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Abstra
t

Answering a question of Alon, Ding, Oporowski and Vertigan [4℄, we show that there exists an

absolute 
onstant C su
h that every graph G with maximum degree 5 has a vertex partition into

2 parts, su
h that the subgraph indu
ed by ea
h part has no 
omponent of size greater than C.

We obtain similar results for partitioning graphs of given maximum degree into k parts (k > 2)

as well.

A related theorem is also proved about transversals indu
ing only small 
omponents in graphs

of a given maximum degree.

1 Introdu
tion

In this paper we are 
on
erned with �nding (large) indu
ed subgraphs of graphs of given maximum

degree, whi
h indu
e 
omponents of size independent of the size of the graph. We will 
onsider two

somewhat di�erent but related setups.

First, we aim at partitioning the vertex-set into �nitely many parts and require all parts to indu
e

small 
omponents. In the extreme 
ase, when the 
omponents are of size one, this formulation


orresponds to the usual proper 
oloring of graphs.

In the se
ond approa
h, we are given a partition of the vertex-set into large enough 
lasses and we

would like to sele
t a transversal (i.e. one vertex from ea
h 
lass) whi
h indu
es small 
omponents.

This setup is a generalization of a theorem from [10℄ 
on
erned with independent transversals, a topi


that has 
onne
tions to other areas of 
ombinatori
s su
h as graph 
olouring.

Let us formalize the above. For a graph G and a �xed k, what is the smallest C for whi
h

the vertex set of G 
an be partitioned into k parts, su
h that the subgraph indu
ed by ea
h part

has no 
omponents of size larger than C? As mentioned above, this question 
an be viewed as a

generalization of the 
lassi
al problem of 
oloring a graph, sin
e C = 1 would say pre
isely that
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G has 
hromati
 number at most k. The general goal is to �nd 
onditions on G that guarantee a


onstant C independent of n, the number of verti
es in G.

Earlier work on this subje
t [1, 2, 6, 11, 3, 8℄ mainly fo
used on more spe
i�
 questions 
on
erning

line graphs of 3-regular graphs. These investigations 
ulminated in [13℄, in whi
h Thomassen proved

that the edges of every 3-regular graph 
an be 2-
olored su
h that ea
h mono
hromati
 
omponent

is a path of length at most 5. Alon, Ding, Oporowski and Vertigan [4℄ proved a number of results

showing that C is independent of n under 
ertain 
onditions involving bounds on the tree-width and

maximum degree of G. In parti
ular, they proved that if G has maximum degree 4, and k is taken

to be 2, then C � 57. On the other hand, they give a family of 6-regular graphs for whi
h every

2-partition of the verti
es results in arbitrarily large 
omponents in one of the indu
ed subgraphs.

They therefore asked the following natural question [4, Question 2.4℄: is there a 
onstant C su
h

that every graph G with maximum degree 5 has a vertex partition into 2 parts, ea
h part indu
ing a

subgraph with no 
omponents of size greater than C? In Se
tion 2.1 we answer this question in the

aÆrmative. In Se
tion 2.2 we dis
uss the 2-partitioning of graphs of maximum degree 4, and show

that here C 
ould be 
hosen as small as 6. We also note that C must be at least 4; thus in this 
ase

it 
ould very well be feasible to determine the 
onstant C exa
tly.

As in [4℄, 2-partitioning theorems lead to partitioning results for 
ertain other values of k; these

appear in Se
tion 3. In Theorem 3.2, we show that it is possible to partition a graph G of maximum

degree at most 8 into 3 parts, su
h that ea
h part indu
es 
omponents of size at most an absolute


onstant C. There is a family of 10-regular graphs that do not admit su
h a 3-partition [4℄, so only

the 
ase of 9-regular graphs remains unde
ided. We also study the largest maximum degree �

k

whi
h still a

ommodates a k-partition into parts with bounded 
omponents. An asymptoti
 upper

bound of 4k was given in [4℄. In Theorem 3.5 we improve the asymptoti
 lower bound to (3 + Æ)k,

where Æ > 0 is a positive 
onstant.

In Se
tion 4 we 
onsider a related problem 
on
erning transversals that indu
e only 
omponents

of bounded size. In [10℄ it was shown that if the vertex set of a graph with maximum degree � is

partitioned into 
lasses of size at least 2�, then it is possible to 
hoose a set of verti
es, one from

ea
h 
lass, that is an independent set in G. Su
h a 
hoi
e of one vertex from ea
h 
lass is 
alled a

transversal of the partition. In Theorem 4.1 we generalize this result by showing that if ea
h 
lass

has size at least � + b�=r
 then there exists a transversal that indu
es in G a subgraph with all


omponents bounded in size by r.

Our dis
ussion leaves open a lot of threads. In Se
tion 5 we gather the numerous unresolved

problems.
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2 Partitioning into two parts

2.1 Graphs of maximum degree 5

Throughout this paper, by graph we will mean simple multigraph, i.e., we allow parallel edges but

we do not allow loops. For a graph H and a subset V

0

of its vertex set, HjV

0

denotes the subgraph

of H indu
ed by the verti
es of V

0

.

The main aim of this se
tion is to prove the following theorem.

Theorem 2.1 There exists an absolute 
onstant C su
h that the following holds. Let G be a graph

with maximum degree at most 5. Then there is a partition V

1

[ V

2

= V (G) of the vertex set of G,

su
h that for i = 1; 2, ea
h 
omponent of GjV

i

has at most C verti
es.

Before beginning the proof of Theorem 2.1, we �rst establish some properties about a spe
ial

family of vertex partitions that will be important in the proof. Let G be a graph with maximum

degree 5, and let (U

1

; U

2

) be a maximum 
ut of G (referred to as a max-
ut), i.e., a partition of the

vertex set of G into 
lasses U

1

, U

2

, su
h that the number of edges going between the two 
lasses

is maximized. In general, for any partition we will refer to these edges as the edges going a
ross,

or the 
rossing edges. Let G

0

= GjU

1

+ GjU

2

, and let C

1

; : : : ; C

s

be the 
omponents of G

0

. Let

W = fv 2 V (G) : d

G

0

(v) = 2g be the subset of those verti
es whose degree in G

0

(their G

0

-degree) is

exa
tly two. We denote by H the bipartite subgraph of G 
onsisting of the verti
es in W and the

edges of G going a
ross the partition (W \U

1

;W \U

2

). The vertex sets of the 
omponents of H will

be 
alled ladders. The following proposition 
olle
ts some simple but important fa
ts.

ladders2 W

2 E(H)2 E(G

0

)

Figure 1: Ladders and su
h...

Proposition 2.2 Using the above de�nitions, the following hold for any max-
ut (U

1

; U

2

).

(i) �(G

0

) � 2, so ea
h 
omponent C

i

is either a 
y
le or a path,

(ii) �(H) � 3,

(iii) any two H-neighbors of a vertex w 2W are adja
ent in G,
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(iv) for ea
h ladder L, L \ U

j


onsists of 
onse
utive elements of some (path or 
y
le) 
omponent

C

k

of G

0

, for ea
h j = 1; 2. Thus ladders, unless they 
onsists of one vertex, have nontrivial

interse
tion with exa
tly one 
omponent of ea
h side of the partition U

1

[ U

2

,

(v) if d

H

(w) = 3, and w 2 U

j

\ L for some ladder L, then U

3�j

\ L 
onsists only of the three

H-neighbors of w. Furthermore jLj � 6.

Proof.

(i) If the degree of a vertex in G

0

were at least 3, then putting the vertex into the other 
lass would

in
rease the number of edges going a
ross.

(ii) This follows immediately from the de�nition of the vertex set W of H and the fa
t that

�(G) � 5.

(iii) Suppose on the 
ontrary that w

0

; w

00

2 W are two H-neighbors of w that are not adja
ent in

G. Then swit
hing the 
lasses for w;w

0

; w

00

would in
rease the number of edges going a
ross

the partition.

(iv) Follows dire
tly from (i) and (iii).

(v) by (iii), the three H-neighbors of w need to form a triangle in G

0

, whi
h is already a 
omplete


omponent of G

0

. Thus U

j

\L 
an only 
ontain 2 more verti
es besides w, sin
e any vertex in

U

j

\ L is a neighbor of the neighbors of w, thus (again by (iii)) a neighbor of w in G

0

as well.

But w has only two G

0

-neighbors in U

j

. �

The above proposition shows that ladders 
an 
onsist of just a single vertex, a single edge going

a
ross the partition, or, typi
ally, stru
tures like the ones shown in Figure 1.

The next proposition shows that we 
an �nd a max-
ut that has no long ladders. We remark

that the 
onstant 13 
an be improved to 10 by a more detailed analysis, but as we do not strive for

the optimal 
onstant in Theorem 2.1 this formulation is suÆ
ient.

Proposition 2.3 Let G be a graph with �(G) � 5. Then there exists a max-
ut U = (U

1

; U

2

) of the

vertex set of G in whi
h ea
h ladder has size at most 13.

Proof. We say that a max-
ut U = (U

1

; U

2

) has property (M) if jW j is minimized. We �x a partition

U having property (M), whi
h minimizes the number

i(U) =

X

L

(jLj � 8);

where the summation extends over the ladders L of size greater than 8.

We assume U has a ladder of size 14 or more and 
onstru
t another partition

�

U 
ontradi
ting

the 
hoi
e of U . This 
ontradi
tion will prove the proposition.
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Let L be a ladder of size at least 14. By Proposition 2.2 (ii) and (v), �(HjL) � 2. So we 
an �nd

verti
es x

1

; : : : ; x

14

2 L su
h that x

i

is 
onne
ted in H to x

i+1

for i = 1; : : : ; 13. We may assume

x

i

2 U

1

for odd i and x

i

2 U

2

for even i. By Proposition 2.2 (iii) we have that x

i

and x

i+2

are

adja
ent in G (and thus also in G

0

) for i = 1; : : : ; 12.

We de�ne the partition

�

U = (

�

U

1

;

�

U

2

) by swit
hing x

7

and x

8

:

�

U

1

= (U

1

n fx

7

g) [ fx

8

g and

�

U

2

= (U

2

n fx

8

g) [ fx

7

g.

First note that the number of 
rossing edges in

�

U is at least the number of 
rossing edges in U .

Hen
e sin
e U is a max-
ut, so is

�

U , and Proposition 2.2 applies to

�

U as well. We denote by

�

W ,

�

G

0

and

�

H the analogues (for

�

U) of W , G

0

and H, respe
tively.

Note that the verti
es x

5

and x

10

have degree 1 in

�

G

0

, and therefore are not in

�

W . Sin
e U has

property (M), there must be at least two verti
es in

�

W nW . Besides the verti
es in W , the only

verti
es whi
h have a 
han
e to be
ome members of

�

W are the neighbors of the displa
ed verti
es x

7

and x

8

. Ea
h had four neighbors in W , so both must have a �fth one in

�

W nW . Let a 2 U

1

; b 2 U

2

be these neighbors of x

8

and x

7

, respe
tively. Note then that

�

U also has property (M). We then have

the following.

(1)

�

W \

�

U

1

= (W \ U

1

n fx

5

; x

7

g) [ fx

8

; ag,

(2)

�

W \

�

U

2

= (W \ U

2

n fx

8

; x

10

g) [ fx

7

; bg, and

(3) E(

�

H) = (E(H)nfx

4

x

5

; x

5

x

6

; x

6

x

7

; x

8

x

9

; x

9

x

10

; x

10

x

11

g)[fx

6

x

8

; x

7

x

9

g[E

0

, where E

0

denotes

the edges of

�

H in
ident with a or b.

x

1

x

3

x

5

x

7

x

9

x

13

x

11

a

b

x

4

x

6

x

8

x

10

x

12

x

14

x

2

Figure 2: Before...

b

x

7

x

1

x

3

x

5

x

9

x

13

x

11

a

x

8

x

2

x

4

x

6

x

10

x

12

x

14

Figure 3: ...and after

We 
all a ladder of size greater than 8 long.

Let

�

L be the ladder of

�

U 
ontaining x

7

(and thus x

8

). We 
laim that

�

L is not long. Indeed,

otherwise

�

Hj

�

L would be a path or a 
y
le by Proposition 2.2(ii) and (v) and it would extend by at

least three verti
es beyond at least one end of the path x

6

x

8

x

7

x

9

. By symmetry we may assume

it extends by at least three verti
es beyond x

9

. By (3) the next vertex must be b. By Proposition

2.2(iii) the vertex after that must be a

�

G

0

neighbor of x

9

, so (as x

8

is already in the path) it must

be x

11

. Again by (3) the next vertex must be x

12

. Now by Proposition 2.2(iii) b and x

12

must be
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onne
ted in G, so also in G

0

. Sin
e the only G

0

-neighbors of x

12

(x

10

and x

14

) are in W while b is

not, b 
annot be a neighbor of x

12

. This 
ontradi
tion proves the 
laim.

Now assume that the ladder

�

L

a

of

�

U 
ontaining a is long. Then x

8

=2

�

L

a

(otherwise we have

�

L

a

=

�

L) and thus by Proposition 2.2(iii) a must be the last or next-to-last vertex of the path

�

Hj

�

L

a

(as a has at most a single

�

G

0

neighbor in the same ladder). Similarly, if the ladder

�

L

b

of

�

U 
ontaining

b is long, then b must be the last or next-to-last vertex in the path

�

Hj

�

L

b

.

We now try to establish i(

�

U) < i(U) for a 
ontradi
tion. Let us 
onsider all the ladders of the

partition

�

U . By (3), all of these ladders, ex
ept

�

L,

�

L

a

and

�

L

b

, are either 
ontained in L or are also

ladders in the partition U . Ladders whi
h do not 
hange have equal 
ontribution to i(U) and i(

�

U).

The 
ontribution of

�

L to i(

�

U ) is zero (as it is not long). The 
ontribution of

�

L

a

(or

�

L

b

) to i(

�

U ) is at

most 2 more than the 
ontribution to i(U) of the U -ladders it 
ontains. Finally, the total 
ontribution

to i(

�

U ) of the

�

U -ladders 
ontained in L is at least 6 less than the 
ontribution of L to i(U), as the

six verti
es x

5

; x

6

; x

7

; x

8

; x

9

; x

10

2 L are not in a long ladder any more, and the 
ontribution of jLj

to i(U) is jLj � 8 � 6. We thus have

i(

�

U ) � i(U) + 2 � 2� 6 < i(U);

a 
ontradi
tion proving the Proposition. �

Besides Proposition 2.3, the other main ingredient in the proof of Theorem 2.1 will be the well-

known Lov�asz Lo
al Lemma from [9℄ (see also [5℄). The version of the Lo
al Lemma we use is as

follows. The 
onstant e below is the base of the natural logarithm.

Theorem 2.4 Let A

1

; : : : ; A

n

be events (usually 
alled bad events) in an arbitrary probability spa
e.

Suppose that for ea
h i, event A

i

is independent of the 
olle
tion of all but at most d of the other

events A

j

. If Pr(A

i

) � p for all 1 � i � n, and ep(d+ 1) � 1, then Pr(

V

n

i=1

�

A

i

) > 0.

We are now ready to prove the main theorem of this se
tion.

Proof of Theorem 2.1. Let a graph G with maximum degree 5 be given. By Proposition 2.3, we

may assume that V (G) has a max-
ut U = (U

1

; U

2

) su
h that ea
h ladder L has size at most 13 and

thus by Proposition 2.2(iv), jL \ U

j

j � 7 for j = 1; 2. Let W , G

0

, H, and C

1

; : : : ; C

s

be as de�ned

just before Proposition 2.2.

Our strategy is the following. We sele
t a set of ladders for whi
h we swit
h the sides of their

verti
es, in order to break up all the long 
omponents in G

0

. We sele
t ea
h ladder with a suitably


hosen probability p, the sele
tions being independent of ea
h other. These events are 
alled elemen-

tary events. The 
ru
ial observation is that by performing any number of ladder-swit
hes at on
e,

the verti
es of degree 2 in G

0

, that do not swit
h sides, do not re
eive any new neighbor. This is true

simply be
ause ea
h newly arriving vertex also had degree 2 in G

0

, and any degree-2 neighbors it

had on the opposite side of the partition were in the same ladder, so they also swit
hed sides. Thus,

in 
hoosing a swit
h that breaks up the large 
omponents of G

0

, we just need to take 
are that the

6



verti
es of degree at most 1 in G

0

do not join up a lot of 
omponents via the newly swit
hed verti
es.

This will be done by applying Theorem 2.4, with some suitably 
hosen \bad" events.

We begin by �xing a positive 
onstant p < 1 satisfying 56ep

2

(90d� log(56p

2

)=pe + 1) � 1, and

the 
onstant `

0

= d� log(56p

2

)=pe. Here and later in this paper, log refers to the natural logarithm.

The 
hoi
e p = 0:000003 is suitable. Next, we partition ea
h 
omponent C

i

of G

0

for whi
h C

i

\W

interse
ts at least 2`

0

ladders as follows. We partition these C

i

into 
onne
ted segments A

i

j

, su
h

that no ladder interse
ts more than one A

i

j

on either side U

1

and U

2

, and A

i

j

interse
ts a

i

j


onse
utive

ladders, where `

0

� a

i

j

< 2`

0

.

Let us de�ne the set of bad events we would like to avoid.

Bad event type (i). For ea
h segment A

i

j

, let E

i

j

be the event that no ladder of A

i

j

is pi
ked for

swit
hing. The probability of E

i

j

is (1 � p)

a

i

j

� (1 � p)

`

0

< e

�p`

0

. Hen
e by de�nition of `

0

we see

that Pr(E

i

j

) � 56p

2

.

Bad event type (ii). For any path 
omponent C

i

with endpoints u and v (if C

i

has length 0 then

u = v), let E

C

i

be the event that at least two ladders, 
ontaining a neighbor of u or v on the side of

the partition opposite to C

i

, are pi
ked for swit
hing. Suppose there are k ladders whi
h 
ontain a

neighbor of u or v. As �(G) � 5, k � 8. Then

Pr(E

i

j

) �

�

k

2

�

p

2

� 28p

2

:

Bad event type (iii). Finally, �x a numbering of the 
onse
utive ladders of ea
h 
omponent C

i

,

and de�ne the event F

i

j

su
h that the j

th

and (j + 1)

st

ladder of C

i

are both pi
ked for swit
hing.

The probability of F

i

j

is 
learly p

2

.

In order to estimate the parameter d in Theorem 2.4, we use the 
on
ept of a determining set.

The determining set of an event E is the minimum set D(E) of elementary events su
h that E is

independent of D(E). In general, an event E is mutually independent of the set of all events whose

determining sets are all disjoint from D(E).

From the de�nitions we see that D(E

i

j

) 
onsists of the a

i

j

elementary events 
orresponding to the

ladders interse
ting A

i

j

. The determining set D(E

C

i

) 
onsists of the elementary events 
orresponding

to ladders 
ontaining some neighbor of an endpoint of C

i

, so jD(E

C

i

)j � 8. Finally D(F

i

j

) 
onsists

of the two elementary events 
orresponding to the j

th

and (j+1)

st

ladders of 
omponent C

i

. On the

other hand, an elementary event E

M

, 
orresponding to a ladder M , is 
ontained in the determining

set of at most 2 bad events of type (i), the ones 
orresponding to segments 
ontaining its two sides.

Also, E

M

is 
ontained in the determining set of at most 4 bad events of type (iii), at most two on

ea
h side. Finally, M has at most 13 verti
es, ea
h of them is the neighbor of an endpoint of at

most 3 di�erent 
omponents of G

0

on the opposite side of the partition, so E

M

is 
ontained in the

determining set of at most 39 bad events of type (ii).

Thus for any bad event E, there are at most jD(E)j(2+39+4) bad events E

0

withD(E)\D(E

0

) 6=

;. This implies that ea
h bad event is independent of the set of all but 45jD(E)j � 90`

0

bad events.

7



Set d = 90`

0

.

We may now apply Theorem 2.4 to the set of bad events. Sin
e ea
h bad event o

urs with

probability at most 56p

2

, and 56ep

2

(d + 1) � 1 by de�nition of p, we 
on
lude that there exists a

sele
tion of ladders that 
an be swit
hed without 
ausing any bad event. Let us perform su
h a

swit
h, and denote the 
lasses of the resulting partition of G by V

1

and V

2

.

Claim 2.5 Ea
h 
omponent in GjV

1

or GjV

2

has at most 588`

0

+ 7 verti
es.

Proof. Let us stop for a se
ond in the middle of the swit
h, after the verti
es of the 
hosen ladders

were removed from their respe
tive sides, but were not yet pla
ed on the other. Sin
e there are no

bad events of type (i), ea
h large 
omponent C

i

is broken into pie
es by the removal of a ladder from

ea
h of its segments A

i

j

interse
ting at most 2`

0

ladders. So at most 28`

0

verti
es 
ould stay together

from an old 
omponent C

i

, sin
e ea
h ladder 
ontributes at most 7 verti
es.

Now new verti
es are 
oming over from the other side by the swit
h. Sin
e there are no bad

events of type (iii), no two 
onse
utive ladders arrive, thus the verti
es 
oming from the other side

arrive in 
omponents of size at most 7.

We still have to make sure that not too many \old" and \newly arrived" 
omponents sti
k

together. As we noted earlier, if a vertex of G

0

of degree 2 does not swit
h sides, then it does not

re
eive any new neighbors. So old and new 
omponents 
an sti
k together only through a vertex of

an old 
omponent whose degree in G

0

was at most 1 (it was the endpoint of a path 
omponent of G

0

).

As there are no bad events of type (ii), at most 1 new ladder is 
onne
ted to any old 
omponent. One

new ladder brings at most 7 verti
es, ea
h of whi
h 
an be 
onne
ted to at most 3 old 
omponents,

thus at most 7 + 21 � 28`

0

verti
es sti
k together for a 
omponent within a 
lass V

i

. �

This �nishes the proof of Theorem 2.1. �

Remark In the proof of Theorem 2.1 we do not attempt to obtain the smallest possible value of C.

By making more 
areful estimates, and using Theorem 4.1 with r = 1 instead of Theorem 2.4, one


an show that C � 17617. However, as this value is almost 
ertainly very far from being optimal,

we do not in
lude the details here.

2.2 Graphs of maximum degree 4

In this subse
tion we improve, from 57 to 6, the maximum size of the 
omponents one 
an guarantee

when 2-partitioning graphs of maximum degree 4. Our argument depends on the following useful

lemma about partitioning a pair of graphs on the same set of verti
es. This same lemma will be

applied also in Se
tion 4 to obtain a result on transversals that indu
e only small 
omponents.

Lemma 2.6 Let G

1

and G

2

be graphs with maximum degree at most 2 on the same vertex set X.

Then there exists a partition of X into two parts, X

1

and X

2

, su
h that for ea
h i 2 f1; 2g we have

�(G

i

jX

i

) � 1.
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Proof. First we assign an arbitrary orientation to ea
h path or 
y
le in G

1

and G

2

, so from now

on we 
onsider them as dire
ted graphs. We denote by v

+

i

and v

�

i

the out-neighbor and in-neighbor

of v in G

i

respe
tively, if they exist. We 
onstru
t the partition one vertex at a time, beginning by

pla
ing an arbitrary vertex in X

1

. We never remove a vertex from its part of the partition on
e it

has been pla
ed. In general, after having pla
ed a vertex v in X

i

we do the following.

(a) If v

+

i

exists and is not already pla
ed, we pla
e it in X

3�i

.

(b) Otherwise if v

�

i

exists and is not pla
ed yet, we pla
e v

�

i

in X

3�i

.

(
) If neither (a) nor (b) applies, we sele
t an arbitrary unpla
ed vertex and pla
e it in X

1

.

We 
laim that this pro
edure produ
es a partition X

1

[ X

2

with the desired property. To see

this, �rst suppose on the 
ontrary that three distin
t 
onse
utive verti
es x, y, and z in G

i

are all

pla
ed in part X

i

of the partition, where y = x

+

i

and z = y

+

i

. Then by the 
onstru
tion, the �rst

vertex of fx; y; zg to be pla
ed in X

i

must have been z, otherwise by (a) the very next step would

have been to pla
e y or z in X

3�i

. For the same reason, the next to be pla
ed in X

i

was y. But

then at this point z = y

+

i

is already pla
ed, so the next step is to pla
e x in X

3�i

, 
ontradi
ting our

assumption.

Now suppose that x and y are the two verti
es of a two-vertex 
y
le in G

i

. Then without loss of

generality, x is pla
ed in X

i

�rst. But then by (a), the next step is to pla
e y = x

+

i

in X

3�i

. This


ompletes the proof of the lemma. �

We are now ready to turn to the main result of this subse
tion.

Theorem 2.7 Let G be a graph with maximum degree 4. Then the vertex set of G 
an be partitioned

into two parts V

1

[ V

2

= V (G) su
h that ea
h part indu
es 
omponents of size at most 6.

Proof. Let us start with a max-
ut U

1

[W

2

= V (G), with the additional property that it has the

minimum number of verti
es in U

1

.

Let G

1

= GjU

1

and G

0

2

= GjW

2

. Sin
e the number of edges going a
ross is maximum, every

vertex has degree at most 2 in ea
h of G

1

and G

0

2

. The minimality of jU

1

j implies that G

1

has

maximum degree at most one as swit
hing a degree 2 vertex of G

1

over to W

2

does not a�e
t the

number of edges going a
ross.

Let S be a maximum size independent set of degree 2 verti
es of G

0

2

, and let us de�ne U

2

=W

2

nS,

W

1

= U

1

[ S, G

2

= GjU

2

and G

0

1

= GjW

1

. Clearly, every element of S has degree (at most) 2 in G

0

1

and the partition (W

1

; U

2

) is also a max-
ut. So G

0

1

has maximum degree at most two. The set S is

a maximum size independent set of the degree 2 verti
es of G

0

1

be
ause if S

0

is another independent

set, then (W

1

n S

0

; U

2

[ S

0

) is another max-
ut of V (G), so jW

1

n S

0

j � jU

1

j. By the 
hoi
e of S, G

2

has maximum degree at most one.

Thus G

1

and G

2


onsist of disjoint edges and verti
es, while G

0

1

and G

0

2

are the disjoint union of


y
les and paths (possibly of length 0).

9



Our strategy is to split S between the two sides using Lemma 2.6.

We de�ne the auxiliary graphs H

i

for i = 1; 2 on the vertex set S by letting two verti
es of S be

adja
ent in H

i

if they are at distan
e 2 or 3 in G

0

i

. We have �(H

i

) � 2 as S is an independent set

of the graph G

0

i

and �(G

0

i

) � 2.

We now apply Lemma 2.6 to H

1

andH

2

to obtain a partitionX

1

[X

2

of S for whi
h �(H

i

jX

i

) � 1

for i = 1; 2. We let the 
lasses of the �nal partition be V

i

= U

i

[X

i

for i = 1; 2. Noti
e that V

i

�W

i

,

and sin
e W

i

spans the graph G

0

i

of maximum degree at most 2, ea
h 
onne
ted 
omponent of the

graph GjV

i

is a path or a 
y
le. Suppose su
h a 
omponent D is of size 7 or more. As S is a maximum

size independent subset of the degree two verti
es of G

0

i

, it must 
ontain at least three verti
es of D.

To be in D � V

i

all of these verti
es must be in X

i

and they are in a 
onne
ted 
omponent of H

i

jX

i


ontradi
ting the 
hoi
e of X

i

. The 
ontradi
tion proves that all 
omponents of GjV

i

are of size 6 or

less, as 
laimed. �

Remark Even the improved bound on the 
omponent size in Theorem 2.7 is not known to be

optimal. The 
omplement of the seven-
y
le shows that the same statement with 
omponent size

less than four is false. It is a 4-regular graph, and one 
an easily verify that any subset of the verti
es

of size four or more span a 
onne
ted subgraph.

3 Partitioning into several parts

In this se
tion we dis
uss a problem analogous to the one 
onsidered in Theorem 2.1, but now we

partition the verti
es into more than two parts. In several 
ases we utilize ideas from [4℄. We also

need the following partitioning result of Lov�asz [12℄.

Theorem 3.1 Let G be a graph and let k

1

; : : : ; k

m

be non-negative integers su
h that k

1

+ : : :+k

m

�

�(G)�m+ 1. Then V (G) has a partition V

1

[ : : : [ V

m

su
h that �(GjV

i

) � k

i

for ea
h i.

Our �rst result is the analogue of Theorem 2.1 for partitioning into 3 parts.

Theorem 3.2 There exists a 
onstant C

0

su
h that the vertex set of any graph of maximum degree

at most 8 
an be 3-partitioned su
h that ea
h part spans subgraphs with 
omponents of size at most

C

0

.

Proof. Let G be a graph of maximum degree at most 8. Using Theorem 3.1, we partition the vertex

set of G into two parts U

1

[U

2

= V (G) su
h that �(GjU

1

) � 5 and �(GjU

2

) � 2. By Theorem 2.1,

U

1


an be partitioned into two parts U

1

= V

1

[W , ea
h spanning 
omponents of size bounded by

the 
onstant C guaranteed by the theorem. As in [4℄, we apply Theorem 4.1 with r = 1 (this spe
ial


ase is from [10℄) to get rid of the long paths and 
y
les in U

2

. We de�ne an auxiliary graph H on

the vertex set U

2

, by 
onne
ting two verti
es with an edge if they are adja
ent in G or 
onne
ted to

the same 
omponent of GjW . Clearly, �(H) � 64C. We split ea
h 
omponent of GjU

2

into pairwise

10



disjoint path-segments of length 128C, su
h that in any 
omponent at most 128C verti
es are not


overed by these segments. By Theorem 4.1, there exists a transversal T of the segments whi
h is

an independent set of H. We de�ne the 
lasses of the 3-partition of V (G) to be V

1

, V

2

=W [ T and

V

3

= U

2

n T . Observe that all 
omponents of GjV

2

are of size at most 8C +1, sin
e T is independent

in H. The 
omponents of GjV

3

are of size less than 384C, sin
e T is a transversal of the above

de�ned segment-partition. As all 
omponents of GjV

1

are of size at most C, the theorem is proved

with 
onstant C

0

= 384C. �

In [4℄ it is proved that every graph with maximum degree � 
an be partitioned into d(�+ 2)=3e


lasses, su
h that ea
h 
lass has 
omponents of size at most f(�). In the following we slightly

improve this result in two ways. On one hand we show that d(� + 1)=3e 
lasses suÆ
e for any �,

and that only (1=3� �)� 
lasses are needed for suitably large values of �, where � is a small positive


onstant. On the other hand for these results we obtain partitions where the size of the 
omponents

is independent of �.

