relativity Theory
    In: Á. Poroszlai, G. Poroszlai, Z. Petrák (eds.)
    Proceedings of the New Challenges in the Field of Military Sciences
    Budapest, Bolyai János Military Foundation 8pp. (2010)
    [pdf]

  18. On Why-Questions in Physics
    In: The Vienna Circle in Hungary; A. Máté, M. Rédei, F. Stadler, (Eds.)
    Springer-Verlag; Wien; 2011; pp.181-189.
     [Springer] [pdf]

  19. Vienna Circle and Logical Analysis of Relativity Theory
    In: The Vienna Circle in Hungary; A. Máté, M. Rédei, F. Stadler, (Eds.)
    Springer-Verlag; Wien; 2011; pp.147-267.
    Coauthors: H. Andréka, J. X. Madarász, I. Németi and P. Németi.
    [Springer] [pdf]

  20. Comparing Relativistic and Newtonian Dynamics in First-Order Logic
    In: The Vienna Circle in Hungary; A. Máté, M. Rédei, F. Stadler, (Eds.)
    Springer-Verlag; Wien; 2011; pp.155-179.
    Coauthor: J. X. Madarász
    [Springer] [pdf]

  21. First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers
    PhD thesis ELTE, Budapest, (2009)
    [doktori.hu] [pdf] [html]

  22. Axiomatizing relativistic dynamics without conservation postulates
    Studia Logica 89(2):pp.163-186 (2008) IF(2012):0.342*
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [Springer] [arXiv]

  23. First-Order Logic Foundation of Relativity Theories
    In: D. M. Gabbay, M. Zakharyaschev, S. S. Goncharov (eds.),
    New Logics for the XXI-st Century II, Mathematical Problems from Applied Logics,
    International Mathematical Series Vol 5, Springer, (2007)
    Coauthors: J. X. Madarász and I. Németi.
    [arXiv]

  24. Twin Paradox and the logical foundation of relativity theory
    Foundations of Physics 36(5):pp.681-714 (2006) IF: 0.854
    Coauthors: J. X. Madarász and I. Németi.
    [Springer] [arXiv]

  25. A First Order Logic Investigation of the Twin Paradox and Related Subjects
    Master's thesis, ELTE University, 47pp., (2004)
    [pdf]

  26. A logical investigation of inertial and accelerated observers in flat space-times
    Logic and Computer Science. Proceedings of the Kalmár Workshop (Eds: Gécseg F, Csirik J, Turán Gy)
    Department of Informatics, JATE University of Szeged, Szeged, Hungary, (2003), pp. 45-57.
    Coauthors: H. Andréka, J. X. Madarász and I. Németi. [pdf]

  27. Az óraparadoxon elsôrendû logikai tárgyalásban
    TDK paper, ELTE University, 23pp., (2003)
    [pdf]



Work in progress: