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LOCAL CHROMATIC NUMBER AND DISTINGUISHING
THE STRENGTH OF TOPOLOGICAL OBSTRUCTIONS

GÁBOR SIMONYI, GÁBOR TARDOS, AND SINIŠA T. VREĆICA

Abstract. The local chromatic number of a graph G is the number of col-
ors appearing in the most colorful closed neighborhood of a vertex minimized
over all proper colorings of G. We show that two specific topological obstruc-
tions that have the same implications for the chromatic number have different
implications for the local chromatic number. These two obstructions can be
formulated in terms of the homomorphism complex Hom(K2, G) and its sus-
pension, respectively.

These investigations follow the line of research initiated by Matoušek and
Ziegler who recognized a hierarchy of the different topological expressions that
can serve as lower bounds for the chromatic number of a graph.

Our results imply that the local chromatic number of 4-chromatic Kneser,
Schrijver, Borsuk, and generalized Mycielski graphs is 4, and more generally,
that 2r-chromatic versions of these graphs have local chromatic number at
least r +2. This lower bound is tight in several cases by results of the first two
authors.

1. Introduction

The local chromatic number is a coloring type graph parameter defined by Erdős,
Füredi, Hajnal, Komjáth, Rödl, and Seress [14] in 1986. It is the number of colors
appearing in the most colorful closed neighborhood of a vertex minimized over all
proper colorings of the graph. Using the notation N(v) = NG(v) := {w : vw ∈
E(G)}, the formal definition is as follows.

Definition 1.1 ([14]). The local chromatic number ψ(G) of a graph G is

ψ(G) := min
c

max
v∈V (G)

|{c(u) : u ∈ N(v)}| + 1,

where the minimum is taken over all proper colorings c of G.

Considering closed neighborhoods N(v) ∪ {v} results in a simpler form of the
relations with other coloring parameters and explains the +1 term in the definition.
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It is clear that ψ(G) is always bounded from above by χ(G), the chromatic num-
ber of G. It is also easy to see that ψ(G) = 2 is equivalent to χ(G) = 2. However,
as is proven in [14], there exist graphs with ψ(G) = 3 and χ(G) arbitrarily large.
In this sense the local chromatic number is highly independent of the chromatic
number.

On the other hand, it was observed in [26] that the fractional chromatic number
χf (G) serves as a lower bound; i.e., χf (G) ≤ ψ(G) holds. (For the definition and
basic properties of the fractional chromatic number we refer to the books [35] and
[18].) This motivated in [38] the study of the local chromatic number of graphs that
have a large gap between their ordinary and fractional chromatic numbers. Basic
examples of such graphs include Kneser graphs and Mycielski graphs (see [35])
and their variants, the so-called Schrijver graphs (see [30], [36]) and generalized
Mycielski graphs (see [19], [30], [41], [42]). Another common feature of these graphs
is that their chromatic number is (or at least can be) determined by the topological
method initiated by Lovász in [28]. In [38] it is proved that for all these graphs of
chromatic number t one has

ψ(G) ≥
⌈

t

2

⌉
+ 1,

and several cases are shown when this bound is tight. In all those cases, however,
we have an odd t; in particular, the smallest chromatic number for which [38] gives
some Schrijver graphs, say, with smaller local than ordinary chromatic number, is 5,
in spite of the fact that the lower bound � t

2�+1 is smaller than t already for t = 4. In
this paper we show that whether t = 4 or 5 is optimal in the above sense depends on
the particular topological method that gives the chromatic number of the graph. An
analogous difference between the best possible lower bound on the local chromatic
number will be shown to exist for 2r-chromatic graphs in general. In [38] two
possible topological requirements were considered that make the chromatic number
of a graph at least t. Here we show on the one hand that since the graphs mentioned
above satisfy the stronger of these two requirements, they also satisfy ψ ≥ r + 2 in
the t = 2r case. On the other hand, we show that the general lower bound in [38],
which is derived from the weaker topological requirement considered, is tight in the
sense that for all t there exist graphs for which the above lower bound applies with
equality. In particular, this shows that the two kinds of topological obstructions for
graph coloring have different implications in terms of the local chromatic number.
This consequence is in the spirit of the investigations by Matoušek and Ziegler
[31] about the hierarchy they discovered among the different topological techniques
bounding the chromatic number.

Some of the results (concerning the case t = 4) below were announced in the
brief summary [40].

2. Preliminaries

2.1. Topological preliminaries. The following is a brief overview of some of the
topological concepts we need. We refer to [8, 20] and [30] for basic concepts and
also for a more detailed discussion of the notions and facts given below. We use
the notation of [30].

A Z2-space (or involution space) is a pair (T, ν) of a topological space T and
the involution ν : T → T , which is continuous and satisfies that ν2 is the identity
map. The points x ∈ T and ν(x) are called antipodal. The involution ν and the
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Z2-space (T, ν) are free if ν(x) �= x holds for all points x of T . If the involution is
understood from the context, we speak about T rather than the pair (T, ν). This
is the case, in particular, for the unit sphere Sd in Rd+1 with the involution given
by the central reflection x 	→ −x. A continuous map f : S → T between Z2-spaces
(S, ν) and (T, π) is a Z2-map (or an equivariant map) if it respects the respective
involutions, that is, f ◦ ν = π ◦ f . If such a map exists we write (S, ν) → (T, π). If
(S, ν) → (T, π) does not hold we write (S, ν) �→ (T, π). If both S → T and T → S
we call the Z2-spaces S and T Z2-equivalent and write S ↔ T .

We sometimes refer to homotopy equivalence and Z2-homotopy equivalence (i.e.,
homotopy equivalence given by Z2-maps), but we will use only the following two
simple observations. First, if the Z2-spaces S and T are Z2-homotopy equivalent,
then S ↔ T . Second, if the space S is homotopy equivalent to a sphere Sh (this
relation is between topological spaces, not Z2-spaces), then S is (h − 1)-connected
and therefore Sh → (S, ν) for any involution ν; cf. [30] (proof of Proposition 5.3.2
(iv), p. 97). In the other direction we have (S, ν) → Sh if (S, ν) is the body of
an h-dimensional free simplicial Z2-complex. (See below for the definition of the
latter.)

The Z2-index of a Z2-space (T, ν) is defined (see e.g. [31, 30]) as

ind(T, ν) := min{d ≥ 0 : (T, ν) → Sd},

where ind(T, ν) is set to be ∞ if (T, ν) �→ Sd for all d.
The Z2-coindex of a Z2-space (T, ν) is defined as

coind(T, ν) := max{d ≥ 0 : Sd → (T, ν)}.

If such a map exists for all d, then we set coind(T, ν) = ∞. Thus, if (T, ν) is not
free, we have ind(T, ν) = coind(T, ν) = ∞.

Note that S → T implies ind(S) ≤ ind(T ) and coind(S) ≤ coind(T ). In partic-
ular, Z2-equivalent spaces have equal index and also equal coindex.

The celebrated Borsuk-Ulam Theorem can be stated in many equivalent forms.
Here we state four of them. For more equivalent versions and several proofs we
refer to [30]. Here (i)–(iii) are all standard forms of the Borsuk-Ulam Theorem,
while (iv) is clearly equivalent to (iii).

Borsuk-Ulam Theorem.

(i): For every continuous map f : Sk → Rk there exists x ∈ Sk for which
f(x) = f(−x).

(ii): (Lyusternik-Schnirel′man version) Let d ≥ 0 and let H be a collection
of open (or closed) sets covering Sd with no H ∈ H containing a pair of
antipodal points. Then |H| ≥ d + 2.

(iii): Sd+1 �→ Sd for any d ≥ 0.
(iv): For a Z2-space T we have ind(T ) ≥ coind(T ).

The suspension susp(S) of a topological space S is defined as the factor of the
space S × [−1, 1] that identifies all the points in S × {−1} and identifies also the
points in S × {1}. If S is a Z2-space with the involution ν, then the suspension
susp(S) is also a Z2-space with the involution (x, t) 	→ (ν(x),−t). Any Z2-map
f : S → T naturally extends to a Z2-map susp(f) : susp(S) → susp(T ) given by
(x, t) 	→ (f(x), t). We have susp(Sn) ∼= Sn+1 with a Z2-homeomorphism. These
observations show the well-known inequalities below.
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Lemma 2.1. For any Z2-space S, ind(susp(S)) ≤ ind(S)+1 and coind(susp(S)) ≥
coind(S) + 1.

An abstract simplicial complex K is a nonempty, hereditary set system. In this
paper we consider only finite simplicial complexes. The nonempty sets in K are
called simplices. The dimension of a σ ∈ K is dim(σ) = |σ| − 1. A simplex of
dimension k is called a k-simplex. The dimension of K is defined as max{dim(σ) :
σ ∈ K}. We call the set V (K) = {x : {x} ∈ K} the set of vertices of K. In a
geometric realization of K, a vertex x corresponds to a point ||x|| in a Euclidean
space, and a simplex σ corresponds to its body, the convex hull of its vertices:
||σ|| = conv({||x|| : x ∈ σ}). We assume that the points ||x|| for x ∈ σ are affine
independent, and so ||σ|| is a geometric simplex. We also assume that disjoint
simplices have disjoint bodies. The body of the complex K is ||K|| =

⋃
σ∈K ||σ||.

||K|| is determined up to homeomorphism by K. Any point in p ∈ ||K|| has
a unique representation as a convex combination p =

∑
x∈V (K) αx||x|| such that

{x : αx > 0} ∈ K.
A simplicial map f : K → L maps the vertices of a simplicial complex K to the

vertices of another simplicial complex L such that the image of a simplex of K is
a simplex in L. Such a map can be linearly extended to the bodies of all simplices
in K giving a continuous map ||f || : ||K|| → ||L||. A simplicial complex with a
simplicial involution is called a simplicial Z2-complex.

The barycentric subdivision sd(K) of a simplicial complex K is the family of
chains (subsets linearly ordered by inclusion) of simplices of K. The standard
geometric realization (each simplex is represented by a point in its relative interior)
gives ||sd(K)|| = ||K||.

2.2. Topological lower bounds on the chromatic number. The topological
method for bounding the chromatic number can be described by the following
scheme. One assigns a Z2-space to all graphs in such a way that whenever a
homomorphism from F to G exists this implies the existence of a Z2-map from the
space assigned to F to that assigned to G. Colorability with m colors is equivalent
to the existence of a homomorphism to Km. If one shows that no Z2-map exists
from the space assigned to G to the space assigned to Km, then it proves that
G is not m-colorable. In the cases we consider, the space assigned to Km will be
Z2-homeomorphic to Sf(m) with f(m) = m−2 or m−1 depending on which of the
two space assignments discussed below is used. Thus if G is m-colorable, then the
Z2-index of the space assigned to G must not be more than f(m). If it is more than
f(m), that implies χ(G) > m. Thus we can bound the chromatic number from
below by giving a lower bound on the index of a certain Z2-space. This is often
done by actually bounding its coindex from below. By the Borsuk-Ulam theorem
(form (iv)) this also provides a lower bound on the index.

One way to assign a Z2-space to a graph G is via defining some simplicial com-
plex, a so-called box complex, and considering the body of this complex. Following
the papers [2, 27] Matoušek and Ziegler [31] defined several box complexes that turn
out to fall into two categories in the sense that their index (or coindex) assumes
one of only two values. (This is proven in [31], but Csorba [11] and Živaljević [46]
give a further explanation of this fact by showing that the Z2-homotopy type of all
these complexes is one of only two different kinds.) One representative of each of
these types is given in the two definitions below. (In the second case, for simplicity,
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we speak about a cell complex and its body as the corresponding topological space.
It is also Z2-homotopy equivalent to some of the known box complexes as remarked
following Definition 2.3.)

For subsets S, T ⊆ V (G) we denote the set S × {1} ∪ T × {2} by S � T . For
v ∈ V (G) we denote by +v the vertex (v, 1) = {v} � ∅ and −v denotes the vertex
(v, 2) = ∅ � {v}.

Definition 2.2. The box complex B0(G) is a simplicial complex on the vertices
V (G)×{1, 2}. For subsets S, T ⊆ V (G) the set S �T := S ×{1}∪T ×{2} forms a
simplex if and only if S ∩ T = ∅ and the complete bipartite graph with sides S and
T is a subgraph of G. The simplicial involution switching +v and −v for v ∈ V (G)
makes B0(G) a simplicial Z2-complex and ||B0(G)|| a free Z2-space.

Note that V (G) � ∅ and ∅ � V (G) are simplices of B0(G).

Definition 2.3. The hom space H(G) of G is the subspace of ||B0(G)|| con-
sisting of those points p ∈ ||B0(G)|| that, when written as a convex combina-
tion p =

∑
x∈V (B0(G)) αx||x|| with {x : αx > 0} being a simplex of B0(G), give∑

x∈V (G)�∅ αx = 1/2. This space can also be considered as the body of a cell com-
plex as follows. Let the hom complex Hom(K2, G) of G be the cell complex with
cells S � T ∈ B0(G) with S �= ∅ �= T . We call S � T ∈ Hom(K2, G) a cell of the
complex and ||S � T || ∩ H(G) is the body of this cell. The vertices of Hom(K2, G)
are of the form {x} � {y} with {x, y} ∈ E(G).

We consider Hom(K2, G) as a Z2-complex and H(G) as a Z2-space with the
involution inherited from B0(G).

The cell complex Hom(K2, G) is a special case of the more general homomor-
phism complexes Hom(F, G); see [4]. The hom space H(G) can also be considered
as the body of a simplicial complex Bchain(G), where Bchain(G) is the first barycen-
tric subdivision of Hom(K2, G); see [31]. The latter is also Z2-homotopy equivalent
to another simplicial box complex B(G) (cf. [31]), where B(G) is the hereditary
closure of Hom(K2, G) and it differs from B0(G) only by not containing those sim-
plices S � T where the elements of one of the sets S and T do not have a common
neighbor in G (implying emptiness of the other set).

A useful connection between B0(G) and H(G) follows from results of Csorba.
Namely, Csorba [11] proves the Z2-homotopy equivalence of ||B0(G)|| and the sus-
pension of the body of the other box complex B(G) mentioned above. Further, he
proves, cf. also Živaljević [46], the Z2-homotopy equivalence of ||B(G)|| and H(G).
(A weaker version of the latter equivalence, which already implies the proposition
below, also follows from the results in [31].)

Proposition 2.4 ([11, 31, 46]). ||B0(G)|| ↔ susp(H(G)).

The box complex B0(Km) is the boundary complex of the m-dimensional cross-
polytope (i.e., the convex hull of the basis vectors and their negatives in Rm); thus
||B0(Km)||∼=Sm−1 with a Z2-homeomorphism and coind(||B0(G)||)≤ ind(||B0(G)||)
≤ m−1 is necessary for G being m-colorable. Similarly, coind(H(G))≤ ind(H(G))≤
m−2 is also necessary for χ(G) ≤ m since H(Km) can be obtained from intersecting
the boundary of the m-dimensional cross-polytope with the hyperplane

∑
xi = 0,

and therefore H(Km) ∼= Sm−2 with a Z2-homeomorphism. These four lower bounds
on χ(G) can be arranged in a single line of inequalities using Lemma 2.1 and
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Proposition 2.4:
(2.1)
χ(G) ≥ ind(H(G))+2 ≥ ind(||B0(G)||)+1 ≥ coind(||B0(G)||)+1 ≥ coind(H(G))+2.

The first two of the lower bounds to χ(G) above are (equivalent to) the two
strongest lower bounds in Matoušek and Ziegler’s Hierarchy Theorem [31]. We are
able to say more on the last two bounds that were singled out by the following
definition in [38].

Definition 2.5. We say that a graph G is topologically t-chromatic if

coind(||B0(G)||) ≥ t − 1.

We say that a graph G is strongly topologically t-chromatic if

coind(H(G)) ≥ t − 2.

Note that if a graph is strongly topologically t-chromatic, then it is also topo-
logically t-chromatic, and if G is topologically t-chromatic, then χ(G) ≥ t.

Examples of strongly topologically t-chromatic graphs are provided by t-chro-
matic Kneser graphs, Schrijver graphs, and generalized Mycielski graphs. (For the
formal definition of all these graphs, see, e.g., [30] or [38].) One way to show that
these graphs are strongly topologically t-chromatic is to refer to another simplicial
complex, the neighborhood complex N (G) of the graph G, introduced by Lovász
in [28]. Proposition 4.2 in [4] states that ||N (G)|| is homotopy equivalent to H(G)
for every graph G (note that ||N (G)|| is not a Z2-space; thus this cannot be a Z2-
homotopy equivalence). Thus if N (G) is homotopy equivalent to the sphere St−2

then, by the above result in [4] and the corresponding remark in the introductory
part of Subsection 2.1, we have coind(H(G)) ≥ t−2. (In fact, since H(G) is free, we
have equality here.) For t-chromatic Schrijver graphs, Björner and de Longueville
[9] proved that their neighborhood complex is homotopy equivalent to St−2. As
Schrijver graphs are induced subgraphs of Kneser graphs with the same chromatic
number, this proves strong topological t-chromaticity for both t-chromatic Kneser
graphs and Schrijver graphs. An analogous result about the homotopy equivalence
of the neighborhood complex of t-chromatic generalized Mycielski graphs and St−2

was proved by Stiebitz [41]; cf. also [19] and [30]. There is a similar result due to
Lovász [29] for a finite subgraph of the Borsuk graph B(t−1, α) (see Definition 3.6)
that we will return to in the proof of Lemma 3.7. We remark that the strong
topological t-chromaticity of t-chromatic Kneser graphs and Schrijver graphs can
also be seen more directly from the results of Bárány [6] and Schrijver [36]. For
more details about this, cf. Proposition 8 in [38].

For examples of graphs that are topologically t-chromatic but not strongly topo-
logically t-chromatic, we refer to the detailed discussion in Sections 4 and 5. A
longer list of topologically t-chromatic graphs is given in [39].

3. Local chromatic number and covering the sphere

In [38] the following lower bound on the local chromatic number of topologically
t-chromatic graphs is proved.

Theorem 3.1 ([38]). If G is topologically t-chromatic for some t ≥ 2, then

ψ(G) ≥
⌈

t

2

⌉
+ 1.
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The proof was based on an old topological theorem of Ky Fan [15] which gener-
alizes the Borsuk-Ulam Theorem. It was also shown in [38] that this lower bound is
tight for several Schrijver graphs, generalized Mycielski graphs, and Borsuk graphs
of odd chromatic number.

Here we prove a similar but somewhat different lower bound than the one in
Theorem 3.1. It applies only for strongly topologically t-chromatic graphs and
gives the same conclusion if t is odd; thus it is a weaker statement in that case. For
t even, however, the conclusion is also slightly stronger.

Theorem 3.2. If a graph G is strongly topologically t-chromatic for t ≥ 3, then

ψ(G) ≥
⌊

t

2

⌋
+ 2.

To prove that a similar statement is not true for topologically t-chromatic graphs
we will show in Section 4 for every r ≥ 2 a topologically 2r-chromatic graph G with
ψ(G) = r + 1. By Theorem 3.2 this graph cannot be strongly topologically 2r-
chromatic. Together with Theorem 3.2 this proves that topological t-chromaticity
and strong topological t-chromaticity have different implications for the local chro-
matic number.

First we translate the problem into one concerning open covers of the sphere.

Definition 3.3. For a nonnegative integer parameter h let Q(h) denote the mini-
mum number l for which Sh can be covered by open sets in such a way that no point
of the sphere is contained in more than l of these sets and none of the covering sets
contains an antipodal pair of points.

In the earlier paper [38] the first two authors arrived at the problem of determin-
ing Q(h) through local colorings of graphs. The same question was independently
asked by Micha Perles motivated by a related question of Matatyahu Rubin.1 After
the publication of [38] we learned that this question was already considered and
settled in papers by Ščepin [34], Izydorek, Jaworowski [21], and Jaworowski [22, 23];
cf. also Aarts and Fokkink [1]. The h = 2 case was solved even earlier by Shkliarsky
[37]. (The papers [34], [21]–[23] use the different but equivalent formulation that
we will see in Lemma 3.7 (v) below. This equivalence is already implicit in [34]; cf.
also [1].)

Theorem 3.4 ([34], [21]–[23]). For every h ≥ 1,

Q(h) =
⌊

h

2

⌋
+ 2.

Remark 3.5. The results in [38] had the implications
⌈

h
2

⌉
+ 1 ≤ Q(h) ≤

⌊
h
2

⌋
+ 2,

where the lower bound followed from Ky Fan’s theorem [15]; cf. Corollary 18 in
[38]. The slightly stronger Corollary 17 of [38] can also be derived from results in
[1]. ♦

The relevance of the value of Q(h) to local colorings will be clarified in Lemma
3.7 below. One of the conditions in the lemma uses the concept of Borsuk graphs.
Their appearance in the equivalent conditions for Q(h) ≤ l parallels the fact that
the Borsuk-Ulam theorem is equivalent to stating the chromatic number of Borsuk
graphs (of appropriate parameters) as remarked by Lovász in [29].

1We are indebted to Imre Bárány [7] and Gil Kalai [24] for this information.
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Definition 3.6. The Borsuk graph B(n, α) of parameters n and 0 < α < 2 is the
infinite graph whose vertices are the points of the unit sphere in Rn (i.e., Sn−1) and
whose edges connect the pairs of points with distance at least α.

The chromatic number of B(n, α) is n + 1 for large enough α < 2 (cf. [29]).
In this paper we only consider Borsuk graphs of this type; that is, when we speak
about a t-chromatic Borsuk graph in the sequel, we always mean a B(t−1, α) with
α < 2 large enough for making it t-chromatic.

Lemma 3.7. The following five statements are equivalent for every h and l.

(i): Q(h) ≤ l; i.e., Sh can be covered by open sets such that none of them
contains an antipodal pair of points and no x ∈ Sh is contained in more
than l of these sets.

(ii): Sh can be covered by a finite number of closed sets such that none of
them contains an antipodal pair of points and no x ∈ Sh is contained in
more than l of these sets.

(iii): There exists 0 < α < 2 for which ψ(B(h + 1, α)) ≤ l + 1.
(iv): There exists a finite graph G with coind(H(G)) ≥ h (i.e., a strongly

topologically (h + 2)-chromatic graph) such that ψ(G) ≤ l + 1.
(v): There is a continuous map g from Sh to the body ||K|| of a finite simpli-

cial complex K of dimension at most l − 1 satisfying g(x) �= g(−x) for all
x ∈ Sh.

We note that, as already mentioned, the equivalence of (ii) and (v) is already
implicit in [34] and is also contained partially in Lemma 5 of [1].

We also note that for a finite graph G the property coind(H(G)) ≥ h can also
be described in terms of Borsuk graphs: it is equivalent to the existence of a
homomorphism from B(h + 1, α) to G for appropriately large α < 2; cf. [38].

Proof. (ii)⇒(iii): Consider a covering A as in (ii). Consider the closed sets in the
covering as colors and color each point of Sh with one of the sets containing it. We
need to prove that if α < 2 is large enough, this is a proper coloring establishing
ψ(B(h + 1, α)) ≤ l + 1.

We may assume that |A| > l; otherwise we can add singleton sets. For each
x ∈ Sh let g(x) be the (l + 1)st smallest distance of a set A ∈ A from x. Since g
is the (l + 1)st level of a finite set of continuous functions, g is continuous. Since
Sh is compact, g attains its minimum g(x0). Since the covering sets are closed and
x0 is contained in at most l of them, g(x0) > 0. For any set A ∈ A the disjoint
sets A and −A are compact and thus they have a positive distance. Let δ > 0 be
smaller than the minimum of g and also smaller than the distance between A and
−A for all the sets A ∈ A. We choose α =

√
4 − δ2. With this choice the vertex x

of B(h + 1, α) is connected to the vertex y exactly if the distance between y and
−x is at most δ.

Let x be a vertex of the Borsuk graph of color A ∈ A. Any vertex y connected
to x is closer to −x and hence to −A than δ; therefore it cannot be contained in
A. This shows that the coloring is proper.

Consider the colors of the neighbors of x. These are sets with distance at most
δ from −x. From g(−x) > δ it follows that the number of these colors is at most l
as claimed.
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(iii)⇒(iv): Lovász gives in [29] a finite graph GP ⊆ B(h+1, α) which has the prop-
erty that its neighborhood complex N (G) is homotopy equivalent to Sh. Proposi-
tion 4.2 in [4] states that N (F ) is homotopy equivalent to H(F ) for every graph F ;
thus coind(H(GP )) ≥ h. As GP ⊆ B(h + 1, α) we have ψ(GP ) ≤ ψ(B(h + 1, α)) ≤
l + 1.
(iv)⇒(i): Consider a proper coloring c of G achieving ψ(G) ≤ l+1 and let m be the
number of colors used. First we give an at most l-fold covering of H(G) by open
sets U1, . . . , Um. Let y ∈ H(G) and let Zy � Ty be the minimal cell of Hom(K2, G)
(or equivalently, the minimal simplex of B0(G)) whose body contains y. We let y
belong to Ui if and only if there is some vertex v ∈ Zy for which c(v) = i. It is
clear that the sets Ui obtained this way are open. As Zy �= ∅ the point y is covered
by some Ui. As Ty is not empty, we can choose a vertex w ∈ Ty. All vertices
v ∈ Zy are neighbors of w, so by the definition of ψ(G) these vertices have at most
l different colors. Therefore y is covered by at most l sets Ui. The sets Ui therefore
form an at most l-fold covering of H(G). For antipodal points y, y′ ∈ H(G) we
have Zy′ = Ty. If y and y′ are contained in the same set Ui, then we find vertices
v ∈ Zy and w ∈ Ty of the same color i. As v and w are adjacent and c is a proper
coloring this is impossible, so the sets Ui contain no antipodal pairs of points.

By the condition coind(H(G)) ≥ h there is a Z2-map f : Sh → H(G). Now
we define Ai := {x ∈ Sh : f(x) ∈ Ui}. It is straightforward that the open sets
A1, . . . , Am provide a required covering.
(i) ⇒ (v): Assume that (i) holds. As Sh is compact we can assume that the open
cover is finite; it consists of the sets A1, . . . , Am. Let K be the simplicial complex
having vertices [m] = {1, . . . , m} and all l-subsets of [m] as maximal simplices.
Define g : Sh → ||K|| as follows. Let di(x) be the distance of x ∈ Sh from
Sh \ Ai. Note that di(x) > 0 if and only if x ∈ Ai. We normalize di to get
αi(x) = di(x)/(

∑m
j=1 dj(x)). Now set g(x) to be the formal convex combination

of the vertices of K given by
∑m

i=1 αi(x)||i||. Since no x ∈ Sh is covered by
more than l of the sets Ai, the images are indeed in ||K||. As the sets Ai do not
contain antipodal points we have g(x) �= g(−x); furthermore the minimal simplices
containing g(x) and g(−x) are disjoint.
(v) ⇒ (ii): Let g be a map as in (v). We assume that the minimal simplices
containing g(x) and g(−x) are disjoint for every point x ∈ Sh. If this condition
is violated we consider an arbitrary geometric realization of K and the continuous
function x 	→ dist(g(x), g(−x)) > 0. As Sh is compact this continuous function
has a minimum ε > 0. Now take an iterated barycentric subdivision sdt(K) of K
with the standard geometric realization ||sdt(K)|| = ||K||. As the dimension of
sdt(K) is the same as that of K, we can simply consider sdt(K) with the same map
g : Sh → ||sdt(K)||. If t is high enough the maximum diameter of the body of a
simplex in sdt(K) is below ε/2 and therefore our assumption on antipodal points
is satisfied.

Let the set of vertices of K be [m] = {1, . . . , m}. We define Ai ⊆ Sh for all i in
[m] by letting x ∈ Ai if and only if αi = maxj αj in the formal convex combination
g(x) =

∑m
j=1 αj ||j|| with {j : αj > 0} ∈ K. Clearly, the closed sets Ai cover Sh.

As x ∈ Ai implies that i is a vertex of the minimal simplex containing g(x) the
point x is contained in at most l of the sets Ai, and by our assumption above no
set Ai contains antipodal pairs of points. �
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The following corollary is just a restatement of the implication (iv)⇒(i) of the
above lemma for later reference.

Corollary 3.8. For any finite graph G we have Q(coind(H(G))) ≤ ψ(G) − 1. �

Remark 3.9. Using the fact that any d-dimensional simplicial complex has a geo-
metric realization in R2d+1 (cf. Theorem 1.6.1 in [30]) and Lemma 3.7, one can show
that Q(h) ≥

⌈
h
2

⌉
+ 1, i.e., the same lower bound that Ky Fan’s theorem implied

in [38]. Indeed, by Lemma 3.7, Q(h) ≤
⌊

h−1
2

⌋
+ 1 would imply the existence of a

continuous map g : Sh → ||K|| where K is an at most
⌊

h−1
2

⌋
-dimensional simplicial

complex and g(x) �= g(−x) for any x ∈ Sh. But K can be realized in Rh, so this
way we would obtain a continuous map from Sh to Rh with no coinciding images
of antipodal points. This would contradict the Borsuk-Ulam theorem.

Using the fact that the universal cover of a connected 1-dimensional complex is
a (usually infinite) tree, which can be embedded in R2, the above argument can be
extended to prove Shkliarsky’s result [37] stating Q(2) ≥ 3. This method, however,
fails to show Q(2r) > r + 1 for r > 1, which is the most difficult statement in the
lower bound part of Theorem 3.4; cf. [34], [21]–[23]. ♦

Note that the lower bound �h
2 � + 1 ≤ Q(h) implied by Ky Fan’s theorem (cf.

[38]) together with Corollary 3.8 readily implies a weaker version of Theorem 3.1.
Namely, they imply that if G is strongly topologically t-chromatic for some t ≥ 2,
then ψ(G) ≥ �t/2� + 1.

Proof of Theorem 3.2. By Corollary 3.8 we have Q(coind(H(G))) ≤ ψ(G)− 1. Us-
ing Theorem 3.4 this implies ψ(G) ≥

⌊
t
2

⌋
+ 2 if coind(H(G)) = t − 2 ≥ 1. �

Thus any t-chromatic Kneser graph, Schrijver graph, generalized Mycielski
graph, or Borsuk graph has local chromatic number at least �t/2� + 2. For Bor-
suk graphs it follows immediately from Lemma 3.7 that this bound is sharp for
B(t − 1, α) if α < 2 is large enough. The results in [38] imply that it is also sharp
for many Schrijver graphs and generalized Mycielski graphs. This was shown there
for odd t, while for even t a gap of 1 remained in [38] (compared to the lower
bound proven there). This gap is closed now. Thus we can formulate the following
corollary generalizing Theorems 3 and 5 of [38] for the even chromatic case. For
the precise meaning of the phrase “defining parameters” in the statement below we
refer the reader to the corresponding cited statements of [38].

Corollary 3.10. Let t be fixed. If G is a t-chromatic Schrijver graph or a t-
chromatic generalized Mycielski graph with large enough defining parameters, then

ψ(G) =
⌊

t

2

⌋
+ 2.

Proof. The lower bound follows from Theorem 3.2 and the fact that these graphs
are strongly topologically t-chromatic. The matching upper bound follows from
Theorems 3 and 5 in [38]. �

The upper bound is trivial when t = 4; thus there we have, unconditionally,
that any 4-chromatic Kneser graph, Schrijver graph, generalized Mycielski graph,
or Borsuk graph has local chromatic number 4.
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Remark 3.11. Let the graph G be a quadrangulation of a compact two dimensional
surface R; i.e., G is drawn in the surface with all the resulting cells being quadran-
gles. In this case H(G) is closely related to R. In particular it is easy to show that
coind(H(G)) ≥ 2 if G is a quadrangulation of the projective plane and G is not
bipartite. Using Theorem 3.2 this implies that the local chromatic number of G is
at least 4 generalizing the lower bound part of Youngs’ result [45] which states that
such graphs are 4-chromatic. It has been widely studied when quadrangulations
of surfaces have (ordinary) chromatic number at least 4; see [3, 32, 45]. In such
cases four distinct colors can always be found locally: any proper coloring has a
multicolored quadrangular cell. (We call a set of vertices or a subgraph multicol-
ored if every vertex in it receives a different color.) Thinking of this four-cycle as
a complete bipartite graph there is a clear connection to what is called the Zig-zag
Theorem in [38] (cf. also Ky Fan’s paper [16]). Proving that the local chromatic
number is at least 4 constitutes finding a different multicolored subgraph: a star
with four vertices. This seems to be harder. The observation that nonbipartite
quadrangulations of the projective plane have local chromatic number at least 4
generalizes to certain quadrangulations of the Klein bottle. Surprisingly, there are
quadrangulations of other surfaces for which a multicolored cell can be found in ev-
ery proper coloring but the local chromatic number is only 3. See the forthcoming
paper [33] on quadrangulations of surfaces. ♦

In view of the results in [38] and [39] it seems natural to ask what complete
bipartite graphs Kk,l must have a multicolored copy in every proper coloring of any
(strongly) topologically t-chromatic graph. To avoid trivialities we always assume
k, l ≥ 1 when speaking about Kk,l. Using the results in [38] and this paper we can
give a complete answer for topologically t-chromatic graphs and an almost complete
answer for strongly topologically t-chromatic graphs. Note that [39] treated the
same problem for proper t-colorings of topologically t-chromatic graphs and found
a different characterization.

Let us consider topologically t-chromatic graphs first. As some of these graphs
are indeed t-chromatic we must have k + l ≤ t. By Corollary 4.9 (see below in
Section 4) the local chromatic number of some of them is �t/2� + 1, so we must
also have k, l ≤ �t/2�. For the remaining graphs Kk,l, the Zig-zag Theorem of [38]
provides a positive answer: any proper coloring of a topologically t-chromatic graph
contains a multicolored copy of K�t/2�,�t/2� and thus also of its subgraphs.

A t-coloring of a topologically t-chromatic graph cannot avoid a multicolored
copy of Kk,l for any pair of natural numbers k, l with k+l ≤ t [39], but some (t+1)-
colorings simultaneously avoid multicolored copies of all graphs Kk,l � K�t/2�,�t/2�.
For even t this follows from Corollary 4.9, while for odd t this is stated in [38].
(Notice that in this latter case we need to avoid multicolored K�t/2�,�t/2� subgraphs,
which does not follow from attaining local chromatic number �t/2� + 1.)

Some strongly topologically t-chromatic graphs are also t-chromatic but as we
have seen their lowest possible local chromatic number is �t/2� + 2 (attained by
some Schrijver, Borsuk and generalized Mycielski graphs; see [38]). This means
that in order to always find a multicolored copy of Kk,l in a proper coloring of a
strongly topologically t-chromatic graph we need k + l ≤ t and k, l ≤ �t/2� + 1.
Similarly to the previous case, a single (t + 1)-coloring of a strongly topologically
t-chromatic graph can avoid multicolored copies of Kk,l for all k, l with k + l > t
or max(k, l) > �t/2� + 1. For t odd this is proven in [38]. It easily extends also
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to the even t case by taking the Mycielskian M(G) of a strongly topologically
(t − 1)-chromatic graph G with a coloring of the above type and extending this to
a proper coloring of M(G) (which is a strongly topologically t-chromatic graph) in
the following way. We keep the original coloring in the first layer, introduce a new
color for all of the second layer and use one of the old colors for the top vertex.
(For the definition of Mycielskians we refer again to [35] or [38]. In the latter paper
M(G) is also denoted by M2(G).)

For most of the remaining complete bipartite graphs the Zig-zag Theorem implies
the existence of a multicolored version; the only case not covered is that of Kt/2+1,l

for even t and 1 ≤ l ≤ t/2 − 1. Theorem 3.2 is equivalent to an affirmative answer
in the l = 1 case. For l > 1 we do not know the answer. Here we ask the problem
in the strongest possible form corresponding to l = t/2 − 1

Question. Let t ≥ 6 be an even integer. Is it true that if a strongly topologically
t-chromatic graph is properly colored (with any number of colors), then it always
contains a multicolored Kt/2−1,t/2+1 subgraph?

Using similar techniques to those used in [38] and [39] and also in this paper,
an affirmative answer would immediately follow from an affirmative answer to the
following topological analog of the above question.

Topological question. Let h ≥ 4 be even and let the sphere Sh be covered by
open sets A1, . . . , Am that satisfy Ai ∩ (−Ai) = ∅ for all i. Is it true that there
always exists an x ∈ Sh such that x is covered by at least h/2+2 and −x is covered
by at least h/2 different Ai’s?

Note that an affirmative answer would give a strengthening of the lower bound
part of Theorem 3.4, while the two are equivalent if we set h = 2. If m = h+2, then
the statement is a (very) special case of the Tucker-Bacon Theorem (cf. [5, 43]),
which was applied in [39].

4. Topological t-chromaticity versus

strong topological t-chromaticity

In this section we compare topological t-chromaticity and strong topological t-
chromaticity, especially in their implications to the local chromatic number.

As stated in (2.1) strong topological t-chromaticity implies topological t-chro-
maticity, which, in turn, implies that the graph is indeed at least t-chromatic. It
is easy to see that for t = 2 or 3 both topological conditions are equivalent with
the graph having chromatic number at least t. This is not the case for t ≥ 4 as
follows from an observation by Walker [44] made also by Matoušek and Ziegler [31].
This observation (in terms of [31]) is that any graph G without a 4-cycle satisfies
ind(||B(G)||) ≤ 1. Using the already mentioned Z2-homotopy equivalence of H(G)
and ||B(G)|| and the result of Erdős [13] that there exist graphs with arbitrarily
high chromatic number and girth this shows that the two sides of the first inequality
in (2.1) can be arbitrarily far apart.

If one of the other three inequalities in (2.1) is strict, then we have ind(H(G)) >
coind(H(G)). Z2-spaces having different index and coindex are called nontidy by
Matoušek [30]. Constructing such spaces does not seem obvious, but such construc-
tions are known; see, e.g., a list in [30], page 100. Csorba [11] and Živaljević [46]
proved that for any finite free Z2-complex K there exists a finite graph G such that
||B(G)|| (and thus also H(G)) is Z2-homotopy equivalent to ||K||. Some of the
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nontidy spaces, e.g., the projective space RP 2i−1 with a suitable involution, have
a triangulation (i.e., it is Z2-homeomorphic to the body of a finite Z2-complex).
So we have examples of graphs G with ind(H(G)) > coind(H(G)), and (from the
properties of RP 2i−1) even coind(H(G)) = 1 with ind(H(G)) arbitrarily high. This
shows that the difference between the two sides of at least one of the second, third,
or last inequalities of (2.1) is unbounded (but, as mentioned below, it certainly can-
not be the second). Further study of the space susp(RP 2i−1) shows that its coindex
is 2 [47, 17], showing that for the above graphs there is an unbounded difference
between the two sides of the third inequality in (2.1), while the last inequality holds
with equality.

Based on another example appearing in [30], page 100, constructed by Csorba,
Matoušek, and Živaljević, an example of a Z2-space X is demonstrated by Csorba
[11] which satisfies ind(X) = ind(susp(X)). Since this space can also be triangu-
lated, it shows the existence of graphs for which the second inequality is strict in
(2.1) (using again the above mentioned result of Csorba [11] and Živaljević [46]).
Nevertheless, as H(G) is contained in B0(G) the sides of the second inequality can
differ by at most 1.

Our main concern is the last inequality of (2.1), which is between the defining
quantities of topological and strongly topological t-chromaticity. Here we show not
only the possibility of strict inequality, but also the existence of a topologically t-
chromatic but not strongly topologically t-chromatic graph for which Theorem 3.1 is
tight while t is even. (For odd t several examples are shown in [38] for the tightness
of the lower bound in Theorem 3.1; however, those examples are also strongly
topologically t-chromatic.) In the case of t = 2r this means that our graph has local
chromatic number r+1 in contrast to strongly topologically 2r-chromatic graphs for
which the local chromatic number must be at least r +2 according to Theorem 3.2.
Thus our examples will not only separate topological 2r-chromaticity from strong
topological 2r-chromaticity but show that the difference is in fact relevant also in
terms of its consequences for the local chromatic number. We do not have examples
where the sides of the last inequality of (2.1) differ by more than 1.

Our examples of topologically t-chromatic graphs with local chromatic num-
ber equal to

⌈
t
2

⌉
+ 1, the lower bound in Theorem 3.1, are the universal graphs

U(2r− 1, r) defined below in the more general setting as they appear in [14]. From
now on we keep using the notation [m] = {1, . . . , m} already introduced in the
proof of Lemma 3.7.

Definition 4.1 ([14]). For positive integers r ≤ m we define the graph U(m, r) as
follows:

V (U(m, r)) = {(i, A) : i ∈ [m], A ⊆ [m], |A| = r − 1, i /∈ A},
E(U(m, r)) = {{(i, A), (j, B)} : i ∈ B, j ∈ A}.

The graphs U(m, r) characterize local chromaticity in the sense that a graph G
satisfies ψ(G) ≤ r, and this value can be attained by a coloring with at most m
colors, if and only if there is a homomorphism from G to U(m, r) (see Lemma 1.1
in [14]). In particular, it is easy to find the coloring showing ψ(U(m, r)) ≤ r: for
each vertex (i, A) use i as its color. We refer to this coloring as the natural coloring
of U(m, r). (Note that χ(U(m, r)) < m whenever m > r, cf. [14]; thus this is not
an optimal coloring concerning the number of colors used. In fact, it is easy to see
that if ψ(G) < χ(G), then any coloring of G attaining ψ(G) must use more than
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χ(G) colors. The reason is that in a proper coloring of G with χ(G) colors each
color class must contain a vertex which has a neighbor in all other color classes.
Otherwise the color class with no such vertex could be eliminated, resulting in a
proper coloring with less than χ(G) colors.)

Remark 4.2. The above discussion shows that the local chromatic number fits into
the framework described in Chapter 1 of Kozlov’s survey [25], namely, that ψ(G)
could also be defined as the minimum r for which G admits a homomorphism into
one of the graphs U(m, r). In the language of [25] this defines ψ(G) via the state
graphs U(m, r) and valuation U(m, r) 	→ r. ♦

To be able to speak about topological t-chromaticity with respect to the graph
U(m, r) we need to consider B0(U(m, r)). It is going to be useful to introduce an
exponentially smaller Z2-equivalent complex.

Definition 4.3. Let Km denote the complete graph on the vertex set V (Km) = [m]
and let Lm = B0(Km). For a positive integer r ≤ m let Lm,r denote the subcomplex
of Lm that consists of those simplices S � T , for which |S| < r and |T | < r. Let
L′

m,r = Lm,r ∪ {S � ∅ : S ⊆ [m]} ∪ {∅ � T : T ⊆ [m]}. The bodies ||Lm,r|| and
||L′

m,r|| are Z2-spaces with the involution inherited from ||Lm||.
Lemma 4.4. For every m and r we have ||L′

m,r|| ↔ ||B0(U(m, r))||.
Proof. We have a simplicial Z2-map B0(U(m, r)) → L′

m,r given by +(i, A) 	→ +i
and −(i, A) 	→ −i. This shows ||B0(U(m, r))|| → ||L′

m,r||.
We give a monotonously decreasing map g from the simplices in the barycentric

subdivision sd(L′
m,r) to the simplices of B0(U(m, r)). This map can be consid-

ered as a simplicial map from the second subdivision sd(sd(L′
m,r)) to the subdi-

vision sd(B0(U(m, r))) and thus ||g|| (the piecewise linear extension of g) maps
||sd(sd(L′

m,r))|| = ||L′
m,r|| to ||sd(B0(U(m, r)))|| = ||B0(U(m, r))||. This is clearly

a Z2-map showing ||L′
m,r|| → ||B0(U(m, r))|| as stated.

Recall that the vertices of sd(L′
m,r) are the simplices of L′

m,r, and a nonempty
set of vertices forms a simplex in sd(L′

m,r) if it is linearly ordered by inclusion.
Therefore let C be a simplex of sd(L′

m,r) and let S � T be its smallest vertex and
S′�T ′ be its largest vertex. We set g(C) = W �Z with W = {(i, H) ∈ V (U(m, r)) :
i ∈ S, T ′ ⊆ H} and Z = {(i, H) ∈ V (U(m, r)) : i ∈ T, S′ ⊆ H}. Any pair of vertices
w ∈ W and z ∈ Z is connected in U(m, r), so g(C) ∈ B0(U(m, r)). The map g is
clearly monotonically decreasing. Thus simplices of sd(sd(L′

m,r)) are mapped into
simplices of sd(B0(U(m, r))) provided g(C) is not empty. Assume first that S �= ∅.
We have S ⊆ S′ �= ∅, so by the definition of L′

m,r we have |T ′| ≤ r − 1. We choose
i ∈ S and a set H ⊇ T ′ with |H| = r − 1 and i /∈ H. We have (i, H) ∈ W , so
W �= ∅. The same argument shows that if T �= ∅, then Z �= ∅. As S�T is a simplex
either S �= ∅ or T �= ∅, and we have g(C) �= ∅ in either case. �
Remark 4.5. Though we need only the above proven Z2-equivalence of ||L′

m,r|| and
||B0(U(m, r))||, we mention that they are actually Z2-homotopy equivalent.

To prove this we show that the Z2-mappings ||f || : ||B0(U(m, r))|| → ||L′
m,r||

and ||g|| : ||L′
m,r|| → ||B0(U(m, r))|| satisfy that both ||f || ◦ ||g|| and ||g|| ◦ ||f || are

Z2-homotopic to the identity of the respective spaces. Here Z2-homotopic means
that they are homotopic with every layer of the homotopy being a Z2-map and
f is the simplicial map corresponding to the natural coloring of U(m, r), while g
denotes the same map as in the proof above.
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Let a and b be Z2-maps from X to ||C||, where C is a simplicial Z2-complex. If for
all x ∈ X the points a(x) and b(x) are contained in the body of a common simplex,
then linear interpolation between a and b proves that they are Z2-homotopic.

This simple observation can be directly used to show that ||f || ◦ ||g|| is Z2-
homotopic with the identity on ||L′

m,r||. Unfortunately, the same argument can-
not be used directly to show that ||g|| ◦ ||f || is homotopic to the identity on
||B0(U(m, r))||. We introduce the simplicial map h : sd(sd(B0(U(m, r)))) →
sd(B0(U(m, r))) mapping a chain of simplices from B0(U(m, r)) to its smallest ele-
ment. Clearly, ||h|| : ||B0(U(m, r))|| → ||B0(U(m, r))|| is a Z2-map. Now the above
elementary argument can be used to show that both the identity and ||g|| ◦ ||f || are
Z2-homotopic to ||h||. This shows that they are Z2-homotopic to each other, too.

♦

In the following lemma we use the notion of Bier spheres. For a complex K with
V (K) ⊆ [m], [m] /∈ K, its Bier sphere is defined as

Bierm(K) = {S � T ∈ Lm : S ∈ K, T /∈ K, S ∩ T = ∅},
where T = [m] \T is the complement of T . The basic result on Bier spheres is that
they are always triangulations of a sphere: ||Bierm(K)|| ∼= Sm−2. For a proof of
this result, see, e.g., Theorem 5.6.2 in [30], or [12].

Lemma 4.6. For r ≥ 1 we have ||L2r−1,r|| ∼= S2r−3.

Proof. Observe that L2r−1,r is just the Bier sphere Bier2r−1(K) of the simplicial
complex K =

(
[2r−1]
≤r−1

)
consisting of the at most (r−1)-element subsets of [2r−1]. �

Corollary 4.7. The graph U(2r − 1, r) is topologically (2r − 2)-chromatic. In
particular we have

coind(||B0(U(2r − 1, r))||) = 2r − 3.

Proof. By Lemma 4.4 we have coind(||B0(U(2r − 1, r))||) = coind(||L′
2r−1,r||). By

containment we have coind(||L′
2r−1,r||) ≥ coind(||L2r−1,r||). By Lemma 4.6 (and

the remark in the introductory part of Subsection 2.1 about homotopy spheres) we
have coind(||L2r−1,r||) = 2r − 3. The reverse inequality follows from applying the
inequality χ(G) ≥ coind(||B0(G)||)+1 to G = U(2r−1, r) and using the inequality
χ(U(2r − 1, r)) ≤ 2r − 2. The latter is a special case of the fact mentioned above
that χ(U(m, r)) < m if r < m. �

Remark 4.8. The fact that χ(U(2r−1, r)) ≥ 2r−2 is a special case of Theorem 2.6
in [14]. This remark parallels Remark 3 in [38], which explains how the upper bound
results of [38] imply χ(U(2r, r+1)) ≥ 2r−1, another special case of Theorem 2.6 in
[14]. In [38] this follows from the proof of local (r+1)-chromaticity of some strongly
topologically (2r−1)-chromatic graphs that can be attained by using 2r colors. This
implies the existence of homomorphisms from some strongly topologically (2r− 1)-
chromatic graphs to U(2r, r+1). Besides implying χ(U(2r, r+1)) ≥ 2r−1 this also
shows that the graphs U(2r, r + 1) are strongly topologically (2r − 1)-chromatic.
(Their chromatic number is 2r − 1, indeed, by the same argument we have in
the second part of the proof of Corollary 4.7.) The above is in contrast to the
case of U(2r − 1, r), since these graphs, as stated below in Corollary 4.9, are only
topologically (2r − 2)-chromatic but not strongly topologically (2r − 2)-chromatic.

♦
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Corollary 4.9. For any r ≥ 1 there exists a topologically 2r-chromatic graph
with local chromatic number ψ(G) = r + 1 which can be attained by a (2r + 1)-
coloring. In particular, topological 2r-chromaticity implies neither strong topological
2r-chromaticity nor that the local chromatic number is at least r + 2.

Proof. The example claimed is U(2r + 1, r + 1). The local chromatic number is
attained by its natural coloring. Topological 2r-chromaticity is given by Corol-
lary 4.7. Theorem 3.2 shows that U(2r + 1, r + 1) is not strongly topologically
2r-chromatic, since then its local chromatic number should be larger. �

5. Direct separation arguments

Inequality (2.1) and our statement that U(2r + 1, r + 1) satisfies topolog-
ical 2r-chromaticity, but not strong topological 2r-chromaticity, show that
H(U(2r+1, r+1)) has different index and coindex. While, as we already mentioned,
the existence of such spaces has been known (even with arbitrarily high difference
between the index and the coindex; see page 100 of [30] and the references therein),
H(U(5, 3)) yields a particularly simple and elementary example. See the argument
below on compact orientable 2-manifolds.

First we claim a variant of Lemma 4.4 for the hom space. Let Hm,r = ||Lm,r|| ∩
H(Km). We claim that H(U(m, r)) ↔ Hm,r. The proof is almost identical to that
of Lemma 4.4.

