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Abstract. According to Suk’s breakthrough result on the Erdős–Szekeres problem, any
point set in general position in the plane, which has no n elements that form the vertex
set of a convex n-gon, has at most 2n+O(n2/3 log n) points. We strengthen this theorem in
two ways. First, we show that the result generalizes to convexity structures induced by
pseudoline arrangements. Second, we improve the error term.

A family of n convex bodies in the plane is said to be in convex position if the convex
hull of the union of no n − 1 of its members contains the remaining one. If any three
members are in convex position, we say that the family is in general position. Combining
our results with a theorem of Dobbins, Holmsen, and Hubard, we significantly improve
the best known upper bounds on the following two functions, introduced by Bisztriczky
and Fejes Tóth and by Pach and Tóth, respectively. Let c(n) (and c′(n)) denote the smallest
positive integer N with the property that any family of N pairwise disjoint convex bodies
in general position (resp., N convex bodies in general position, any pair of which share at
most two boundary points) has an n-membered subfamily in convex position. We show

that c(n) ≤ c′(n) ≤ 2n+O
(√

n log n
)
.
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1. Introduction

We say that a set of n points in the plane is in convex position if the convex hull of no
n − 1 of them contains the n-th point. If no three elements of the set are collinear (that
is, any three points are in convex position), then the set is said to be in general position.
According to a classical conjecture of Erdős and Szekeres [7], if P is a set of points in
general position in the plane with |P| ≥ 2n−2 + 1, then it has n elements in convex position.
This bound, if true, cannot be improved [8]. In a recent breakthrough, Suk [19] came close
to proving the conjectured bound.

Theorem 1.1 (Suk, 2017). Given any integer n ≥ 3, let e(n) denote the smallest number
with the property that every family of at least e(n) points in general position in the plane
has n elements in convex position. Then we have

e(n) ≤ 2n+O(n2/3 log n).

A set of simple continuous curves in the Euclidean plane that start and end “at infinity”
is called an arrangement of pseudolines if any two of them meet in precisely one point: at
a proper crossing. A pseudo-configuration is a finite set of points P in the Euclidean plane
such that each pair of distinct points p and q in P span a unique pseudoline, denoted by
`(p, q) such that L(P) = {`(p, q) : p, q ∈ P, p , q} form a pseudoline arrangement and for
any p, q ∈ P, p , q we have `(p, q) = `(q, p) and `(p, q) ∩ P = {p, q}; see [10].

This underlying pseudoline arrangement induces a convexity structure on the point con-
figuration in a natural way. For any pair of points p, q ∈ P, the bounded portion of `(p, q)
between p and q is called the pseudosegment connecting p and q. If we delete from the
plane all pseudosegments between the elements of P, the plane is divided into a number
of connected components, precisely one of which is unbounded. The convex hull of the
configuration is defined as the complement of the unbounded region, and is denoted by
convP. We say that a subset Q ⊆ P is in convex position if no point p ∈ Q is in the convex
hull of Q \ {p}.1

It turns out that for four points there are only two combinatorially distinct pseudo-
configurations and both can be obtained from straight lines, but for five or more points
there exist pseudo-configurations that are not realizable by straight lines. Still, the number
of possible pseudo-configurations on five points is limited and we will leave the verifica-
tion of some simple statements about at most five points in a pseudo-configuration to the
reader.

Many basic theorems of convexity hold in this more general setting. For instance, a
set of points is in convex position if and only if every four of its elements are in convex
position [5]. This is Carathéodory’s theorem in the plane.

Goodman and Pollack [11] proposed the generalization of the Erdős-Szekeres problem
to pseudo-configurations. The original “cup-cap” proof due to Erdős and Szekeres [7]
readily generalizes to this setting:

Theorem 1.2. Let P be a pseudo-configuration. If |P| ≥ 4n, then P contains an n-element
subset in convex position.

The purpose of this note is to show that Suk’s breakthrough result, Theorem 1.1 carries
over to pseudo-configurations. In the process we also improve on the error term.

1Pseudo-configurations also have a purely combinatorial characterization. They can be defined by several
equivalent systems of axioms. Other names for pseudo-configurations that can be found in the literature are
generalized configurations [10], uniform rank 3 acyclic oriented matroids [4], and CC-systems [13].
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Figure 1. A pseudo-configuration of four points with the convex hull shaded.

Theorem 1.3. Given any n ≥ 3, let b(n) denote the smallest number such that every pseudo-
configuration of size at least b(n) has n members in convex position. Then we have

b(n) ≤ 2
n+O

(√
n log n

)
.

Clearly, b(n) ≥ e(n) holds for all n, thus our results also bounds the function e(n) defined
for the original Erdős-Szekeres problem (cf. Theorem 1.1).

Bisztriczky and G. Fejes Tóth [2, 3] gave another (seemingly unrelated) generalization
of the Erdős-Szekeres problem in 1989 by replacing point sets with families of pairwise
disjoint convex bodies. They defined n convex bodies to be in convex position if the convex
hull of no n − 1 of them contains the remaining one. If any three members of a family
of convex bodies are in convex position, then the family is in general position. In their
pioneering paper, Bisztriczky and Fejes Tóth proved that for any n ≥ 3, there exists a
smallest integer c(n) with the following property. If F is a family of pairwise disjoint
convex bodies in general position in the plane with |F | ≥ c(n), then it has n members in
convex position. They conjectured that c(n) = e(n). The first singly-exponential upper
bound on c(n) was established by Pach and Tóth [16]. They extended the statement to
families of pairwise noncrossing convex bodies, that is, to convex bodies that may intersect,
but any pair can share at most two boundary points [17]. This assumption is necessary.

Theorem 1.4 (Pach–Tóth, 2000). For any integer n ≥ 3, there exists a smallest number
c′(n) with the following property. Any family of at least c′(n) pairwise noncrossing convex
bodies in general position in the plane has n members in convex position.

Clearly, we have c′(n) ≥ c(n) ≥ e(n) for every n. The original upper bound on c′(n)
was subsequently improved by Hubard, Montejano, Mora, and Suk [12] and by Fox, Pach,
Sudakov, and Suk [9] to 2O(n2 log n), and later by Dobbins, Holmsen, and Hubard [6] to 4n.
More importantly from our point of view, they showed that there is an intimate relationship
between the generalizations of the Erdős-Szekeres problem to non-crossing convex bodies
and to pseudo-configurations. The following is the union of Lemmas 2.4 and 2.7 in their
paper.

Theorem 1.5 (Dobbins–Holmsen–Hubard, 2014). Let F be a family of pairwise noncross-
ing convex bodies in general position in the plane. There exists a pseudo-configuration P
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and a bijection ϕ : P → F such that for any subset S ⊆ P which is in convex position, the
subfamily ϕ(S ) is also in convex position.

It follows from this result that c′(n) ≤ b(n) for all n. (In fact, it was shown in [6] that
c′(n) = b(n) for all n ≥ 3.) In view of this, Theorem 1.3 immediately implies the following.

Theorem 1.6. Given any n ≥ 3, let c′(n) denote the smallest number such that every family
of at least c′(n) pairwise noncrossing convex bodies in general position in the plane has n
members in convex position. Then we have

c′(n) ≤ 2
n+O

(√
n log n

)
.

The rest of this note is organized as follows. After highlighting two auxiliary results in
Section 2, we present the proof of Theorem 1.3 in Section 3.

2. Auxiliary results

To follow Suk’s line of argument, we recall two results needed for the proof: a combina-
torial version of the “cup-cap” theorem (Theorem 2.1) and a variant of a positive fraction
Erdős–Szekeres theorem [1] (Theorem 2.4). For future reference, we also collect some sim-
ple observations on pseudo-configurations in convex positions (Observations 2.2 and 2.3).

Transitive colorings. Let S be a finite set with a given linear ordering ≺, and suppose the
ordered triples si ≺ s j ≺ sk are partitioned into two parts T1 ∪ T2. This partition is called a
transitive coloring if every s1 ≺ s2 ≺ s3 ≺ s4 in S and i ∈ {1, 2} satisfy

(s1, s2, s3), (s2, s3, s4) ∈ Ti ⇒ (s1, s2, s4), (s1, s3, s4) ∈ Ti.

Transitive colorings were introduced in [9] and [12]. The following statement can be
proved in precisely the same way as the “cup-cap” theorem; see [14] for an alternative
proof.

Theorem 2.1. [9, 12] Let S be a finite set with a given linear ordering and let T1 ∪ T2 be
a transitive coloring of the triples of S . If

(1) |S | >
(
k + l − 4

k − 2

)
,

then there exists a k-element subset S1 ⊆ S such that every triple of S1 is in T1, or an
l-element subset S2 ⊆ S such that every triple of S2 is in T2.

Convex hulls of pseudo-configurations. Below we collect a few simple observations on
the convexity structure of pseudo-configurations. These statements are trivial for the usual
notion of convexity, and easy to prove in this more general context.

Observation 2.2. Let P be a pseudo-configuration.
(i) The convex hull is a monotone operation. That is, for any X ⊆ Y ⊆ P, we have

convX ⊆ convY.
(ii) convX is a simply connected closed set, for any X ⊆ P.

(iii) If X ⊆ P is in convex position, then all points of X appear on the boundary of
convX.

(iv) Let k ≥ 3, and assume that X = {x1, x2, . . . , xk} ⊆ P is in convex position, where the
points xi appear on the boundary of convX in this cyclic order. Then the boundary
of convX is the union of the pseudosegments conv{xi, xi+1} for 1 ≤ i ≤ k. Further-
more, for each i, the pseudoline `(xi, xi+1) intersects convX in the pseudosegment
conv{xi, xi+1}, and (the rest of) convX lies entirely on one side of `(xi, xi+1). (In-
dices are understood modulo k.)
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Figure 2. A pseudo-configuration in convex position where the spikes are shaded.

Convex clusterings. Consider the pseudo-configuration described in Observation 2.2(iv):
Let X = {x1, x2, . . . , xk} be a k-element subset of P in convex position, where k ≥ 3, and
suppose that the points xi appear on the boundary of convX in this cyclic order. We define
the i-th spike of X, denoted by Si, to be the open region consisting of the points of the
plane separated from the interior of convX by the pseudoline `(xi, xi+1), but not separated
from convX by `(xi−1, xi) and by `(xi+1, xi+2). This is a connected region bounded by the
pseudosegment conv{xi, xi+1} and by portions of the pseudolines `(xi−1, xi) and `(xi+1, xi+2).
It is either a triangle-like bounded region or an unbounded region of three sides; see Fig. 2.

Observation 2.3. Let 1 ≤ i ≤ k.
(i) The line `(xi, xi+1) is disjoint from every spike and separates Si from all other spikes

S j ( j , i). In particular, the spikes are pairwise disjoint.
(ii) A point p ∈ P \ X belongs to the spike Si if and only if X′ = X ∪ {p} is in convex

position and p appears on the boundary of convX′ between xi and xi+1. In particu-
lar, whether X ∪ {p} is in convex position is determined by which region p belongs
in the arrangement of pseudolines spanned by X.

For the usual notion of convexity in the Euclidean plane, the following statement was
proved by Pór and Valtr [18]. It is a slight strengthening of a result of Pach and Soly-
mosi [15] that can be obtained by simple double counting. Since we will use this statement
for pseudo-configurations, to make our paper self-contained, we translate its proof into this
setting.

Theorem 2.4. Let k ≥ 3 be an integer, and let P be a pseudo-configuration with |P| = N ≥
24k. Then there exists a subset X = {x1, x2, . . . , xk} ⊂ P in convex position such that the sets
Pi of all points of P lying in the i-th spike, i = 1, . . . , k, satisfy the inequality

(2)
k∏

i=1

|Pi| ≥
Nk

28k2 .

Proof. Let P be a pseudo-configuration with |P| = N ≥ 24k. By Theorem 1.2, every 42k-
element subset Q ⊆ P contains a 2k-element subset R ⊂ Q in convex position. Therefore,
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by double-counting, P has at least(
N

42k

)(
N−2k

42k−2k

) =

(
N
2k

)
(
42k

2k

) > ( N
42k

)2k

distinct 2k-element subsets in convex position.
Given a 2k-element subset Y in convex position, we say that a k-element subset X ⊂ Y

supports Y if the points of Y along the boundary of convY alternately belong to X and Y \X.
Note that Y is supported by two subsets.

Since the number of k-element subsets of P in convex position is at most
(

N
k

)
, there exists

a k-element subset X which supports at least(
N

42k

)2k(
N
k

) >
Nk

28k2

distinct 2k-element subsets in convex position. By Observation 2.3(ii), if X supports Y ,
then the points of Y \ X belong to distinct spikes of X, which implies inequality (2). �

3. Proof of Theorem 1.3

Consider a sufficiently large fixed pseudo-configuration P, let k ≥ 4 be an even integer,
and let X = {x1, x2, . . . , xk} ⊂ P be a k-element subset in convex position such that its
points appear on the boundary of convX in this cyclic order. Suppose that X meets the
requirements of Theorem 2.4. As before, let S1, S2, . . . , Sk denote the spikes of X and let
Pi = P ∩ Si. The indices are taken modulo k.

Vertical and horizontal orderings on Pi. Let p and q be distinct points in Pi. We write

p ≺v
i q ⇐⇒ conv{xi−1, p, xi+2} ⊂ conv{xi−1, q, xi+2},

p ≺h
i q ⇐⇒ conv{xi−1, q} ∩ conv{xi+2, p} , ∅,

where the superscripts v and h refer to the adjectives “vertical” and “horizontal”, respec-
tively.

Observation 3.1. Let 1 ≤ i ≤ k.
(i) Both ≺v

i and ≺h
i are partial orders on Pi.

(ii) Any two distinct elements of Pi are comparable by either ≺v
i or ≺h

i , but not by both.

Proof. The definition of ≺v
i clearly implies that it is a partial order. To see that the same is

true for ≺h
i , one has to show that if p ≺h

i q ≺h
i r for three points p, q, r ∈ Pi, then p ≺h

i r.
This can be done by checking the few possible pseudo-configurations of the five points
xi−1, xi+2, p, q and r.

To prove (ii), it is sufficient to consider the pseudo-configurations consisting of only
four points: xi−1, xi+2, and two points p and q from Pi. Using the fact that p and q lie on
the same side of `(xi−1xi+2), one can show that out of the four relations p ≺v

i q, q ≺v
i p,

p ≺h
i q, and q ≺h

i p, precisely one will hold. Consider the four open regions into which the
pseudolines `(pxi−1) and `(pxi+2) partition the plane. The region in which q lies uniquely
determines which of the above four relations will hold. �

For 1 ≤ i ≤ k, let vi denote the length of the longest chain in Pi with respect to ≺v
i , and

let hi denote the length of the longest chain in Pi with respect to ≺h
i . By Observation 3.1

and by (the easy part of) Dilworth’s theorem, we have

(3) |Pi| ≤ vihi.
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Further observations concerning points and spikes. As before, the following observa-
tions are trivial for the usual notion of convexity in the Euclidean plane. Here we show that
they also hold for pseudo-configurations.

Observation 3.2. For any pair of distinct points p, q ∈ P, the pseudoline `(p, q) intersects
at most two spikes of X.

Proof. Assume for contradiction that `(p, q) intersects three separate spikes Si, S j, and Sl in
this order. By Observation 2.3(i), this line should intersect `(x j, x j+1) twice, a contradiction.

�

Observation 3.3. Let p and q be distinct points of Pi. If p ≺v
i q, then the pseudoline `(p, q)

separates spikes Si−1 and Si+1.

Proof. Since p ∈ conv{xi−1, q, xi+2}, the pseudoline `(p, q) intersects the pseudoseg-
ment conv{xi−1, xi+2}. This implies that `(p, q) has to intersect one of the spikes
Si+2, Si+3, . . . , Si−2. By Observation 3.2, `(p, q) intersects at most two spikes, one of which
is Si. Thus, it cannot intersect Si−1 and Si+1, which implies that Si−1 and Si+1 must be
separated by `(p, q). �

Observation 3.4. Let p and q be distinct points of Pi. If p ≺h
i q, then all the spikes

S i+2, S i+3, . . . , S i−2 must lie on the same side of the pseudoline `(p, q).

Proof. All spikes S j with j < {i−1, i+1} are on the same side of both pseudolines `(xi−1, xi)
and `(xi+1, xi+2). The angular region determined by these two pseudolines and containing
the above spikes (and the interior of convX) is cut into two parts by the pseudosegment
conv{xi−1, xi+2}, so that Si lies on one side and the spikes S j with j < {i − 1, i, i + 1} on
the other. Our assumption p ≺h

i q implies that the pseudoline `(p, q) does not intersect the
pseudosegment conv{xi−1, xi+2}, so the part of the angular region on the other side of this
pseudosegment (including all relevant spikes) is on the same side of `(p, q), as claimed. �

Vertical convex chains. Let C ⊆ Pi be a chain with respect to ≺v
i . If {xi−1} ∪C is in convex

position, we call C a left convex chain in Pi. If {xi+2} ∪C is in convex position, we call C a
right convex chain in Pi.

Note that if |C| = 3, then C is either a left convex chain or a right convex chain, but not
both. This can be verified by checking the pseudo-configuration C∪{xi−1, xi+2}. Moreover,
if we have p1 ≺

v
i p2 ≺

v
i p3 ≺

v
i p4 and both {p1, p2, p3} and {p2, p3, p4} are left (right)

convex chains, then {p1, p2, p3, p4} is also a left (right) convex chain. Therefore, the same
holds for both {p1, p2, p4} and {p1, p3, p4}. This can be verified by checking the pseudo-
configuration {p1, p2, p3, p4, xi−1, xi+2}. See Fig. 3.

Take a chain C ⊆ Pi of maximal size |C| = vi, totally ordered by ≺v
i . Partition the triples

of C into left and right convex chains. In this way, we obtain a transitive coloring. Letting
ai and bi denote the length of the longest left convex chain and the length of the longest
right convex chain in C, respectively, by Theorem 2.1, we have

(4) vi ≤

(
ai + bi − 2

ai − 1

)
.

Actually, Theorem 2.1 only guarantees the existence of large subsets C1,C2 ⊆ C such
that all triples in C1 are left convex chains and all triples in C2 are right convex chains.
However, using the above observations and the generalization of Carathéodory’s theorem
to pseudo-configurations, it follows that C1 and C2 themselves must form a left convex
chain and a right convex chain, respectively.
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Figure 3. A left convex chain p1 ≺
v
i p2 ≺

v
i p3 ≺

v
i p4 in Pi with

conv{p1, p2, p3, p4, xi−1} in darker shade.

Observation 3.5. If R is a right convex chain in Pi and L is a left convex chain in Pi+1,
then R ∪ L is in convex position.

Proof. First, note that for any pseudo-configuration P consisting of four points, if a point
p ∈ P lies in the convex hull of P \ {p}, then any pseudoline passing through p and any
other point of P crosses the pseudosegment determined by the other two points of P.

To prove the observation, it is enough to show that any four points p, q, r, s ∈ R ∪ L are
in convex position. If all of them lie in one of R or L, then we are clearly done. Assume
first that r, s ∈ R and p, q ∈ L. By Observation 3.3, the pseudolines `(p, q) and `(r, s)
do not intersect the pseudosegments conv{r, s} ⊂ Si and conv{p, q} ⊂ Si+1, respectively.
Therefore, by the discussion above, the points p, q, r, s are in convex position.

Now consider the case where p, q, r ∈ L and s ∈ R. Again by Observation 3.3, none of
the pseudolines `(p, q), `(p, r), and `(q, r) intersects the spike Si. Therefore, xi and s lie in
the same open region determined by the arrangement of these three pseudolines. By the
assumption, the set {p, q, r, xi} is in convex position, so by the last statement of Observation
2.3(ii) {p, q, r, s} is in convex position, as well. The other case, p ∈ L and q, r, s ∈ R, can be
settled in a similar manner. See Fig. 4. �

Horizontal convex chains. Let C ⊆ Pi be a chain with respect to ≺h
i . If {p, q, r, xi−1, xi+2}

is in convex position for any three distinct elements p, q, r of C, we call C an inner convex
chain. If {p, q, r, xi−1, xi+2} is not in convex position for any three distinct elements p, q, r
of C, we call C an outer convex chain.

Note that chains of at most two elements are both inner and outer convex chains by this
definition.

Observation 3.6. Let 1 ≤ i ≤ k.
(i) The partitioning of the triples in a horizontal chain C (ordered by ≺h

i ) into inner
and outer convex chains is a transitive coloring.

(ii) The inner and outer convex chains in Pi are in convex position.

Proof. Consider a horizontal chain p ≺h
i q ≺h

i r in Pi. By checking the pseudo-
configuration {p, q, r, xi−1, xi+2} we can verify that the following are equivalent:
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xi+1

xi

xi+2

Si Si+1

Figure 4. Joining a right convex chain R ⊆ Pi and a left convex chain
L ⊆ Pi+1 to form a subset in convex position (convex hull in darker shade).

(p, q, r) is an outer (inner) convex chain.
conv{xi−1, xi+2} and r are separated by (lie on the same side of) `(p, q).
conv{xi−1, xi+2} and p are separated by (lie on the same side of) `(q, r).
conv{xi−1, xi+2} and q lie on the same side of (are separated by) `(p, r).

Now consider a horizontal chain p1 ≺
h
i p2 ≺

h
i p3 ≺

h
i p4. The pseudolines `(xi−1, p4)

and `(xi+2, p1) divide the plane into four quadrants, each containing one of the pseudoseg-
ments conv{p1, p4}, conv{p4, xi+2}, conv{xi+2, xi−1}, conv{xi−1, p1}, in this cyclic order. By
the ordering ≺h

i , p2 and p3 are contained in the quadrant containing conv{p1, p4}. Fur-
thermore, the pseudoline `(p2, p3) must cross this quadrant, entering the boundary ray
containing p1, then meeting p2 before p3 and finally exiting the boundary ray containing
p4. If both (p1, p2, p3) and (p2, p3, p4) are outer (inner) convex chains, it follows by the
observations above that conv{p1, p4} and conv{xi−1, xi+2} are separated by (lie on the same
side of) `(p2, p3). This implies that conv{xi−1, xi+2} and p4 are separated by (lie on the same
side of) `(p1, p2) and `(p1, p3). Hence, (p1, p2, p4) and (p1, p3, p4) are both outer (inner)
convex chains, which proves part (i). By Carathéodory’s theorem, it suffices to check part
(ii) for inner and outer convex chains p1 ≺

h
i p2 ≺

h
i p3 ≺

h
i p4. However, it follows from the

discussion above that `(p1, p4) does not intersect conv{p2, p3} and that `(p2, p3) does not
intersect conv{p1, p4}. As in the proof of Observation 3.5, we obtain that {p1, p2, p3, p4} is
in convex position. See Fig. 5. �

Letting ci and di denote the length of the longest inner convex chain and the length of
the longest outer convex chain in Pi, respectively, applying Theorem 2.1 to the longest
horizontal chain in Pi and using Observation 3.6, we obtain

(5) hi ≤

(
ci + di − 2

ci − 1

)
.

Observation 3.7. Suppose that k ≥ 4 is even, and let A1 ⊆ P1, A2 ⊆ P2, . . . , Ak ⊆ Pk. If
each Ai is an inner convex chain, then A1 ∪ A3 ∪ · · · ∪ Ak−1 is in convex position, and so is
A2 ∪ A4 ∪ · · · ∪ Ak.
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Figure 5. An outer convex chain p1 ≺
h
i p2 ≺

h
i p3 ≺

h
i p4 in Pi with the

conv{p1, p2, p3, p4} in darker shade.

Proof. The proof follows in the same way as Observation 3.5, and we repeatedly use the
fact mentioned at the beginning of that proof. It suffices to prove that any four points
p1, p2, p3, p4 ∈ A1 ∪ A3 ∪ · · · ∪ Ak−1 are in convex position. If all the points lie in one
chain, we are done. Consider the case where three points belong to the same chain, say
p1, p2, p3 ∈ Ai1 and p4 ∈ Ai2 with i1 , i2. By Observation 3.4, xi1−1 and p4 belong to the
same open region determined by the pseudolines `(p1, p2), `(p1, p3), `(p2, p3). Therefore,
by the last statement of Observation 2.3(ii), the convexity of {p1, p2, p3, xi1−1} implies that
{p1, p2, p3, p4} is in convex position.

If one of the chains contains exactly two of our points, say p1, p2 ∈ Ai, then neither p1
nor p2 can be in the convex hull of the other three points, as Observation 3.4 implies that
the pseudoline `(p1, p2) does not intersect the pseudosegment conv{p3, p4}.

To finish the proof, we need to verify that if one of the chains contains exactly one of
our points, say p1 ∈ Ai, then p1 is not in the convex hull of the other three points. This
follows from the fact that `(xi, xi+1) separates p1 from p2, p3 and p4. See Fig. 6. �

Proof of Theorem 1.3. . Let P be a pseudo-configuration, and suppose that P does not
contain n points in convex position. Let k be an even integer to be specified later, and let
X = {x1, x2, . . . , xk} ⊆ P be a subset in convex position whose existence is guaranteed by
Theorem 2.4. Define Pi, vi, hi, ai, bi, ci, di, as above.

By Observation 3.6(ii), we have di < n. By Observation 3.5, we have

(6) bi + ai+1 < n

for all i, and, by Observation 3.7,

(7) c1 + c2 + · · · + ck < 2n.

Combining these with inequalities (2)–(5), we obtain
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x1
x2

x3

x4x5

x6

Figure 6. Joining inner convex chains A1 ⊆ P1, A3 ⊆ P3, and A5 ⊆ P5 to
form a subset in convex position (convex hull in darker shade).

Nk

28k2 ≤

k∏
i=1

|Pi|

≤

k∏
i=1

vihi

≤

k∏
i=1

(
ai + bi − 2

ai − 1

)(
ci + di − 2

di − 1

)

≤

k∏
i=1

2ai+bidci
i < 2kn+2n log n,

which gives us
N < 2n+

2n log n
k +8k.

Setting k to be the smallest even integer greater than or equal to
√

n log n/2, gives the
estimate

N = O
(
2n+8
√

n log n
)
. �

Remark. With a less wasteful computation, in particular by using the estimate above in
place of Theorem 1.2 in the proof of Theorem 2.4, the constant 8 in the exponent can be
replaced by 4

√
2 + ε.
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