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Abstract

In an earlier paper (see [14]) the first two authors have shown that self-complementary
graphs can always be oriented in such a way that the union of the oriented version and
its isomorphically oriented complement gives a transitive tournament. We investigate the
possibilities of generalizing this theorem to decompositions of the complete graph into
three or more isomorphic graphs. We find that a complete characterization of when an
orientation with similar properties is possible seems elusive. Nevertheless, we give suffi-
cient conditions that generalize the earlier theorem and also imply that decompositions
of odd vertex complete graphs to Hamiltonian cycles admit such an orientation. These
conditions are further generalized and some necessary conditions are given as well.
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1 Introduction

Investigating the relationship between the Shannon capacity of graphs and the Sperner
capacity of their oriented versions the first two authors proved the following theorem.

Theorem 1. ([14], cf. also [8]) Let G be a graph isomorphic to its complement F = G.
Then G and F can be oriented so that they remain isomorphic as digraphs while the
tournament formed by their union is the transitive tournament.

Moreover, the above can be done for any fixed isomorphism between G and F . That
is, for any such isomorphism f one can find oriented versions ~G and ~F of G and F ,
respectively, such that f provides and isomorphism between ~G and ~F and the union of ~G
and ~F is a transitive tournament.

The goal of the present paper is to investigate the possibilities of generalizing the
above theorem to three or more graphs, that is, to the situation when (the edge set
of) the complete graph is partitioned into three or more isomorphic graphs. As already
observed by Görlich, Kalinowski, Meszka, Piĺsniak, and Woźniak [4] in this case it will
not be true that the three graphs can always be oriented in an isomorphic manner so
that their union forms a transitive tournament. Moreover, a complete characterization of
when this is possible seems to be elusive. In [4, 5] the authors determine all digraphs with
at most four edges that can decompose a transitive tournament. (For related results, see
also [7] and [6].)

In our approach we fix the number of isomorphic graphs in the decompositions consid-
ered. We start with the case when this number is 3. We will give some sufficient conditions
when the isomorphic parts of a decomposition of Kn can be isomorphically oriented to
get a decomposition of the transitive tournament. This result gives a generalization of
Theorem 1.

It is well-known that complete graphs on an odd number of vertices decompose into
Hamiltonian cycles. One can directly show how to obtain a decomposition of the transitive
tournament of odd order into isomorphically oriented Hamiltonian cycles, but this also
follows from our sufficient condition mentioned above.

First we extend our sufficient condition to a more general one, then we show with an
example (found by computer) that this more general condition is still not necessary. A
complete characterization seems out of reach, but we are able to give some non-trivial
necessary conditions.

As usual Kn denotes the complete graph on n vertices, while we denote the transitive
tournament on n vertices by Tn. The vertex set of Kn and Tn is assumed to be [n] =
{0, 1 . . . , n−1} and we consider these vertices as residue classes modulo n, that is equality
between vertices will be understood modulo n. We denote the cyclic permutation of [n]
bringing i to i+ 1 by σn.
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2 Small examples and problem formulation

First we recall an example from [4] of three isomorphic graphs partitioning the complete
graph that cannot be isomorphically oriented so that their union is a transitive tournament
even if the functions giving the isomorphism among them are not fixed.

Let n = |V (G)| = 4 and the three isomorphic graphs be paths on 3 vertices. One
easily partitions K4 into three such graphs. It is also easy to see that whatever way we
orient these paths in an isomorphic manner, we cannot put them together to obtain a
transitive tournament on 4 vertices. This is simply because from no orientation can we
produce simultaneously a vertex of outdegree 0 and a vertex of outdegree 3. Note that
this example is just a very special case of Theorem 5 from [4].

Let us assume that the edge set of the complete graph Kn is partitioned into three
isomorphic graphs F , G and H. We can ask whether there are isomorphic orientations ~F ,
~G and ~H of the graphs F , G and H, respectively, such that their union gives a transitive
tournament. But we can be more specific and fix an isomorphism σ from F to G, an
isomorphism ρ from G to H and ask whether there are orientations ~F , ~G and ~H of
the graphs F , G and H whose union is a transitive tournament and such that σ is an
isomorphism between ~F and ~G and ρ is an isomorphism between ~G and ~H.

To illustrate the difference between these two questions let us consider the smallest
possible example. The graph K3 can be partitioned into three (isomorphic) single edge
graphs: F , G and H. Clearly, the three oriented edges of T3 also form isomorphic graphs.
This answers the first question above for this specific partition affirmatively. If, however,
we fix a cyclic permutation σ = ρ that brings F to G and G to H, then the answer to
the second question is negative. Indeed, if ~F is either orientation of F , ~G = σ(~F ) and
~H = σ2(~F ), then the union of these three directed graphs is a directed cycle and thus not
transitive.

In this paper we will concentrate on the question with fixed permutations σ and ρ.
We will only consider the special case σ = ρ. Although this assumption is restrictive, it is
in complete analogy with the case of two self-complementary graphs, and we believe that
understanding this special case would largely improve our knowledge about the situation.

Definition 1. Let σ be a permutation of the vertex set of Kn. We call the partition of the
edge set of Kn into three graphs F , G and H such that the permutation σ brings F to G
and G to H a σ-partition. In this case σ brings H to F and σ3 is an automorphism of all
three of these graphs. We call a transitive orientation T of Kn a transitive σ-orientation
of this σ-partition if the subgraphs ~F , ~G and ~H of T that are the orientations of the graphs
F , G and H, respectively, satisfy σ(~F ) = ~G and σ(~G) = ~H. We say that σ reverses the
orientation of an edge e in T if σ(e) is oriented in the other direction, that is, if e goes
from a to b, and the edge of T between σ(a) and σ(b) is oriented toward σ(a). Observe
that a transitive orientation T of Kn is a transitive σ-orientation of the σ-partition of Kn

to F , G and H if and only if σ reverses no edges of T that belong to F or G.

Just as it was the case with self-complementary graphs, we may assume that the
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permutation σ is cyclic as the case of general σ reduces to the cyclic case. Indeed, let
the cycle decomposition of the permutation of σ be ρ1ρ2 . . . ρk. Let F , G and H form a
σ-partition P . The subgraphs Fi, Gi, Hi induced by the domain of the cycle ρi form a
ρi-partition Pi for all i. Clearly, if P has a transitive σ-orientation, then it restricts to
transitive ρi-orientations of Pi. On the other hand, if Pi has a transitive ρi-orientation
for all i, then P has a transitive σ-orientation. To see this last statement simply keep
the orientations of the edges in the transitive ρi-orientations and orient edges connecting
vertices from distinct cycles ρi and ρj toward the higher indexed cycle. None of these
latter type of edges is reversed by σ.

It is easy to see that a σ-partition exists if and only if σ has at most one fixed point
and the length of all non-trivial cycles of the cycle decomposition of σ is divisible by 3.

From now on we do make the assumption that σ consists of a single cycle on
n > 1 vertices, namely σ = σn, where σn stands for the permutation on the set
[n] = {0, 1, 2, . . . , n − 1} bringing i to i + 1 mod n. The vertices of our graphs will
therefore be the elements of [n] and we consider them as the residue classes modulo n,
that is, equalities about them are always understood modulo n. We assume n is divisible
by 3 as otherwise there is no σn-partition.

We denote the graphs of the σn-partition by F0, F1 = σn(F0) and F2 = σ2
n(F0). The

label `(a, b) of an edge {a, b} of Kn is the index of the subgraph the edge belongs to, so
the label of the edges of Fi are i. As σn brings F0 to F1 to F2 and back to F0 we must
have `(a+1, b+1) ≡ `(a, b)+1 for all a and b, where the congruence is modulo 3 (and, as
noted above, the vertices are understood modulo n). With the same convention we have
the more general congruence for any edge {a, b} and integer i:

`(a+ i, b+ i) ≡ `(a, b) + i (mod 3). (1)

Definition 2. The defining sequence of the σn-partition {F0, F1, F2} is a1, a2, . . . , am,
where m = bn/2c and aj = `(0, j). By the congruence above, this sequence determines all
other labels and thus the entire σn-partition. On the other hand, it is easy to see that (as
n is divisible by 3) every sequence of length bn/2c over the alphabet {0, 1, 2} is a defining
sequence of a σn-partition. This is analogous to the case of self-complementary graphs,
cf. [3, 12, 13]. By symmetry, we may and will often assume that `(0, 1) = 0, that is, the
defining sequence starts with a1 = 0. This can be achieved by shifting the σn-partition by
σn or σ2

n.

In the smallest n = 3 case, there is just one σ3-partition and we have already seen
that it has no transitive σ3-orientation. Let us look at the next case n = 6 a bit closer.
By the foregoing, there are 32 = 9 σ6-partitions to consider according to the labeling of
the edges {0, 2} and {0, 3}.

The corresponding graphs F0 are depicted in Figure 1. It turns out that transitive σ6-
orientations exist in exactly four of the nine cases. (We have indicated such an orientation
in Figure 1 whenever it exists.) Notice that the F0 is simply a path on the six vertices
in four cases but a transitive σ6-orientation exists for only two of them. (The truth of
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this statement will follow from the results of the next section.) Thus, in spite of the
isomorphism of these four graphs they behave differently according to the different effect
of permutation σ6 on them.

3 The standard orientation

We want to decide whether a given σn-partition P has a transitive σn-orientation. For
our notation including the labeling of edges and the definition of the defining sequence
see the previous section. We will describe a transitive σn-orientation with an ordering
τ(1), τ(2), . . . , τ(n) on the vertices. We say that an orientation is consistent with τ if
all edges point towards the vertex that come later in the order. Clearly, the transitive
orientation of Kn and the ordering it is consistent with mutually determine each other.
Recall that a transitive orientation T is a transitive σn-orientation of our σn-partition P
if and only if the orientation of no label-0 or label-1 edge is reversed by σn.

Theorem 2. If n = 2m and the defining sequence a1 . . . am ∈ {0, 1, 2}m of a σn-partition
satisfies that for every j ∈ {1, . . . ,m−1} either aj+1 = aj or aj+1 ≡ aj + 1 (mod 3), then
there exists a transitive σn-orientation for this σn-partition.

Proof. The proof is an extension of the argument given by Gyárfás [8] for our Theorem 1.
We give a linear order τ of the vertices 0, 1, . . . , n− 1 and show that orienting the edges
consistently with this order gives a transitive σn-orientation.

Let us first recall our assumption that a1 = 0. This can be achieved by appropriately
relabeling the vertices. The relabeling changes the defining sequence but does not affect
the condition in the theorem. Now we define τ . We set τ(1) = 0 and declare that τ will
have the property, that for any i, the set of vertices Ai := {τ(1), τ(2), . . . , τ(i)} forms
a consecutive arc of the cycle formed by the vertices 0, 1, . . . , n − 1, i.e., it is equal to
{ji + 1, . . . , ji + i} for some ji ∈ {n − i, n − i + 1, . . . , n − 1}. Recall that the
names of the vertices are understood modulo n. Now τ(i+ 1), that is the unique element
of Ai+1 \ Ai is either ji or ji + i + 1 for every i. Thus τ is determined if we give a rule
for deciding which of the two elements ji and ji + i + 1 should be taken as τ(i + 1) if
i < n − 1. (No rule is needed for i = n − 1 as then ji = ji + i + 1 is the only vertex
outside Ai.) This choice for τ(i + 1) depends on the label of the edge {ji, ji + i + 1}. If
`(ji, ji + i+ 1) = 0, then we set τ(i+ 1) = ji making ji+1 = ji − 1. If `(ji, ji + i+ 1) = 2,
then we set τ(i + 1) = ji + i + 1 making ji+1 = ji. We claim that the third possibility,
namely `(ji, ji + i+ 1) = 1 will not happen for any 1 ≤ i < n− 1.

First we show this last statement by induction. Note that all congruences are modulo
3. The base case is all right as τ(1) = 0 and `(n − 1, 1) ≡ a2 − 1, see Equation (1). By
the assumption on the defining sequence this is either a1 − 1 ≡ 2 or (a1 + 1) − 1 = 0.
Now assume the statement to be true for the edge {ji−1, ji−1 + i}, and we show that it
is also true for {ji, ji + i + 1}. By Equation(1), we have `(ji−1, ji−1 + i) ≡ `(0, i) + ji−1
and `(ji, ji + i + 1) ≡ `(0, i + 1) + ji. We have ji = ji−1 − 1 if τ(i) = ji−1, i.e., if
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Figure 1: Four of the nine possible 3-partitions of K6 can be oriented as required. In the
remaining five cases such orientations do not exist.
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`(ji−1, ji−1 + i) = 0, while otherwise this label is 2, so we have ji = ji−1. Therefore, we
can formulate the congruence:

ji ≡ ji−1 − `(ji−1, ji−1 + i)− 1 ≡ ji−1 − (`(0, i) + ji−1)− 1 = −`(0, i)− 1.

We also have:

`(ji, ji + i+ 1) ≡ `(0, i+ 1) + ji ≡ `(0, i+ 1)− `(0, i)− 1. (2)

For 1 ≤ i ≤ n/2− 1 we simply have `(0, i+ 1) = ai+1 and `(0, i) = ai, so

`(ji, ji + i+ 1) ≡ ai+1 − ai − 1, (3)

so by assumption it cannot be 1. If n/2 ≤ i < n we use Equation (1) again to see that
`(0, i) = `(i, 0) ≡ `(0, n − i) + i = an−i + i and similarly, `(0, i + 1) ≡ an−i−1 + i + 1.
Therefore

`(ji, ji + i+ 1) ≡ an−i−1 − an−i, (4)

which cannot be 1 either by the same assumption. Note that we used the fact that n is
even. For n odd and i = (n−1)/2 we would have `(ji, ji+ i+1) ≡ `(0, i+1)−`(0, i)−1 ≡
(ai − i)− ai − 1 = −i− 1 ≡ 1.

We need to show that the orientation consistent with the order τ is a transitive σn-
orientation. As noted above, for this we have to show that σn reverses the orientation
only of edges of label 2. Equivalently, if an edge {u, v} is oriented from u to v and it has
label 1 or 2 then the edge {u − 1, v − 1} is oriented from u − 1 to v − 1. Assume {u, v}
is oriented from u to v, that is, τ−1(u) < τ−1(v). We distinguish cases according to the
order of u and v. Note that while in most formulas we consider the vertices as residue
classes modulo n (and thus equality really means congruence modulo n) in inequalities
the vertices are treated as integers between 0 and n− 1.

In the simplest case we have 0 < u < v. In this case u− 1 ∈ Aτ−1(u) while v /∈ Aτ−1(u)

and either (v − 1) /∈ Aτ−1(u) or v − 1 = u. In both cases we have τ−1(u− 1) < τ−1(v − 1)
implying that the edge {u− 1, v − 1} is oriented from u− 1 to v − 1 as we need.

If u = 0 and {u− 1, v− 1} is oriented toward u− 1, then τ−1(u− 1) > τ−1(v− 1) and
therefore `(u − 1, v − 1) = 2 implying `(u, v) = 0 and therefore it does not matter that
{u− 1, v − 1} is not oriented from u− 1 to v − 1.

Finally assume v < u. Note that v > 0 as otherwise the edge {u, v} could not be
directed toward v. If {u − 1, v − 1} is not oriented from u − 1 to v − 1, then the arc
{u, u+ 1, . . . , v−1} is either Aτ−1(u) or Aτ−1(v−1). In the former case our rule implies that
`(u, v) = 0, in the latter case it implies `(u − 1, v − 1) = 2 and thus again `(u, v) = 0 in
which case we have no problem.

This proves that our rule gives a transitive σn-orientation and completes the proof of the
theorem. �

Note that the linear order obtained on the vertex set of Kn by the orientation in the proof
above has some special properties. To formulate them we introduce the following notions.
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Definition 3. Let τ(1) . . . τ(n) be an ordering of the numbers 0, 1, . . . , n − 1. We say
that j ∈ {0, 1, . . . , n − 1} is a local minimum in this order if j precedes both j − 1 and
j + 1 (addition is meant modulo n), that is τ−1(j) < τ−1(j − 1) and τ−1(j) < τ−1(j + 1).
Similarly, j ∈ {0, 1, . . . , n−1} is a local maximum if j is preceded by both j−1 and j+1,
that is τ−1(j) > τ−1(j − 1) and τ−1(j) > τ−1(j + 1).

We call τ bitonic if it has a unique local minimum and a unique local maximum. We
call a transitive σn-orientation of a σn-partition standard if it is consistent with a bitonic
ordering of the vertices.

Proposition 1. The transitive σn-orientations given in the proof of Theorem 2 are stan-
dard. The unique local minimum of the corresponding ordering is at 0, while the unique
local maximum is at n/2.

Proof. The fact that τ given in the proof is bitonic and thus the transitive σn-orientations
are standard follows immediately from the construction. It is also clear that τ(1) = 0 is
the local minimum and we need only prove that the local maximum (that is τ(n)) is n/2.

Recall from the proof of Theorem 2 that Ai = {τ(1), . . . , τ(i)} is a consecutive interval
in the cycle formed by the i vertices from ji + 1 to ji + i for all 1 ≤ i ≤ n. The sequence
(Ai)

n
i=1 starts at A1 = {0} and we obtain Ai+1 from Ai by extending Ai with τ(i + 1) at

one end of this interval. The label `(ji, ji + i + 1) (which is never 1) determines which
end we place τ(i + 1), namely if the label is 0 we chose one end, while if it is 2 we
chose the other end. For 1 ≤ i ≤ n/2 − 1 we have `(ji, ji + i + 1) ≡ ai+1 − ai − 1 by
Equation (3) and `(jn−i−1, jn−i−1 + n− i) ≡ ai − ai+1 by Equation (4). This means that
`(ji, ji + i + 1) + `(jn−i−1, jn−i−1 + n − i) ≡ 2, so one of these labels must be 0 and the
other 2 and thus we extend the interval Ai on one end to get Ai+1 while we extend An−i−1
on the other end to obtain An−i. This partitions the n− 2 extension steps bringing A1 to
An−1 into n/2− 1 pairs and shows that we use n/2− 1 extensions of the interval at either
side. Thus n/2 (the vertex in distance n/2 from A1 = {0} in either direction) must be
the only vertex outside An−1 and therefore we have τ(n) = n/2 as stated. �

The following proposition is a sort of converse of the previous one.

Proposition 2. If there exists a standard transitive σn-orientation for a σn-partition, then
the conditions of Theorem 2 are satisfied, namely the number n of vertices is even and
for the defining sequence a1 . . . an/2 of the σn-partition either aj+1 = aj or aj+1 ≡ aj + 1
(mod 3) holds for each 1 ≤ j ≤ n/2−1. If there exists a standard transitive σn-orientation
for a σn-partition, then it is unique up to shifts of the automorphism σ3

n.

Proof. Consider a standard transitive σn-orientation T for a σn-partition. Without loss
of generality we may assume that the defining sequence of the σn-partition starts with
a1 = 0. Consider the bitonic ordering τ of the vertices consistent with T . The first
element a = τ(1) is clearly the local minimum. All edges are directed away from a, so σ
reverses the orientation of the edge {a− 1, a}, as it brings it to {a, a+ 1}. Therefore we

7



have `(a, a+ 1) = 0 and thus a ≡ 0 (mod 3). We may and will assume a = 0 as this can
be achieved with a shift of a suitable power of the automorphism σ3

n.
As τ is bitonic, the set Ai = {τ(1), . . . , τ(i)} must be an interval {ji + 1, . . . , ji + i}

along the cycle formed by the vertices. Clearly, τ(i+ 1) is either ji or ji + i+ 1. We show
the uniqueness of τ by observing that the value of τ(i + 1) depends on the label of the
edge e = {ji, ji + i+ 1} exactly as in the construction in the proof of Theorem 2, namely
τ(i+ 1) = ji if this label is 0 and τ(i+ 1) = ji + i+ 1 if the label is 2 and the label of e
cannot be 1. Indeed, if τ(i+ 1) = ji + i+ 1, then σn reverses the orientation of the edge
e, so its label is 2, but if τ(i+ 1) = ji, then σ−1n reverses the orientation of e, so its label
must be 0.

From the rule established above we can derive Equation (2) just as in the proof of
Theorem 2. In case n is odd we can apply this formula to i = (n − 1)/2 and using also
Equation (1) we obtain `(ji, ji+i+1) ≡ `(0, i+1)−`(0, i)−1 = (`(0, i)+i+1)−`(0, i)−1 ≡
i ≡ 1 contradicting that we saw that the label of the edge {ji, ji + i + 1} cannot be 1.
This proves that n is even.

From Equation (2) we can deduce Equation (3) for 1 ≤ i ≤ n/2 − 1. Using that the
label of the edge {ji, ji + i + 1} cannot be 1 this implies that ai+1 = ai or ai+1 ≡ ai + 1
finishing the proof of the proposition. �

3.1 Several parts

In this subsection we extend the earlier results to partitions to more than three parts.
The extensions are straightforward, the proofs carry over almost verbatim. We just list
the results here and show how they apply to decompositions into Hamiltonian paths and
cycles. Note that in the discussion below we also allow the case when the number of parts
is k = 2.

Definition 4. Let k and n be integers larger than 1 and (as before) let σn be the cyclic
permutation on the set [n] = {0, 1, . . . , n− 1} bringing i to i+ 1. Recall that elements of
[n] are understood modulo n. Let us call a partition of the edge set of the complete graph
on the vertex set [n] into the subgraphs F0, . . . , Fk−1 a σn-k-partition if σn(Fd) = Fd+1

for 0 ≤ d < k − 1. This implies that n is divisible by k, further if k is even, then n is
divisible by 2k. It also implies that σn(Fk−1) = F0 and that σkn is an automorphism of all
the graphs Fd. We say that the label of an edge e of Fd is `(e) = d. The defining sequence
of this partition is the sequence a1, . . . , abn/2c, where ai = `({0, i}). The defining sequence
uniquely determines the σn-k-partition, namely Fd consists of the edges {b, b+i} for which
b ≡ d − ai (mod k). This is indeed a σn-k-partition for any sequence a1, . . . , abn/2c over
the letters 0, 1, . . . , k − 1 if the divisibility conditions are satisfied by n and k.

We call a transitive orientation T of Kn a transitive σn-orientation of a σn-k-partition
if σn( ~Fd) = ~Fd+1 for 0 ≤ d < k − 1, where ~Fd is the orientation of Fd obtained as a
subgraph of T . A transitive orientation T satisfies this condition if and only if σn reverses
the orientation of no edges of Fd with d 6= k − 1. We call a transitive σn-orientation
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standard if it is consistent with a bitonic ordering of the vertices.

The common generalization of Theorems 1 and 2 is as follows.

Theorem 3. There exists a standard orientation for a σn-k-partition if and only if n
is divisible by 2k and the defining sequence a1a2 . . . an/2 of the partition satisfies that for
every 1 ≤ j ≤ n/2−1 either aj+1 = aj or aj+1 ≡ aj+1 (mod k). If a standard orientation
exists, then it is unique up to shifts of σk and the corresponding bitonic ordering of the
vertices satisfies that the first and last elements in the ordering (the unique local minimum
and maximum) differ by n/2.

Remark 1. It is straightforward to see that Theorem 3 generalizes Theorem 2. Note that
Theorem 1 is also implied by Theorem 3 since in case of two self-complementary graphs,
that is, when k = 2, the condition aj+1 ≡ aj or aj + 1 (mod k) is automatically satisfied
as aj+1 cannot take any value other than 0 or 1.

We formulate the following simple generalization of the trivial observation that the
(only) σ3-partition has no transitive σ3-orientation.

Proposition 3. If there exists a transitive σn-orientation for a σn-k-partition, then n ≥
2k and n 6= 3k. If n = 2k, then any transitive σn-orientation of a σn-k-partition is
standard.

Proof. From the existence of this partition we know that k divides n. Note that σn
reverses the orientation of an even number of the n edges {i, i + 1} in any orientation T
of Kn. But if k = n, then only one of these edges has label k − 1, so if T is a transitive
σn-orientation, then the orientation of none of these edges are reversed. But then they
form a directed cycle, so T is not transitive.

If n = 2k or 3k, then two or three of these n edges have label k − 1, so exactly two
of them have to be reversed by σn to avoid the directed cycle. This makes the transitive
σn-orientation standard. But we know from Theorem 3 that if a σn-k-partition admits a
standard orientation, then n is divisible by 2k, so n = 3k is not an option. �

Complete graphs of odd order can be decomposed into Hamiltonian cycles. This is a
classical result as mentioned in Adrian Bondy’s chapter [1] of the Handbook of Combi-
natorics. (It is added there that “one such construction, due to a Monsieur Walecki, is
described in the book by Lucas (1891, pp. 161–164)”, cf. [11].)

This result extends to the decomposition of odd order transitive tournaments to iden-
tically oriented Hamiltonian cycles. This decomposition can be found directly, but it can
also be arrived at by applying our result to a certain decomposition of the non-oriented
complete graph as shown below.

Corollary 1. If n is even, then we can decompose Tn into n
2

alternatingly oriented Hamil-
tonian paths.
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Proof. Let F0 be the path defined as 0, 1, n− 1, 2, n− 2, . . . , i, n− i, (i+ 1), . . . , (n
2

+ 1), n
2
.

It is easy to see that the graphs Fd := σdn(F0) for d = 0, 1, . . . , n/2− 1 partition the edge
set of Kn into n

2
Hamiltonian paths. This is a σn-n/2-partition.

One can also readily check that {0, j} ∈ E(Fbj/2c) holds for every j ∈ {1, . . . , n− 1}.
This means that the defining sequence of this σ-n/2-partition is a1, . . . , an/2 with ai =
bi/2c. By Theorem 3 there is a standard orientation for this partition that is unique up

to a shift with σ
n/2
n . It is not hard to check that the standard orientation orients the

Hamiltonian paths in this partition alternatingly, that is, each vertex will be a source or a
sink of each Hamiltionian path. This construction is illustrated for n = 6 by the oriented
path in the very central picture of Figure 1. �

Corollary 2. If n is odd, then we can decompose Tn into n−1
2

isomorphically oriented
Hamiltonian cycles.

Proof. Consider the decomposition of Tn−1 given in Corollary 1 on vertices labeled by
[n − 1]. Add the extra vertex v and connect it to the two endpoints of each of the
Hamiltonian paths thus extending them to Hamiltonian cycles. Orient all edges incident
to v away from v. These isomorphically oriented Hamiltonian cycles decompose the
transitive tournament on n vertices. �.

Remark 2. The orientation of the Hamiltonian cycles in our decomposition in Corollary 2
is such that all but one of the vertices is either a source or a sink. This kind of orientation
of odd cycles is called alternating in [9], where it is shown that these oriented versions of
odd cycles have maximal Sperner capacity. In the special case of n = 5 this orientation
already appeared in [2], where it was observed that its Sperner capacity is

√
5, that is,

it achieves the Shannon capacity of the underlying undirected graph which is C5, whose
capacity was determined in the celebrated paper by Lovász [10]. This observation was the
starting point of our investigations in [14].

In Section 2 we explained how to find transitive σ-orientations for σ-partitions if the
permutation σ is not cyclic. First we solve the restriction of the problem for the domain
of each cycle in the cycle decomposition of σ, then extend the obtained orientations by
orienting the edges between distinct cycles consistently with a linear ordering of these
cycles. We used the same strategy here for the two cycles of the permutation σ that has
v as a fixed point and acts on [n − 1] as σn−1. The decomposition has v as the domain
of a trivial cycle and [n − 1] as the domain of σn−1. Had we defined these notions for
arbitrary permutations (not just for cyclic ones), we could call the decomposition of the
complete graph in Corollary 2 a σ-(n − 1)/2-partition of Kn and the orientations of the
Hamiltonian cycles would form a transitive σ-orientation of this partition.

4 Non-standard orientations

The results in the previous section may make one hope that the conditions of Theo-
rem 2 are not just sufficient but also necessary for a σn-partition to have transitive σn-
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orientations. This is not the case. In this section we give some sufficient conditions that
go beyond the ones in Theorems 2 and 3 .

Our construction takes a transitive σm-orientation for a σm-k-partition and uses that
to get transitive σn-orientations of related σn-k-partitions. Here n is a multiple of m.
Even for some standard σm-k-orientations, the resulting transitive σn-orientations are not
always standard and in some cases the σn-k-partitions do not have standard orientations
at all.

Definition 5. Let k > 1 and m be such that σm-k-partitions exist (that is, m is a multiple
of k and if k is even m is also a multiple of 2k). Let n be a multiple of m. We call the
σn-k-partition P with defining sequence a1, . . . , abn/2c a blow-up of the σm-k-partition Q
with defining sequence b1, . . . , bbm/2c if ai = b(i mod m) whenever 1 ≤ i ≤ bn/2c and i is not
divisible by m. For this to make sense even if i mod m > bm/2c we extend the sequence
bi by setting bi = (bm−i + i) mod k for bm/2c < i < m. This makes bi the label of the edge
{0, i} in the σm-k-partition Q for any i. Note that we have no requirement for the value
of ai if i is divisible by m, so P is not determined by Q and n.

Notice that if the σm-k-partition Q has a standard orientation, then its defining
sequence satisfies the requirements of Theorem 3 and therefore the defining sequence
a1, . . . , an/2 of its blow-up P also satisfies ai+1 = ai or ai+1 ≡ ai + 1 (mod k) whenever
neither i nor i+ 1 is divisible by m. However, by the free choice of the value ai whenever
i is divisible by m, this property need not hold for the other indices, thus P may violate
the conditions of Theorem 3. Nevertheless, as we will show, P admits a transitive σn-
orientation in this case. We call the transitive orientation constructed in the next theorem
the blow-up of the transitive σm-orientation of Q.

Theorem 4. If the σn-k-partition P is a blow-up of the σm-k-partition Q and Q admits
a transitive σm-orientation, then P admits a transitive σn-orientation.

Proof. Let T be the transitive σm-orientation of Q we assumed to exist and let τ be the
ordering of the vertex set [m] that T is consistent with. The theorem claims that P has
transitive σn-orientation T ′. We construct T ′ by finding the ordering τ ′ on the vertex set
[n] that T ′ is consistent with. The only requirement we have to satisfy is that all edges
of T ′ whose orientation σn reverses should have label k − 1.

Let us set d = n/m and for i ∈ [m], let Hi = {jm+ i | j ∈ [d]}. Each of these m sets
has d elements and together they partition [n]. The ordering τ ′ starts with the elements
of Hτ(1) followed by the elements of Hτ(2), . . . , Hτ(m−1). The order within the sets Hi will
be specified later. We call an edge of Kn an outer edge if it connects vertices from distinct
sets Hi and Hj, otherwise it is an inner edge. The orientation of the outer edges in T ′ are
not influenced by the order within the sets Hi. namely for a ∈ Hi and b ∈ Hj (i 6= j) the
orientation of the edge {a, b} in T ′ is determined by the orientation of the of edge {i, j}
in T . This means that σn reverses the orientation of the edge {a, b} in T ′ if and only if
σm reverses the orientation of the edge {i, j} in T . Our definition of a blow-up ensures
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that the label of the edge {a, b} for the partition P is the same as the label of the edge
{i, j} for the partition Q. Therefore σn reverses the orientation of outer edges in T ′ only
if their label is k − 1.

To finish the proof we have to specify the ordering τ ′ within the sets Hi in such a way
that the same can be said about inner edges of T ′: σn reserves the orientation of them
only if their label is k − 1.

For i ∈ [m] let τi(1), τi(2), . . . , τi(d) be an ordering of [d] to be specified later and
let us say that τ ′ orders the elements of Hi in the following order: τi(1)m + i, τi(2)m +
i, . . . , τi(d)m+ i.

Consider an inner edge e = {a, b}, with a, b ∈ Hi, i ∈ [m]. We have a = Am + i and
b = Bm+ i for some A,B ∈ [d] and the orientation of e in T ′ is determined by the order
of A and B in τi. In case i 6= m− 1 we have σn(e) = {a+ 1, b+ 1}, a+ 1, b+ 1 ∈ Hi+1 and
the orientation of σn(e) is determined by the order of A and B in τi+1. Thus, σn reverses
the orientation of e in T ′ if and only if A and B are in different order in τi and in τi+1.
We must make sure that this only happens if the label of e is k − 1.

The situation is a bit different for inner edges e = {a, b} with a, b ∈ Hm−1. We still
have σn(e) = {a + 1, b + 1} (recall that these vertices are understood modulo n). But
now a + 1, b + 1 ∈ H0 and a + 1 = (A + 1)m, b + 1 = (B + 1)m. Thus, σn reverses the
orientation of e if and only if A and B are in different order in τm−1, then A+1 and B+1
are in τ0. Here both A+ 1 and B + 1 are understand modulo d. We will make sure that
this only happens if the label of e is k − 1.

We will now specify the orderings τi. As explained above, this finishes the proof if we
can show the following two properties:

(a) If for some 0 ≤ i < m − 1 and A 6= B ∈ [d] the order of A and B is different in τi
and τi+1, then we have `(Am+ i, Bm+ i) = k − 1.

(b) If A precedes B in τm−1 but (B + 1) mod d precedes (A + 1) mod d in τ0, then we
have `(Am+m− 1, Bm+m− 1) = k − 1.

We set τ0 to be the order: 0, 1, d−1, 2, d−2, . . . , dd/2e. Note that the pair of elements
j and d− j are consecutive for all 1 ≤ j < d/2. For 0 ≤ i < k we obtain τi+1 from τi by
swapping the order of j and d − j for each j satisfying `(jm + i, (d − j)m + i) = k − 1.
In this way we maintain that the j and d − j are consecutive in τi for all 0 ≤ i ≤ k and
1 ≤ j < d/2. Also, with this rule condition (a) is satisfied for 0 ≤ i < k. For any i and j
as above we have `(jm+ i, (d−j)m+ i) ≡ `(jm, (d−j)m)+i (mod k). Therefore, for any
such j, the label will be k−1 for exactly one of the indices 0 ≤ i < k and thus τk will have
all the pairs (j, d−j) swapped. Namely, τk is the order 0, d−1, 1, d−2, 2, d−3, . . . , bd/2c.

Proposition 3 tells us that m ≥ 2k. Let us assume for now that m > 2k. We will
come back to the case m = 2k later. Observe that j and d− j − 1 are consecutive in τk
for any 0 ≤ j ≤ d/2 − 1. For k ≤ i < 2k we obtain τi+1 from τi by swapping the order
of j and d − j − 1 for each j satisfying `(jm + i, (d − j − 1)m + i) = k − 1. In this way
we maintain that the vertices j and d − j − 1 are consecutive in τi for all k ≤ i ≤ 2k
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and 0 ≤ j ≤ d/2 − 1. Also, this rule makes condition (a) satisfied for k ≤ i < 2k.
Just as before, for any j as above the label condition is satisfied for exactly one index
k ≤ i < 2k and thus τ2k will have all the pairs (j, d− j − 1) swapped. Namely, τ2k is the
order d− 1, 0, d− 2, 1, d− 3, 2, . . . dd/2e − 1.

We set τi = τ2k for 2k < i < m. This makes condition (a) hold vacuously for
2k ≤ i ≤ m − 1 as τi = τi+1. Condition (b) is also satisfied vacuously, since A precedes
B in τm−1 = τ2k if and only if (A + 1) mod d precedes (B + 1) mod d in τ0. This is so
because τ0 can be obtained from τ2k by replacing each element j by (j + 1) mod d. This
finishes the proof of the theorem in the case m > 2k.

It remains to consider the case m = 2k. We define the orders τi for k < i ≤ 2k the
same way as above. We do not use τ2k in the definition of τ ′, but we will use it in our
argument below.

Condition (a) is satisfied as before. But now condition (b) is not vacuous. We still
have that A precedes B in τ2k if and only if (A+ 1) mod d precedes (B + 1) mod d in τ0,
so if A precedes B in τ2k−1 but (B + 1) mod d precedes (A+ 1) mod d in τ0 as called for
in condition (b), then A and B appear in different order in τ2k−1 and τ2k and therefore
`(Am+m− 1, Bm+m− 1) = k− 1. This makes condition (b) satisfied and finishes the
proof of the theorem. �

To illustrate Theorem 4 we show a σn-partition that admits a transitive σn-orientation
but does not admit a standard one. We take n = 12 and consider the σ-partition P
with defining sequence 000121. Recall that this is a partition of the edge set of K12 to
three isomorphic subgraphs and it has no standard orientation by Proposition 2. But
it is a blow-up of the σ6-partition Q with defining sequence 000. Q has a transitive σ6-
orientation, even a standard one by Theorem 2. The first part of Q and its orientation
is depicted in the first illustration on Figure 1. By Theorem 4 P has a transitive σ12-
orientation. For example orienting the edges consistent with the following ordering of the
vertices gives a transitive σ12-orientation: 0, 6, 1, 7, 2, 8, 11, 5, 4, 10, 3, 9.

5 Complications

After seeing Theorems 2 and 4 one might be curious to know whether they describe all
transitive σn-orientations of a σn-partition, namely if all such orientations are blow-ups of
standard orientations. This is, however, not the case, moreover, there exist σn-partitions
that neither admit a standard orientation nor are blow-ups of σm-partitions for some m <
n, yet they do admit a transitive σn-orientation. We found such examples by computer
and do not see a general pattern that would still suggest a complete characterization. (We
note that our examples in this section all concern the simplest possible case k = 3 again.)

The σ24-partition with the defining sequence

0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 2, 1

is such an example. The orientation consistent with the following order of the vertices is
a transitive σ24-orientation for this partition:
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0, 1, 2, 23, 22, 21, 3, 9, 4, 10, 20, 5, 11, 8, 7, 19, 6, 18, 12, 13, 14, 17, 16, 15.

(To check that this defines a transitive σ24-orientation one has only to verify that the
edges whose orientation σ24 reverses have label 2. For example, the edge e = {4, 8} is
oriented towards 8 as 8 appears later in this sequence than 4. But σ24(e) = {5, 9} is
oriented towards 5 as 5 appears later than 9. So σ24 reverses the orientation of e. Now
`(4, 8) ≡ `(0, 4) + 4 (mod 3) and `(0, 4) is the fourth number of the defining sequence,
namely 1, so `(4, 8) = 2 as required.)

6 Necessary conditions

So far we have seen sufficient conditions for σn-partitions (or σn-k-partitions) to posses a
transitive σn-orientation. While a complete characterization seems elusive it makes sense
to look also for non-trivial necessary conditions. Here we give a simple such condition.

Theorem 5. Let P be a σn-k-partition with defining sequence a1, . . . , abn/2c. Assume
a1 = 0 and let i be an index with 1 ≤ i < bn/2c such that aj 6= k − 1 for 1 ≤ j ≤ i. If P
has a transitive σn-orientation, then ai+1 ≤ ai + 1.

Proof. Fix a transitive σn-orientation T of P . When referring to the orientation of edges
we speak about the orientation in T .

We call a vertex m ∈ [n] a leader if it is divisible by k. Notice that if m is a leader,
then the label `(m,m + j) is aj for all 1 ≤ j ≤ bn/2c. (Recall that vertices are always
understood modulo n.) We call a leader m an in-leader if the edge {m,m+ 1} is oriented
towards m, otherwise it is an out-leader.

We claim that if m is an in-leader, then all the edges {m,m + j} for 1 ≤ j ≤ i + 1
are oriented toward m, while if m is an out-leader, then all these edges are oriented away
from m. By symmetry, it is enough to prove one of the statements. We prove the latter
one by induction on j. The statement of the claim is assumed for j = 1. So let 1 ≤ j ≤ i
and assume {m,m + j} is oriented away from m. The label of this edge is aj 6= k − 1,
so σn does not reverse its orientation. Therefore the edge {m+ 1,m+ j + 1} is oriented
towards m+ j + 1. As m is an out-vertex the edge {m,m+ 1} is oriented toward m+ 1.
To get a transitive orientation {m,m + j + 1} must therefore be oriented away from m
finishing the inductive proof.

Consider the cycle formed by the edges {m,m+1} for all m ∈ [n]. If all leader vertices
were in-leaders or all of them were out-leaders, then this cycle would be a directed cycle
contradicting the transitivity of T . So we must have at least one in-leader and also at
least one out-leader. We can therefore fix an out-leader m such that the very next leader
vertex, namely m+ k is an in-leader.

By the claim above (and since m is an out-leader) the edge {m,m + i} is oriented
towards m + i. The label of this edge is ai, so one can apply the permutation σn to this
edge k − 1− ai times without it reversing the orientation. Thus, the edge {m + k − 1−
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ai,m+ i+k−1−ai} is oriented toward m+ i+k−1−ai. Recall that ai 6= k−1, so (as m
is an out-leader) the edge {m+k−2−ai,m+k−1−ai} is oriented toward m+k−1−ai.
The transitivity of T therefore implies that the edge e = {m+k−2−ai,m+ i+k−1−ai}
is oriented toward m + i + k − 1 − ai. We have σai+2

n (e) = {m + k,m + k + i + 1} and
this edge is oriented toward the in-leader m + k by the claim above. We see that σai+2

n

reverses the orientation of e, therefore the label ai+1 of σai+2
n (e) must be less than ai + 2.

�

Definition 6. Let a1, . . . , abn/2c be the defining sequence of a σn-k-partition P . We say
that the sequence halts at the index i (1 ≤ i < bn/2c) if ai+1 = ai. We say that it steps
at the index i if ai+1 ≡ ai + 1 (mod k). We say that it jumps at the index i if it neither
halts nor steps there.

We call the σn-k-partition with defining sequence b1, . . . , bbn/2c the dual of P if bi ≡
i− 1− ai (mod k) for all i.

Note that if a the defining sequence of a σn-k-partition halts at an index i, then the
defining sequence of its dual steps there and vice versa. The defining sequences of a
σn-k-partition and its dual jump at the same indices.

We can rephrase Theorem 3 as follows: A σn-k-partition has a standard orientation if
and only if its defining sequence does not jump at all.

Theorem 6. If a σn-k-partition admits a transitive σn-orientation, then so does its dual.
If a σn-k-partition P admits a transitive σn-orientation and the defining sequence of P

jumps at an index i, then there is an index j < i where it halts and at least k− 1 distinct
indices j′ < i where it steps, or the other way around: there is an index j < i where it
steps and at least k − 1 distinct indices j′ < i where it halts. In particular, there is no
jump at indices i ≤ k.

Proof. Let P be the σn-k-partition, with parts F0, . . . , Fk−1. The dual Q of P can be
obtained by first relabeling the vertices, namely switching the label v and n − v for
1 ≤ v < k, and then considering the parts in reverse order, namely as Fk−1, Fk−2, . . . , F0.
If a transitive orientation T of Kn is a transitive σn-orientation of P , then T (after the
relabeling) is also a transitive σn-orientation of Q. This proves the first claim in the
theorem.

To verify the second claim we assume without loss of generality that the defining
sequence (aj) of P starts with a1 = 0. Note that this makes the defining sequence (bj)
of its dual Q start with b1 = 0. Assume that the first jump in (aj) is at the index i, so
at indices 1 ≤ j < i the sequence halts or steps. By Theorem 5 we have ai+1 ≤ ai + 1
unless the sequence steps for at least k−1 such indices. Further, it has to step for at least
one such index, as otherwise we would have aj = 0 for all j ≤ i and ai+1 ≤ ai + 1 = 1
contradicting our assumption that the sequence jumps at i. Note that i is also the first
index where the sequence (bj) jumps, so we similarly have that this sequence steps for at
least one index j < i and we have bi+1 ≤ bi+1 unless it steps at k−1 or more such indices.
To finish the proof it is enough to note that (aj) steps where (bj) halts and vice versa and
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if both step at fewer than k − 1 indices j < i, then ai ≤ ai+1 ≤ ai + 1 contradicting our
assumption that the sequence (aj) jumps at i. �

We conclude the paper with two conjectures. All σn-partitions for which we found a
transitive σn-orientation were for even values of n. We tried to find such examples with
odd n but failed even with a computer. This suggests the following.

Conjecture 1. No σn-partition with n odd has a transitive σn-orientation.

Although we did not do any computer search for partitions with more than three parts,
we still venture the following stronger conjecture:

Conjecture 2. No σn-k-partition with k > 1 and n odd has a transitive σn-orientation.
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