Notice that H2r+1,r+1 is a topological (2r − 2)-manifold. To see this consider
Hm,r as the body of the cell complex Ĥm,r = Hom(K2, Km)∩Lm,r. It is enough to
verify that it is connected and the link of any vertex is a triangulation of the same
sphere. Here the link of a vertex V in the complex K consists of the sets W \ {V }
for cells W in K containing V . Note that the link of a vertex in the cell complex
Ĥm,r is a simplicial complex. By the symmetry of Ĥm,r, the links of the vertices
are isomorphic. The link of the vertex {m − 1} � {m} is Lm−2,r−1. In the case of
Ĥ2r+1,r+1, this link is L2r−1,r, and thus it is a triangulated S2r−3 by Lemma 4.6
as needed.

As H2r+1,r+1 is a (2r − 2)-manifold embedded in ||L2r+1,r+1|| ∼= S2r−1 it is
orientable. One can easily compute the Euler characteristic of H5,3 directly: its
defining cell complex has 20 vertices, 30 cells of dimension 2, and 60 edges; thus
the Euler characteristic is −10. This shows that H5,3 is the orientable compact
2-manifold of genus 6. Consider this manifold as a sphere S2 with six “handles” ar-
ranged in a centrally symmetric manner. The central reflection gives the involution
of the space.

The following argument is a direct and simple proof that any compact orientable
2-manifold T of even and positive genus and with the involution as above satisfies
that its index is 2, while its coindex is 1. We will show that the index is at least
2 by showing that the coindex of its suspension is at least 3. Thus by the result
of Csorba [11] and Živaljević [46] and since these spaces admit triangulations, each
of these examples yields different topologically 4-chromatic graphs that are not
strongly topologically 4-chromatic.

Note that ind(T ) ≤ 2 and coind(T ) ≥ 1 are trivial.
We prove coind(susp(T )) ≥ 3 by giving the explicit mapping. Then ind(susp(T ))

≥ 3 by the Borsuk-Ulam Theorem and ind(T ) ≥ 2 follows from Lemma 2.1. We
choose T as a subspace of S3 closed for the involution. This can be done in a smooth
way such that every point x ∈ S3 within some distance ε > 0 of T has a unique
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closest point x̂ ∈ T . We denote by T+ and T− the two components of S3 \ T . If
we identify the points in T+ far away from T and also identify the points in T− far
away from T , then the resulting factor space is naturally homeomorphic to susp(T ).
The resulting map f : S3 → susp(T ) can be given as follows:

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∗, 1) if dist(x, T ) ≥ ε, x ∈ T+,
(x̂, dist(x, T )/ε) if dist(x, T ) < ε, x ∈ T+,
(x, 0) if x ∈ T,
(x̂,−dist(x, T )/ε) if dist(x, T ) < ε, x ∈ T−,
(∗,−1) if dist(x, T ) ≥ ε, x ∈ T−.

We prove coind(T ) < 2 by a similar argument as the one hinted in Remark 3.9.
A continuous map f : S2 → T lifts to the universal covering space R2 of T , but
by the Borsuk-Ulam Theorem, f̂ : S2 → R2 identifies two antipodal points of the
sphere, so f also identifies two antipodal points, and therefore f is not a Z2-map.

It is worth noting where the argument showing coind(susp(T )) ≥ 3 fails for
compact orientable 2-manifolds T of odd genus (with the involution given by the
reflection in their standard self-dual embeddings in S3). The function f defined as
above is not a Z2-map because the involution on S3 does not switch the components
of S3 \ T in this case. Indeed, we have ind(T ) = 1 for such surfaces T .

The argument above shows that for the manifold T considered above one has
coind(susp(T )) − coind(T ) = 2. It would be interesting to find spaces T with
coind(susp(T )) − coind(T ) arbitrarily large.

The space T = H2r+1,r+1 provides an example of a Z2-space T with coind(T ) ≤
2r − 3 and coind(susp(T )) ≥ 2r − 1. The following lemma can be used to find
examples for spaces T with coind(T ) ≤ d− 2 and coind(susp(T )) ≥ d also for even
values of d.

Below we use cohomologies over Z2.

Lemma 5.1. If a compact d-manifold T has a nontrivial cohomology l in some
dimension 1 ≤ i ≤ d − 1 and it is the body of a free simplicial Z2-complex, then
coind(T ) < d.

Proof. We need to show that no Z2-map f : Sd → T exists.
Assume for a contradiction that such a map f exists. It induces a reverse map f∗

on the cohomologies; in particular, it maps l to an i-cohomology of Sd. As no such
nontrivial cohomology exists, we have f∗(l) = 0. By Poincaré duality there exists
a (d − i)-cohomology l′ with the cup product l 	 l′ = z being the only nontrivial
d-cohomology in T . As f∗ preserves the cup product we have f∗(z) = 0.

As T is the body of a d-dimensional free simplicial Z2-complex there is a Z2-map
g : T → Sd. Let w be the only nontrivial d-cohomology of Sd. The homomorphism
g∗ induced by g maps w either to z or to 0; in either case, (g◦f)∗(w) = f∗(g∗(w)) =
0. This shows that g ◦ f : Sd → Sd has even degree, which contradicts the fact that
it is a Z2-map (cf. [10], Theorem 20.6 on page 244). This contradiction proves
coind(T ) < d. �

Let T be a (d−1)-manifold obtained by attaching two homeomorphic “handles”
to the sphere Sd−1. We start with Sd−1 ⊂ Sd and attach the handles inside Sd in
a centrally symmetric way and smoothly, just as in the d = 3 case earlier. The
central reflection of Sd gives the involution in T . We can prove coind(susp(T )) ≥ d
via the same explicit Z2-map f : Sd → susp(T ) as in the d = 3 case. Note that
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the space T constructed admits a triangulation where the involution is simplicial.
As T is a (d − 1)-manifold with the above property, by Lemma 5.1 it is enough
to find a nontrivial cohomology (over Z2) of T in some dimension 1 ≤ i ≤ d − 2
and this implies coind(T ) ≤ d−2. By choosing for example handles homeomorphic
to a punctured Sk × Sl with k, l ≥ 1, k + l = d − 1, one makes sure that the kth
and lth cohomology groups are nontrivial. More formally, we could say that we
construct the manifold T from the sphere Sd−1 by applying two (k − 1)-surgeries
(1 ≤ k ≤ d − 2), in a centrally symmetric way.

For every even t > 2 we have found a graph that is topologically t-chromatic
but not strongly topologically t-chromatic: it is U(t + 1, t/2 + 1). As we pointed
out in Remark 4.8, the analogous graphs U(t + 1, (t + 1)/2 + 1) with t odd are
strongly topologically t-chromatic and their chromatic number is also t. Still, us-
ing the Z2-space T constructed in the last paragraph with coind(T ) ≤ d − 2 and
coind(susp(T )) ≥ d, one can separate topological t-chromaticity from strong topo-
logical t-chromaticity in a similar way also for odd t. Choose d = t − 1. Using
again that the space T constructed admits a triangulation where the involution is
simplicial we get by the results of Csorba [11] and Živaljević [46] that there exists
a finite graph G with H(G) Z2-(homotopy) equivalent to T and therefore ||B0(G)||
Z2-(homotopy) equivalent to susp(T ). This graph G is topologically t-chromatic,
but not strongly topologically t-chromatic. Thus we proved

Corollary 5.2. For every integer t > 2 there exists a graph that is topologically
t-chromatic, but not strongly topologically t-chromatic. �

Acknowledgments
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