Publications
(see [html] for selected publications)

  1. Faster than light motion does not imply time travel
    Classical and Quantum Gravity (2014), to appear, IF:3.562* =>[pdf]
    Coauthors: H. Andréka, J. X. Madarász, I. Németi and M. Stannett.

  2. Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase? =>[SIGMA] =>[arXiv]
    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 10 (2014), 005, 21 pages, IF:1.243*
    Coauthors: M. Stannett and J. X. Madarász.

  3. A note on ``Einstein's special relativity beyond the speed of light by James M. Hill and Barry J. Cox" =>[Royal Society Publishing] =>[arXiv]
    Proceedings of the Royal Society A 469(2154):6pp. (2013) IF: 2.378*
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.

  4. The existence of superluminal particles is consistent with the kinematics of Einstein's special theory of relativity =>[arXiv]
    Reports on Mathematical Physics 72(2):pp.133-152 (2013) IF: 0.756*

  5. Special Relativity over the Field of Rational Numbers =>[springer] =>[arXiv]
    International Journal of Theoretical Physics 52(5):pp.1706-1718 (2013) IF: 1.086*
    Coauthor: J. X. Madarász.

  6. Existence of Faster Than Light Signals Implies Hypercomputation Already in Special Relativity =>[springer] =>[arXiv]
    Lecture Notes in Computer Science 7318: pp. 528-538. (2012)
    Coauthor: P. Németi.

  7. Closed Timelike Curves in Relativistic Computation =>[worldscientific] =>[arXiv]
    Parallel Process. Lett. 22(03): 15pp. (2012)
    Coauthors: H. Andréka and I. Németi.

  8. A logic road from special relativity to general relativity  =>[springer] =>[arXiv] =>[pdf]
    Synthese 186(3):pp.633-469 (2012) IF: 0.696
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.

  9. On Logical Analysis of Relativity Theories =>[arXiv]
    Hungarian Phil. Review; 54 2010/4; 2011; pp.204-222.
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.

  10. A Geometrical Characterization of the Twin Paradox and its Variants  =>[springer] =>[arXiv] =>[pdf]
    Studia Logica 95(1-2):pp.161-182 (2010), IF(2012):0.342*
    Special Issue: The Contributions of Logic to the Foundations of Physics.

  11. New Challenges in the Axiomatization of Relativity Theory =>[pdf]
    Proceedings of the New Challenges in the Field of Military Sciences 2010 7th International Scientific Conference;
    Ákos Poroszlai, Gábor Poroszlai, Zoltán Petrák; Bolyai János Military Foundation; Budapest, Hungary, 2010.; 8pp. (CD)

  12. On Why-Questions in Physics  =>[springer] =>[pdf]
    In: The Vienna Circle in Hungary; A. Máté, M. Rédei, F. Stadler, (Eds.) Springer-Verlag; Wien; 2011; pp.181-189.

  13. Vienna Circle and Logical Analysis of Relativity Theory =>[springer] =>[pdf]
    In: The Vienna Circle in Hungary; A. Máté, M. Rédei, F. Stadler, (Eds.) Springer-Verlag; Wien; 2011; pp.147-267.
    Coauthors: H. Andréka, J. X. Madarász, I. Németi and P. Németi.

  14. Comparing Relativistic and Newtonian Dynamics in First-Order Logic =>[springer] =>[pdf]
    In: The Vienna Circle in Hungary; A. Máté, M. Rédei, F. Stadler, (Eds.) Springer-Verlag; Wien; 2011; pp.155-179.
    Coauthor: J. X. Madarász

  15. First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers =>[doktori.hu] =>[pdf] =>[html]
    PhD thesis ELTE, Budapest, (2009)

  16. Axiomatizing relativistic dynamics without conservation postulates =>[springer] =>[arXiv]
    Studia Logica 89(2):pp.163-186 (2008) IF(2012):0.342*
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.

  17. First-Order Logic Foundation of Relativity Theories  =>[arXiv]
    In: D. M. Gabbay, M. Zakharyaschev, S. S. Goncharov (eds.),
    New Logics for the XXI-st Century II, Mathematical Problems from Applied Logics,
    International Mathematical Series Vol 5, Springer, (2007)
    Coauthors: J. X. Madarász and I. Németi.

  18. Twin Paradox and the logical foundation of relativity theory =>[springer] =>[arXiv]
    Foundations of Physics 36(5):pp.681-714 (2006) IF: 0.854
    Coauthors: J. X. Madarász and I. Németi.

  19. A First Order Logic Investigation of the Twin Paradox and Related Subjects =>[pdf]
    Master's thesis, ELTE University, 47pp., (2004)

  20. A logical investigation of inertial and accelerated observers in flat space-times =>[pdf]
    Logic and Computer Science. Proceedings of the Kalmár Workshop (Eds: Gécseg F, Csirik J, Turán Gy)
    Department of Informatics, JATE University of Szeged, Szeged, Hungary, (2003), pp. 45-57.
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.

  21. Az óraparadoxon elsôrendû logikai tárgyalásban =>[pdf]
    TDK paper, ELTE University, 23pp., (2003)



Work in progress: