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Abstract

Let HDd(p, q) denote the minimal size of a transver-
sal that can always be guaranteed for a family
of compact convex sets in Rd which satisfy the
(p, q)-property (p ≥ q ≥ d + 1). In a celebrated
proof of the Hadwiger-Debrunner conjecture, Alon
and Kleitman proved that HDd(p, q) exists for all
p ≥ q ≥ d + 1. Specifically, they prove that
HDd(p, d+ 1) is Õ(pd

2+d).
This paper has two parts. In the first part we

present several improved bounds on HDd(p, q). In
particular, we obtain the first near tight estimate of
HDd(p, q) for an extended range of values of (p, q)
since the 1957 Hadwiger-Debrunner theorem.

In the second part we prove a (p, 2)-theorem
for families in R2 with union complexity below a
specific quadratic bound. Based on this, we intro-
duce a polynomial time constant factor approxima-
tion algorithm for MAX-CLIQUE of intersection
graphs of convex sets satisfying this property. It
is not likely that our constant factor approxima-
tion can be improved to a PTAS as MAX-CLIQUE
for intersection graphs of fat ellipses is known to
be APX-HARD and fat ellipses have sub-quadratic
union complexity.
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1 Introduction

1.1 Background The classical Helly’s theorem
says that if in a family of compact convex sets in Rd

every d+1 members have a non-empty intersection
then the whole family has a non-empty intersection.

For a pair of positive integers p ≥ q, we say
that a family F of sets satisfies the (p, q)-property
if |F| ≥ p, none of the sets in F is empty, and
among any p sets of F there are some q with a non-
empty intersection. A set P is called a transversal
for F if it has a non-empty intersection with every
member of F . In this language Helly’s theorem
states that any family of compact convex sets in Rd

satisfying the (d+1, d+1)-property has a singleton
transversal. In an attempt to generalize Helly’s
theorem, Hadwiger and Debrunner [HD57] posed
a conjecture that was proved more than 30 years
later in a celebrated result of Alon and Kleitman:

Theorem 1.1. (the (p, q)-theorem [AK92])
For any triple of positive integers p ≥ q ≥ d + 1
there exists an integer s such that if F is a
family of compact convex sets in Rd satisfying the
(p, q)-property, then there exists a transversal for
F of size at most s.

We denote the smallest value s that works for
p ≥ q > d by HDd(p, q).

The (p, q)-theorem has a rich history of vari-
ations and generalizations described in the survey
of Eckhoff [Eck03]. Those include a version for set
systems with bounded VC-dimension [Mat04], col-
orful and fractional versions [BFM+14] and a gen-
eralization to a topological (p, q)-theorem for finite
families of sets which are so-called good cover, i.e.,
the intersection of every sub-family is either empty
or contractible [AKMM01].

The upper bound on HDd(p, q) provided in
the Alon-Kleitman proof [AK92] is huge and it
is believed that much better bounds could be
achieved. In fact, Alon and Kleitman were only
interested in proving the existence of HDd(p, q)
and hence concentrated on the case q = d +
1. Their bound is HDd(p, d + 1) = Õ(pd

2+d)
where Õ hides some polylogarithmic factors. They
write: “Although the proof supplies finite upper
bounds for HDd(p, q),

1 the bounds obtained are

1Alon and Kleitman use the notation M(p, q, d).



very large and the problem of determining this
function precisely remains wide open.” In fact,
it is not clear how their method can improve the
asymptotic of HDd(p, q) when q is slightly more
than d + 1, say 2d. In their second paper on
the subject [AK97] Alon and Kleitman provide a
more elementary proof of the same result that gives
slightly weaker bounds.

Trivially, for any p ≥ q we have HDd(p, q) ≥
p− q+1. Hadwiger and Debrunner [HD57] proved
the following:

Theorem 1.2. ([HD57]) For p ≥ q ≥ d + 1 such
that q > d−1

d p+ 1

HDd(p, q) = p− q + 1.

The precise bound is not known already in the plane
when p = 4 and q = 3. The best known upper and
lower bounds in that case are due to Kleitman et
al. [KGT01] who showed:

3 ≤ HD2(4, 3) ≤ 13,

improving the upper bound of 345 obtained in
[AK92] for that special case. The best known
general lower bound is

HDd(p, q) = Ω

(
p

q
logd−1 p

q

)
,

that follows easily from a lower bound construction
for weak ϵ-nets due to Bukh et al. [BMN11].

Matoušek [Mat02] writes that the Hadwiger-
Debrunner bound in Theorem 1.2 “is the only
nontrivial case where exact values, or even good
estimates of HDd(p, q), are known”.

1.2 Improved bounds on HDd(p, q) In this
paper we improve the asymptotic bounds on
HDd(p, q). We think of the dimension d as a fixed
constant and are interested in HDd(p, q) as a func-
tion of p, q. Accordingly, the notation O(·) may
hide dependence on d. Additionally, in the nota-
tion Õ(·) we also supress polylogarithmic factors in
p. For d ≥ 3, our main result is the following.

Theorem 1.3. For p ≥ q > d ≥ 3 and ϵ > 0 the
Hadwiger-Debrunner numbers HDd(p, q) satisfy:

(a)

HDd(p, q) ≤ O
(
pd·

q−1
q−d logcd

3 log d p
)
= Õ

(
pd·

q−1
q−d

)
.

(b) If q ≥ log p, then

HDd(p, q) ≤ p− q +O

((
p

q

)d

logcd
3 log d

(
p

q

))

= Õ

(
p+

(
p

q

)d
)
.

(c) If for some ϵ > 0, q ≥ p
d−1
d +ϵ and p ≥ pd(ϵ)

(where pd(ϵ) depends only on d and ϵ), then

p− q + 1 ≤ HDd(p, q) ≤ p− q + 2.

For d = 2, parts (a) and (b) of our result are a bit
stronger.

Theorem 1.4. For p ≥ q ≥ 3 and ϵ > 0 the
Hadwiger-Debrunner numbers HD2(p, q) satisfy:

(a)

HD2(p, q) ≤ O
(
p2·

q−1
q−2

)
.

(b) If q ≥ log p, then

HD2(p, q) ≤ p− q +O

((
p

q

)2

log2
(
p

q

))

(c) If for some ϵ > 0, q ≥ p
1
2+ϵ and p ≥ p(ϵ) (where

p(ϵ) depends only on ϵ), then

p− q + 1 ≤ HD2(p, q) ≤ p− q + 2.

We note that already Case (a) provides im-
proved bounds over the one obtained by Alon and
Kleitman. Case (b) represents a significant im-
provement and one cannot improve this bound fur-
ther significantly without also improving the re-
sults for the well studied problem of weak ϵ-nets
for convex sets (see Theorem 2.3 and the remarks
in Section 4 for more details). Case (c) is an exten-
sion of the Hadwiger-Debrunner tight bounds to

the wider range of values q ≥ p
d−1
d +ϵ rather than

q > d−1
d p+ 1.

The proof of (a) follows the Alon-Kleitman proof
of the (p, q)-theorem, and the improvement is ob-
tained by replacing two steps of the proof with
a classical hypergraph Turán-type result of de
Caen [dC83] and a tight form of the Upper Bound
Theorem for convex sets proved by Kalai [Kal84].
The proof of (b) is an inductive bootstrapping pro-
cess that exploits the result of (a). The proof of (c)
is yet another bootstrapping, using (a), (b), and
the Hadwiger-Debrunner theorem. Both of these
bootstrapping arguments are based on the follow-
ing dichotomy:

Observation 1.1. Assume that F satisfies the
(p, q)-property. For any p′ < p, q′ < q, either
F satisfies the (p′, q′) property, or there exists a
sub-family S ⊂ F with p′ elements, and with no
q′ intersecting elements. In the latter case, F \ S
satisfies the (p− p′, q − q′ + 1) property.

1.3 A (p, 2)-theorem in the plane for sets
with union complexity below a quadratic
bound The finiteness of HDd(p, q) is only proved



for q ≥ d+1. The transversal number of a family F
of compact convex sets in Rd satisfying the (p, d)-
property is not bounded as a function of p and d,
even if p = d. This is easily seen (as noted in
[AK92]) by taking a family F of n hyperplanes
(for an arbitrary large n) in general position in
Rd. To make those sets compact we intersect all
those hyperplanes with a box containing all the

(
n
d

)
intersection points of all d-tuples of hyperplanes.
Obviously, F satisfies the (d, d)-property but no
transversal for F has size less than n/d.

In some special cases it is known that a (p, 2)-
theorem in the plane does exist. It is well known
that every family of pseudo-discs satisfying the
(p, 2)-property admits a transversal of size O(p)
(see, e.g., [CH12, PR08]). Danzer [Dan86] proved
that a family of pairwise intersecting discs (i.e.,
a family of discs satisfying the (2, 2)-property) in
R2 admits a transversal of size four. Let γ be a
convex curve in the plane. Recently, Govindarajan
and Nivasch [GN15] proved a (p, 2)-theorem when
the intersections of pairs belong to γ. Specifically,
they prove that if for a family F of compact convex
sets in the plane, their intersections with γ satisfy
the (p, 2)-property, then F has a transversal of size
O(p8).

Families with bounded union complexity were
also considered in connection with (p, 2)-theorems.
Here we use the following definition.

Definition 1.1. Let F be a family of n simple
Jordan regions in the plane. The union complexity
of F is the number of vertices (i.e., intersection of
boundaries of pairs of regions in F) that lie on the
boundary ∂

∪
r∈F r.

The notion of union complexity has been the sub-
ject of many papers. Researchers were interested in
bounding the union complexity of various families
of objects and understanding other combinatorial
properties of families with “low” union complexity.
See, e.g., the survey of Agarwal et al. [APS08]. It
is known that the union-complexity of any n discs
(or even pseudo-discs) is at most 6n−12 [KLPS86].

The results of Pinchasi [Pin15] imply that if the
union complexity of n elements of a planar family
F is sub-quadratic in n, then the fractional Helly
number of the family is 2. This, combined with
the techniques of Alon and Kleitman imply a (p, 2)
theorem for compact convex sets in the plane with
sub-quadratic union complexity.

Here we prove a (p, 2) theorem for compact
convex sets in the plane with a somewhat weaker
bound on the union complexity. In some combina-
torial sense, it shows that the only counter exam-
ple to the finiteness of HD2(2, 2) is given by families
which “resemble” lines in some combinatorial sense.

Theorem 1.5. Let F be a family of compact con-
vex sets in the plane satisfying the (p, 2) property.
Assume that for some (fixed) k ≥ 3 the union com-
plexity of every k sets from F is less than

(
k
2

)
. Then

F admits a transversal of size O(k4p16).

1.4 Approximating the clique number for
intersection graphs Let F be a finite family of
sets. The intersection graph G(F) is the graph
(F , E) where E consists of all pairs of sets in F with
a non-empty intersection. The computational com-
plexity of the maximum-clique problem in intersec-
tion graphs of discs is not known. In particular, it is
not known whether it is NP-hard. The best known
polynomial time algorithm gives a 2-approximation
factor. That is, it finds a subset of the discs that
forms a clique in the intersection graph whose size
is at least opt/2, where opt is the size of the max-
imum clique. Ambühl and Wagner [AW05] proved
that the MAX-CLIQUE problem for families of fat
ellipses is APX-HARD.

Let F be a family of convex sets in the plane
satisfying the conditions of Theorem 1.5. As a
corollary of our (p, 2)-theorem we obtain a simple
polynomial time algorithm which approximates the
maximum-clique for the intersection graph of any
finite subfamily of F within a constant factor C
depending only on the family F . We note that there
is no hope to find a PTAS for such families. Indeed,
this follows from the hardness result of Ambühl and
Wagner for fat ellipses, combined with the fact that
fat ellipses have sub-quadratic union complexity.

1.5 Organization of the paper The paper is
organized as follows: In Section 2 we prove The-
orems 1.3 and 1.4. In Section 3 we prove Theo-
rem 1.5 and present the approximation algorithm
for the clique number of certain intersection graphs.
We conclude the paper with a discussion in Sec-
tion 4.

2 Proof of the Main Theorem

In this section we present the proof of Theorems 1.3
and 1.4. Since the proofs of cases (a), (b), and (c)
use different methods, we present each of them in
a separate subsection.

2.1 Improved bound on HDd(p, q) for any q ≥
d + 1 In this subsection we prove Theorem 1.3(a),

namely, that HDd(p, q) ≤ Õ(pd(
q−1
q−d )). By compact-

ness, it is enough to provide a bound on HDd(p, q)
for finite families of convex sets. Our proof follows
some steps of the Alon-Kleitman proof of the (p, q)-
theorem.

Let F be a family of n compact convex sets
in Rd that satisfies the (p, q)-property. The Alon-
Kleitman proof consists of the following four steps:



1. Count the number of (d+1)-tuples of sets in F
with a non-empty intersection. Using a double-

counting argument there are Ω
(

nd+1

pd+1

)
such

tuples.

2. Apply the Fractional Helly Theorem (first
proved by Katchalski and Liu in [KL79], see
also [Kal84, Mat02]) to conclude that there is
a point that pierces at leastΩ( n

pd+1 ) of the sets.

3. Use the Linear-Programming duality to show
that there is a finite weighted set P of points
with a total weight W such that every member
in F contains a subset of P of total weight
Ω( W

pd+1 ).

4. Apply known bounds for weak ϵ-nets (see, e.g.,
[Mat02]) with ϵ = Ω( 1

pd+1 ) to show that F can

be pierced with f(ϵ, d) = Õ( 1
ϵd
) = Õ(p(d+1)d)

points.

To obtain a better bound for HDd(p, q), we
replace the direct arguments in the first two steps
of the proof with stronger and deeper tools. In
particular, for the first step we use the following
Turán-type result for hypergraphs, proved by de
Caen [dC83] (see also [Kee11]). We note that a
slightly weaker result can be proved by a simple
probabilistic argument.

Theorem 2.1. (de Caen, 1983) Let n ≥ p ≥ q.
Let H be a q-uniform hypergraph on n vertices that
does not contain an independent set of size p. Then

|E(H)| ≥ n− p+ 1

n− q + 1
·
(
n
q

)(
p−1
q−1

) .
For the second step we use Kalai’s tight form of

the Upper Bound Theorem for convex sets ([Kal84],
see also [AK85, Eck85]).

Theorem 2.2. (Kalai, 1984) Let F be a family
of n convex sets in Rd. Denote by fk−1 the number
of k-tuples of sets in F whose intersection is non-
empty. If fd+r = 0 for some r ≥ 0 then for any
k > 0,

fk−1 ≤
d∑

i=0

(
r

k − i

)(
n− r

i

)
.

Combining these results we establish:

Proposition 2.1. Let F be a family of n ≥ 2p
compact convex sets in Rd that satisfies the (p, q)-
property, p ≥ q ≥ d + 1. Then there exists a point

that pierces at least Ω

(
qn

p
q−1
q−d

)
elements of F .

Proof. Denote by x the number of q-tuples of sets in
F with a non-empty intersection, and assume that

there is no point that pierces more than m = αn of
the sets in F . We have
(2.1)

n− p+ 1

n− q + 1
·
(
n
q

)(
p−1
q−1

) ≤ x ≤
d∑

i=0

(
m− d

q − i

)(
n− (m− d)

i

)
.

The left inequality in (2.1) follows from Theo-
rem 2.1 (applied to the hypergraph whose vertices
are the elements of F and whose edges are q-tuples
whose intersection is non-empty) and the right in-
equality follows from Theorem 2.2 (applied with
r = m − d, k = q). As n ≥ 2p by assumption,
we have

nq

2qpq−1
≤ n− p+ 1

n− q + 1
·
(
n
q

)(
p−1
q−1

) .
Hence, (2.1) implies

cnq

qpq−1
≤

d∑
i=0

ni (αn)
q−i

(q − i)!
≤ nq

(q − d)!

d∑
i=0

αq−i.

Assuming α < 1/2 (since otherwise there is a point
that stabs n/2 elements of F) and using Stirling’s
formula, we get

(q − d)q−d

4qeq−dpq−1
≤ αq−d,

which implies α = Ω

(
q

p
q−1
q−d

)
, as asserted.

The rest of the proof of Theorem 1.3(a) follows
steps (3)-(4) of Alon-Kleitman’s proof. Two classi-
cal results are needed.

The first is an LP duality lemma proved (im-
plicitly) by Alon and Kleitman using a well known
variant of Farkas’ Lemma (cf. [Mat02]).

Lemma 2.1. Let 0 < α < 1 be a fixed real number.
Let F be a finite family of sets. Suppose that for
any multiset F ′ consisting of elements of F there
exists a point x that is contained in at least α|F ′|
members of F ′. Then there exists a finite multiset
P of points such that every member of F contains
at least α|P | elements of P .

The second is a bound on the size of weak ϵ-
nets:

Theorem 2.3. (weak ϵ-nets [ABFK92, MW04])
For every real 0 < ϵ < 1 and for every integer d
there exists a constant f = f(ϵ, d) such that the
following holds: For every n and for every multiset
P of n points in Rd, there exists a set N of at most
f(ϵ, d) points such that every convex set containing
at least ϵ|P | points of P must also contain a point
of N .



The finiteness of f(ϵ, d) was first proved by Alon
et al. [ABFK92] and better bounds were obtained
by Chazelle at al. in [CEG+95]. The current
best known upper bound due to Matoušek and
Wagner [MW04] is f(ϵ, d) = O( 1

ϵd
logc(d) 1

ϵ ), where

c(d) = O(d3 log d) for d ≥ 3 and f(ϵ, 2) = O( 1
ϵ2 )

[ABFK92]. The best known lower bound was
provided by Bukh, Matoušek and Nivasch [BMN11]
who showed that f(2, ϵ) = Ω( 1ϵ log

1
ϵ ) and for

general d ≥ 3, f(d, ϵ) = Ω( 1ϵ (log
1
ϵ )

d−1). It remains
a big open problem to provide sharp bounds on
f(ϵ, d).

Part (a) of Theorems 1.3 and 1.4 is obtained by
plugging in the best known bounds for Theorem 2.3
in the following result:

Proposition 2.2. For p ≥ q > d ≥ 2
the Hadwiger-Debrunner numbers HDd(p, q) satisfy
HDd(p, q) ≤ f(β, d), where f is the function from

Theorem 2.3 and β = Ω
(
p−

q−1
q−d

)
.

Proof. Let F be a family that satisfies the assump-
tion of the theorem. Let F ′ be a multiset of ele-
ments of F . If |F ′| ≥ p′ := (p− 1)(q − 1) + 1, then
it satisfies the (p′, q) property as among among p′

sets we either find p distinct sets or q copies of the
same set. If |F ′| ≥ 2p′, then Proposition 2.1 implies
that there exists a point that pierces at least β|F ′|
elements of F ′, for

β = Ω

(
q

p′
q−1
q−d

)
= Ω

(
1

p
q−1
q−d

)
,

where the second equality holds since p′ < pq
and q(q−1)/(q−d)−1 = q(d−1)/(q−d) is bounded from
above by a constant depending only on d. The
existence of a point piercing β|F ′| elements of F ′

remains true even for smaller multisets. This is
so because the multiplicities of the sets in F ′ can
be multiplied to increase the size of the family
but this does not affect the ratio a point pierces.
By Lemma 2.1 it follows that there exists a finite
multiset P such that each element of F contains at
least β|P | points of P . Hence, by Theorem 2.3, F
admits a transversal of size f(β, d).

Remark 2.1. We note that when q = Ω(log p),
then in Proposition 2.2 we have β = Ω(1/p) and
HDd(p, q) = Õ(pd). In the next subsection we
improve this bound to Õ

(
(p/q)d

)
.

2.2 Improved bound on HDd(p, q) for q ≥
log p In this subsection we prove part (b) of The-
orems 1.3 and 1.4. We prove the slightly stronger
statement below. Note that for β > (q − 1)/p and
an arbitrary multiset of points P , the family of sets
containing at least β|P | points of |P | satisfy the
(p, q)-property. Thus, HDd(p, q) can work as the
upper bound f(q/p, d) in Theorem 2.3. We also

have p − q < HDd(p, q), and therefore our bound
here is almost optimal except for the logarithmic
term in β.

Proposition 2.3. Let p ≥ q ≥ d + 1 such that
q ≥ log p. Then

HDd(p, q) ≤ p− q + f(β, d),

where f is the function from Theorem 2.3 and

β = Ω
(
(pq log

p
q )

−1
)
.

Proof. Let F be a family of compact convex sets in
Rd that satisfies the (p, q)-property for p ≥ q > d
and q ≥ log p. Put k = max(⌈log(p/q)⌉, d) and
k′ = ⌈kp/q⌉. For ℓ ≥ 0, define

pℓ = p− ℓk′ and qℓ = q − ℓk.

Note that k′/k ≥ p/q and therefore pℓ/qℓ ≤ p/q.
Find the largest ℓ such that qℓ > k and F satisfies
the (pℓ, qℓ)-property. Surely ℓ = 0 satisfies both
requirements, so such a largest ℓ exists. We
consider two cases according to which requirement
ℓ+ 1 violates.

If qℓ+1 ≤ k, then qℓ = qℓ+1+k ≤ 2k and so pℓ ≤
(p/q)qℓ = O((p/q) log(p/q)). We also have qℓ > k =
Ω(log pℓ) and therefore Remark 2.1 applies and F
has a transversal of size HDd(pℓ, qℓ) ≤ f(β, d) with

β = Ω(1/pℓ) = Ω
(
(pq log

p
q )

−1
)
.

If F does not satisfy the (pℓ+1, qℓ+1) property,
then we apply Observation 1.1. We find a sub-
set S ⊆ F with |S| = pℓ+1 such that no qℓ+1

of them intersect and conclude that F \ S satis-
fies the (k′, k + 1)-condition. We can apply Re-
mark 2.1 again to see that F \ S can be pierced
by HDd(k

′, k + 1) ≤ f(β, d) points, where β =

Ω(1/k′) = Ω
(
(pq log

p
q )

−1
)
. Finally S (as any sub-

set of F of size at most p) can be pierced by p−q+1
points. This finishes the proof of the proposition.

2.3 Improved bound on HDd(p, q) for q ≥
p1−

1
d+ϵ In this subsection we prove part (c) of

Theorems 1.3 and 1.4. The proof consists of three
steps:

1. First, we prove a weaker version in which we
replace the requirement q ≥ p1−

1
d+ϵ with the

slightly stronger requirement q ≥ p1−
1

d+1+ϵ

to obtain the same conclusion. This step is
established in Proposition 2.4 below.

2. Second, we prove another weaker version in
which the requirement q ≥ p1−

1
d+ϵ of the the-

orem is preserved, but the conclusion is weak-
ened to piercing with p−q+O(logd(1/ϵ)) points
(instead of p − q + 2 points in the statement
of the theorem). This step is established in
Proposition 2.5 by an inductive bootstrapping
argument, with Proposition 2.4 as its basis.



3. Finally, we prove the full statement of part (c)
by another bootstrapping argument, combin-
ing the results of Steps 1 and 2.

Proposition 2.4. For any d and ϵ > 0, there
exists pd(ϵ) such that for all p > pd(ϵ) and all

q > p1−
1

d+1+ϵ, we have HDd(p, q) ≤ p− q + 2.

Proof. Let p, q satisfy the assumptions with p large
enough, and let F be a family of compact convex
sets in Rd that satisfies the (p, q)-property. We use
Observation 1.1 to distinguish two cases:

Case 1: F satisfies the (p−⌊ q
d−1⌋, (d−1)⌈ q

d⌉−d)-
property. By Proposition 2.3 (whose assumption
is clearly satisfied by F , when p is large enough),
this implies that F has a transversal of size

(p− ⌊ q

d− 1
⌋)− ((d− 1)⌈ q

d
⌉ − d)+

+O
(( p− ⌊ q

d−1⌋
(d− 1)⌈ q

d⌉ − d

)d

·

· logcd
3 log d

(
p− ⌊ q

d−1⌋
(d− 1)⌈ q

d⌉ − d

))
,

(2.2)

where c is a universal constant. Now, we have

(p− ⌊ q

d− 1
⌋)− ((d− 1)⌈ q

d
⌉ − d)

≤ p− q

d− 1
+ 1− (d− 1)

q

d
+ d

= p− q − q

d(d− 1)
+ d+ 1.

Hence, if we show that the O(·) term in (2.2) is
negligible with respect to q

d(d−1) , it will follow that

for a sufficiently large p, F has a transversal of size

less than p−q. And indeed, as q ≥ p
d

d+1+ϵ, we have

O
(( p− ⌊ q

d−1⌋
(d− 1)⌈ q

d⌉ − d

)d

·

· logcd
3 log d

(
p− ⌊ q

d−1⌋
(d− 1)⌈ q

d⌉ − d

))
≤ O

((
p

q

)d

logcd
3 log d

(
p

q

))

= Õ
(
p

d
d+1−dϵ

)
= o

(
q

d(d− 1)

)
,

as asserted.

Case 2: F contains a sub-family S of size p−
⌊ q
d−1⌋ without an intersecting ((d− 1)⌈ q

d⌉− d)-
tuple. Denote the maximal size of an intersecting
sub-family of S by (d−1)⌈ q

d⌉−t, for t > d. In such a

case, F \S satisfies the
(
⌊ q
d−1⌋, q − (d− 1)⌈ q

d⌉+ t
)

property. We claim that these parameters satisfy

the condition of Theorem 1.2. In our case, the
condition reads

(d− 1)⌊ q

d− 1
⌋ < d(q − (d− 1)⌈ q

d
⌉+ t− 1).

Thus, it is sufficient to show that q < qd − d(d −
1)( qd + 1) + dt− d. And indeed, we have

qd− d(d− 1)(
q

d
+ 1) + dt− d

= qd− q(d− 1)− d(d− 1) + dt− d

= q + d(t− d) > q,

where the last inequality holds since t > d. There-
fore, by the Hadwiger-Debrunner theorem, F \ S
can be pierced by

⌊ q

d− 1
⌋ −

(
q − (d− 1)⌈ q

d
⌉+ t

)
+ 1

points. As S can clearly be pierced by

(p− ⌊ q

d− 1
⌋)− ((d− 1)⌈ q

d
⌉ − t) + 1

points (by piercing its maximal intersecting sub-
family by a single point and each other element by
a separate point), F has a transversal of size(

⌊ q

d− 1
⌋ −

(
q − (d− 1)⌈ q

d
⌉+ t

)
+ 1

)
+

(
(p− ⌊ q

d− 1
⌋)− ((d− 1)⌈ q

d
⌉ − t) + 1

)
= p− q + 2.

This completes the proof of the proposition.

For the following propositions, we need an
additional notation.

Notation 2.1. We say that (p, q) are (k, ϵ̂)-close

if q > p
dk(d−1)

dk+1−1
+ϵ̂
.

Proposition 2.5. For any ϵ̂ > 0 and any k ∈ N,
there exists p2(ϵ̂, k) such that for all (p, q) that
are (k, ϵ̂)-close with p > p2, we have HDd(p, q) ≤
p− q + (k + 1).

Note that the proposition implies that if p is suf-
ficiently large and q ≥ p1−

1
d+ϵ then HDd(p, q) ≤

p − q + O(logd(1/ϵ)). We do not prove this impli-
cation, as in the sequel we will use the proposition
itself rather than this corollary.

Proof. For the sake of simplicity, we assume that all
quotients that we consider are integers. It is easily
seen that this is without loss of generality.

As for any q′ < q we have HDd(p, q) ≤ HDd(p, q
′),

it is sufficient to prove that for any sufficiently large
p and any

(2.3) p
dk(d−1)

dk+1−1
+ϵ̂

< q ≤ p
dk−1(d−1)

dk−1



we have HDd(p, q) ≤ p− q + (k + 1).
We prove this by induction on k. The case

k = 1 is exactly the assertion of Proposition 2.4.
Assume that the assertion holds for some k ≥ 1,
and let F be a family of compact convex sets in Rd

that satisfies the (p, q)-property, where

(2.4) p
dk+1(d−1)

dk+2−1
+ϵ̂

< q ≤ p
dk(d−1)

dk+1−1 .

We consider two cases.

Case 1: F satisfies the

(p− q
(1−λ)(dk+1−1)

dk(d−1) , q − q1−λ/2)

property, for a sufficiently small λ = λ(ϵ̂)
to be determined below. By Theorem 1.3(b)
(whose assumption is clearly satisfied by F), this
implies that F has a transversal of size

p−q
(1−λ)(dk+1−1)

dk(d−1) − q + q1−λ/2

+ Õ


p− q

(1−λ)(dk+1−1)

dk(d−1)

q − q1−λ/2

d
 .

(2.5)

For a sufficiently small λ (as function of d, k) we
have:

1. q1−λ/2 ≪ q
(1−λ)(dk+1−1)

dk(d−1) ,

2. q1−λ/2 ≪ q, and

3. q
(1−λ)(dk+1−1)

dk(d−1) ≪ p.

Hence, if we show that

(2.6) (p/q)d ≪ q
(1−λ)(dk+1−1)

dk(d−1) ,

it would follow that the Õ(·) term in (2.5) is
asymptotically negligible with respect to

q
(1−λ)(dk+1−1)

dk(d−1) − q1−λ/2,

and hence, for a sufficiently large p, F has a
transversal of size less than p − q + 2. To see that
Equation (2.6) holds, note that by (2.4),

pd

qdq
(1−λ)(dk+1−1)

dk(d−1)

≤

≤ q

d

dk+1(d−1)

dk+2−1
+ϵ̂

q
d+(1−λ) dk+1−1

dk(d−1)

=
q

d

dk+1(d−1)

dk+2−1
+ϵ̂

q
dk+2−1

dk(d−1)
−λ dk+1−1

dk(d−1)

.

In the last expression, the exponent of q in the

numerator is smaller than the first term dk+2−1
dk(d−1)

of the exponent in the denominator. Hence, for
λ sufficiently small as function of ϵ̂, d, k, the overall

exponent of q in the denominator is higher than the
exponent in the numerator, and thus the expression
tends to 0 as q → ∞, as asserted.

Case 2: F contains a sub-family S of size

p − q
(1−λ)(dk+1−1)

dk(d−1) without an intersecting (q −
q1−λ/2)-tuple, for λ determined in Case 1.
Denote the maximal size of an intersecting sub-
family of S by q − q1−λ/2 − t, for t ≥ 1. In such a
case, F \ S satisfies the(

q
(1−λ)(dk+1−1)

dk(d−1) , q1−λ/2 + t

)
property. It is easy to see that the pair(
q

(1−λ)(dk+1−1)

dk(d−1) , q1−λ/2 + t

)
is (k, λ/4)-close.

Hence, by the induction hypothesis, F \ S can be
pierced by

q
(1−λ)(dk+1−1)

dk(d−1) − q1−λ/2 − t+ k + 1

points. As S can clearly be pierced by

(p− q
(1−λ)(dk+1−1)

dk(d−1) )− (q − q1−λ/2 − t) + 1

points (by piercing its maximal intersecting sub-
family by a single point and each other element by
a separate point), F has a transversal of size(

q
(1−λ)(dk+1−1)

dk(d−1) − q1−λ/2 − t+ k + 1

)
+

(
(p− q

(1−λ)(dk+1−1)

dk(d−1) )− (q − q1−λ/2 − t) + 1

)
= p− q + (k + 2).

This completes the inductive proof.

Now we are ready to complete the proof of part
(c) of Theorems 1.3 and 1.4. Let us recall the
formulation of the result.

Theorem 1.3(c) For any ϵ > 0, there exists
p0(ϵ, d) such that for all p > p0 and all q ≥
p(d−1)/d+ϵ, we have p−q+1 ≤ HDd(p, q) ≤ p−q+2.

Proof. The proof repeats the argument of Propo-
sition 2.4, using Proposition 2.5 instead of Theo-
rem 1.3(b). We present the required changes, re-
ferring to the proof of Proposition 2.4 where no
changes are needed.

It is well-known that HDd(p, q) ≥ p − q + 1 for
all (p, q) (cf. [HD57]). Hence, we only have to
show HDd(p, q) ≤ p − q + 2. Let p, q satisfy the
assumptions (with p0 to be defined below), and let
F be a family of compact convex sets in Rd that
satisfies the (p, q)-property.



Case 1: F satisfies the (p−⌊ q
d−1⌋, (d−1)⌈ q

d⌉−d)
property. Let k be the unique integer such that

(2.7)
d− 1

d(dk+1 − 1)
< ϵ ≤ d− 1

d(dk − 1)
.

(We note that k ≈ logd(1/ϵ).) Denoting ϵ′ =
ϵ− d−1

d(dk+1−1)
, we have

q ≥ p
d−1
d +ϵ = p

d−1
d + d−1

d(dk+1−1)
+ϵ′

= p
dk(d−1)

dk+1−1
+ϵ′

,

and thus, for a sufficiently large p (as function of
d, ϵ′),

(d− 1)⌈ q
d
⌉ − d ≥ q

3
≥ p

dk(d−1)

dk+1−1
+ϵ′/2 ≥

≥ (p− ⌊ q

d− 1
⌋)

dk(d−1)

dk+1−1
+ϵ′/2

.

Hence, by Proposition 2.5, for p > p3(ϵ, k, d), F has
a transversal of size

(2.8) (p− ⌊ q

d− 1
⌋)− ((d− 1)⌈ q

d
⌉ − d) + (k + 1).

Therefore, similarly to the proof of Proposition 2.4,
if we show that the term k+1 in (2.8) is negligible
with respect to q

d(d−1) , it will follow that for a

sufficiently large p, F has a transversal of size less
than p − q. This clearly holds, as k depends only
on ϵ.

Case 2: F contains a sub-family S of size
p−⌊ q

d−1⌋ without an intersecting ((d−1)⌈ q
d⌉−

d)-tuple. The proof that in this case, F has a
transversal of size at most p− q + 2, is exactly the
same as in Proposition 2.4.

3 A (p, 2)-theorem

3.1 Proof of Theorem 1.5 We start with a
definition and two lemmas.

Definition 3.1. We call a finite family F of sets
exactly 2-intersecting if it is pairwise intersecting
but no 3 sets from F have a common element.

Lemma 3.1. Let F be a family of compact convex
sets in the plane satisfying the (p, 2) property and
having no exactly 2-intersecting subfamily of size k.
Then F satisfies the (p4k, 3)-property and thus has
a transversal of size O(k4p16).

Proof. The proof combines Theorem 1.4(a) and a
Ramsey argument for the intersection graph of con-
vex sets. Let R(i, j) be the minimum integer R
such that any family of R convex sets either has
a pairwise intersecting subset of cardinality i or
a pairwise disjoint subset of cardinality j. Lar-
man et al. [LMPT94] proved that R(i, j) ≤ ij4.
We show that F has the (R(k, p), 3)-property and
hence admits a transversal of size HD2(R(k, p), 3) =

O((R(k, p))4) = O(k4p16) by Theorem 1.4(a). In-
deed, consider a subfamily F ′ ⊂ F of R(k, p) sets.
By the definition of R, F ′ must contain either a
family of p sets such that no pair of them inter-
sect or a family S of k sets such that every pair
in S intersect. The former cannot happen by our
(p, 2) assumption for F . Hence, there exists a pair-
wise intersecting family S ⊂ F ′ of size k. By our
assumption, S is not exactly 2-intersecting, so we
find three intersecting elements of S. This com-
pletes the proof of the lemma.

Lemma 3.2. The union complexity of k ≥ 3 exactly
2-intersecting compact convex sets in the plane is at
least

(
k
2

)
.

Proof. We claim that the boundaries of each pair
of our sets intersect and that all these intersection
points are on the boundary of the union. The first
assertion holds as the sets are pairwise intersecting
and no set is contained in another one (we use
our assumption that k ≥ 3 here). The second
assertion holds as no three of our sets intersect, so
the intersections of the boundaries must lie outside
all the other sets.

Note that the lower bound in Lemma 3.2 is
tight for pairwise intersecting line segments in
general position. Using a recent result of Pach et
al. [PRT15] one can improve the

(
k
2

)
lower bound in

the lemma to (2−o(1))k2 for convex sets which are
not line segments. Consequently, the condition for
the union complexity in Theorem 1.5 can be made
similarly weaker for sets with nonempty interior.

Now we are ready to present the proof of
Theorem 1.5.

Proof. [Proof of Theorem 1.5] Let F be a fam-
ily that satisfies the assertion of the theorem.
By Lemma 3.2, F does not contain an exactly
2-intersecting subfamily of size k. Hence, by
Lemma 3.1, F has a transversal of size O(k4p16).
This completes the proof.

3.2 A constant factor approximation algo-
rithm of the max-clique for families with
bounded union complexity We need several
standard computational assumptions on the fam-
ily F , such as: Computing the intersection points
of any pair of boundaries of elements in F can be
done in constant time, etc.

The algorithm is very simple:

Max-Clique F :
Input: A finite family F with sub-quadratic union
complexity
Output: A subset F ′ ⊂ F of pairwise intersecting
sets.



1: Compute the arrangement A(F).
2: For every cell σ in A(F) find the subset Fσ ⊂ F

of sets in F containing σ.
3: Let σ0 be the cell for which |Fσ0 | is maximal.
4: Return Fσ0 .

Clearly, the output of the algorithm is indeed a
clique in the intersection graph of F . To assess the
performance of the algorithm, let S be the largest
clique in this graph. Clearly, S is a pairwise inter-
secting family (i.e., it satisfies the (2, 2)-property),
and thus has a constant size transversal T . One
of the points of T must be contained in at least
|S|/|T | sets of S, so for the corresponding cell σ
we have |Fσ| ≥ |S|/|T |. The algorithm outputs
the family Fσ0

with |Fσ0
| ≥ |Fσ| so it provides

a constant 1/|T |-approximation of the size of the
maximal clique.

4 Discussion

To put Theorem 1.3 into context, we compare it
with the previously known results in each of the
ranges of q.

For a very large q, Theorem 1.3(c) is almost tight,
leaving only two possible values for HDd(p, q). As
mentioned in the introduction, this is the first
“good” estimate of HDd(p, q) for any (p, q) outside
of the range covered by the Hadwiger-Debrunner
theorem. It would be interesting to verify which of
the two cases p − q + 1 or p − q + 2 is the correct
answer.

For a constant q, our upper bound (i.e., Õ(pd(
q−1
q−d )))

improves over the Alon-Kleitman Õ(pd
2+d) bound

already for d = 2, q = 3 (yielding O(p4) instead
of O(p6)). When q is a very large constant, the
exponent in our bound tends to d. Likewise, when
log p ≤ q ≤ p(d−1)/d, our bound is Õ((p/q)d).

It is worth noting that one cannot prove a
bound of the type HDd(p, q) = O((p/q)d) (and in
particular, HDd(p, q) = O(pd) for a fixed q) without
improving the bounds on f(ϵ, d) for weak ϵ-nets.
Indeed, fix d and ϵ. Assume for simplicity that
ϵ = 1/r for some integer r and put p = rq + 1. We
claim that

(4.9) f(1/r, d) ≤ HDd(p, q).

To see this, let S be a finite set in Rd and let F
be the family of all convex sets containing at least
|S|
r points of P . Note that any transversal for F
is a weak (1/r)-net for S. It is easily seen that
F satisfies the (p, q)-property and thus admits a
transversal of size HDd(p, q), which implies (4.9).
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