In general, our next theorem 
ontains a slightly weaker statement than its follow-up, but besides

being instru
tional, it provides a stronger result for small values of �.

Theorem 3.3 There exists a 
onstant C

0

su
h that the following holds. Let G be a graph of maximum

degree �. Then it is possible to d(� + 1)=3e-partition the vertex set su
h that ea
h part spans


omponents of size at most C

0

.

Proof. First suppose d(� + 1)=3e = 2k is even.

Let us partition the vertex set into k 
lasses V

1

[ : : :[V

k

= V (G), su
h that the number of edges

going within the 
lasses is minimized. As � � 6k � 1 the maximum degree of the graph GjV

i

is at

most 5 for every i = 1; : : : ; k. By Theorem 2.1 ea
h V

i


an be separated into two parts V

0

i

[V

00

i

= V

i

,

su
h that both parts indu
e graphs with largest 
omponent size bounded by C, where C is as in

Theorem 2.1.

Thus [

k

i=1

(V

0

i

[ V

00

i

) is an appropriate partition into 2k 
lasses.

Next we 
onsider the 
ase when d(�+1)=3e = 2k+1 is odd. Let us partition the vertex set into

k 
lasses V

1

[ : : : [ V

k

= V (G), su
h that �(GjV

i

) � 5 for i = 1; : : : ; k � 1 and �(GjV

k

) � 8. Su
h

a partition exists by Theorem 3.1. Now we use Theorem 3.2 to 3-partition V

k

and Theorem 2.1 to

2-partition ea
h of the other 
lasses. Then all 
omponents spanned by any of the resulting 2k + 1

parts are bounded in size by the 
onstant from Theorems 2.1 or 3.2. �

In order to improve on the 
onstant multiplier 1=3 of �, �rst we show that in fa
t, for large k,

any 6k-regular graph 
an be partitioned into 2k parts with bounded size 
omponents.

Theorem 3.4 There exist 
onstants K and C

00

su
h that the following holds. Let G be a graph with

maximum degree at most 6k, k � K. Then it is possible to 2k-partition the vertex set su
h that ea
h

part 
ontains 
omponents of size at most C

00

.
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Proof. We 
hoose C as in Theorem 2.1 and set K = 450C

3

and C

00

= 6C + 1. Let us start again

with a partition into k 
lasses V

1

[ : : : [ V

k

= V (G), su
h that the number of edges going within the


lasses is minimized. Now we 
annot say that the maximum degree of ea
h graph GjV

i

is at most 5

for every i = 1; : : : ; k; there 
ould be some verti
es whose degree within their 
lass is six. Let M be

the set of these verti
es. By 
hoosing our partition su
h that jV

k

j is maximal, we 
an assume that

all of M is 
ontained in V

k

. (A vertex v 2M has exa
tly six neighbors in ea
h 
lass, so it 
ould be

moved to V

k

without in
reasing the number of edges within the 
lasses.) Therefore �(GjV

i

) � 5 for

i = 1; : : : ; k � 1.

Let W �M be a maximum independent set in GjM . Clearly, Gj(V

k

nW ) has maximum degree

at most 5. By Theorem 2.1 ea
h V

i

, i = 1; : : : ; k � 1, and V

k

nW 
an be partitioned into two parts

V

0

i

and V

00

i

, and respe
tively V

0

k

and V

00

k

su
h that all GjV

0

i

and GjV

00

i

have 
omponents bounded by

C.

Our goal is to distribute the verti
es of W among these 2k 
lasses, su
h that they don't glue

too many existing 
omponents together. We put ea
h vertex into a 
ertain 
lass with probability

p = 1=(2k), the 
hoi
es for distin
t verti
es being mutually independent.

One vertex v 2W has at most 6 neighbors in a 
lass, so it 
an glue together at most 6 
omponents

in that 
lass. Thus if we 
an make sure that no 
omponent re
eives more than 1 neighbor, after W

is distributed the largest 
omponent in ea
h 
lass will have size at most 6C + 1. It is important to

note here that the verti
es arriving from W are independent, so arrive in 
omponents of size 1.

We plan to use the Lov�asz Lo
al Lemma, Theorem 2.4. For ea
h 
omponent F of GjV

0

i

or GjV

00

i

we de�ne a bad event E

F

: that at least two neighbors of verti
es of F from W are put in the 
lass

of F . Suppose there are f neighbors of the verti
es of F in W . Then Pr(E

F

) �

�

f

2

�

p

2

.

An event E

F

is independent of the set of all events E

F

0

where F and F

0

have no 
ommon neighbor

inW . A vertex u 2 F with degree d

u

within its 
lass V

i

, has at most 6�d

u

neighbors inW . Otherwise

moving these neighbors into V

i

would in
rease d

u

above 6, implying that the number of edges within

the 
lasses is not minimal (the moving of a subset of W does not 
hange that; again independen
e

of W is 
riti
al). Thus F has at most 6C neighbors in W , ea
h of those possibly having 6k� 1 other

adja
ent 
omponents F

0

. Therefore the parameter d in Theorem 2.4 
an be taken to be d = 36kC�6.

By Theorem 2.4, if e(36kC � 5)

�

f

2

�

p

2

< 1, then with positive probability none of the bad events

happen. In parti
ular there is an assigment of the verti
es ofW to the 
lasses, su
h that no 
omponent

larger than 6C + 1 is 
reated. Sin
e f � 6C the above 
ondition is satis�ed. This 
ompletes the

proof. �

Theorem 3.5 There exist 
onstants � > 0, C

00

and �

0

su
h that the following holds. Every graph

G of maximum degree � � �

0


an be partitioned into �(1=3� �) 
lasses, su
h that ea
h 
lass spans

a graph with 
omponents bounded by C

00

.

Proof. LetK and C

00

be the 
onstants 
laimed by the pre
eding theorem. Let t = d(�+1)=(6K+1)e.

Partition V (G) into t parts U

1

; : : : ; U

t

su
h that the number of edges going within the 
lasses is

12



minimal. Then ea
h graph GjU

i

is of maximum degree at most 6K. By the previous theorem we


an partition it into 2K parts su
h that ea
h part spans a graph with maximum 
omponent size at

most C

00

. This therefore gives an appropriate partitioning into

2Kt <

2K

6K + 1

�+ 2K

parts. Thus � = 1=(36K + 6) and �

0

= 200K

2

are appropriate 
hoi
es. �

Remark Let us say that that degree � allows d-partitioning if the following is true: There is a


onstant C su
h that the verti
es of any graph of maximum degree at most � 
an be d-partitioned

with ea
h part spanning 
omponents of size at most C. The idea of the previous proofs easily

generalizes to the following. If degree � allows d-partitioning, then degree k(� + 1) � 1 allows

kd-partitioning for any k � 1 and degree k(� + 1) allows kd-partitioning for large enough k.

4 Transversals indu
ing bounded size 
omponents

For a vertex v, we denote by C(v;H) the 
onne
ted 
omponent of v in the graph H. Whenever there

is no ambiguity about the base graph, we write C(v; V

0

) instead of C(v;HjV

0

[ fvg).

Let G be a graph and let P be a partition of V (G) into sets V

1

; : : : ; V

m

. A transversal of P is

a subset fv

1

; : : : ; v

m

g of V (G) for whi
h v

i

2 V

i

for ea
h i. In this se
tion we are 
on
erned with

the problem of �nding transversals T with the property that GjT has only small 
omponents. The

following theorem was proved for 
omponent size r = 1 in [10℄. Here we prove a generalization for

arbitrary r.

Theorem 4.1 Let r; d be arbitrary positive integers. Let G be a graph of maximum degree d, and

let P be a partition V

1

[ : : :[ V

m

= V (G) of V (G) su
h that jV

i

j � d+ bd=r
 for i = 1; : : : ;m. Then

there exists a transversal T of P su
h that the indu
ed subgraph GjT has 
omponents of size at most

r.

Proof. Let T

0

be a maximal size partial transversal of P su
h that all 
omponents of GjT

0

have size

at most r. We assume for 
ontradi
tion that T

0

is not a 
omplete transversal. Let T be the set of

partial transversals T of P whi
h span only 
omponents of size at most r and satisfy jT\V

i

j = jT

0

\V

i

j

for i = 1; : : : ;m.

We 
all a pair (W;T ) with T 2 T and W � V (G) n T feasible if

(a) the sets C(v; T ) are pairwise disjoint for v 2W and ea
h of them is of size at least r + 1, and

(b) there is no v

0

2 W and T

0

2 T with T

0

\ W = ; su
h that jC(v

0

; T

0

)j < jC(v

0

; T )j and

C(v; T

0

) = C(v; T ) for every v 2W n fv

0

g.

13



Clearly, (;; T

0

) is feasible. We 
hoose a feasible pair (W;T ) with jW j being maximal. Our goal

is to 
onstru
t another feasible pair 
ontradi
ting the maximality of jW j and by this 
ontradi
tion

proving the theorem.

We let H = [

v2W

C(v; T ) and S = fj 2 [m℄ : V

j

\ T � Hg. By (a) we have jHj � (r + 1)jW j.

Ea
h vertex in H nW is in T , thus we have jSj > jHj � jW j. (The stri
t inequality follows from

our assumption that T is not a 
omplete transversal of P, sin
e S 
ontains ea
h index i 2 [m℄ with

V

i

\ T = ;.)

We 
laim that there exists a vertex v

0

2 [

i2S

V

i

n H that is not 
onne
ted to any vertex in H.

We prove this by simple 
ounting of the number of possible 
hoi
es for v

0

and the number of verti
es

ex
luded by being neighbors of some verti
es in H. The number of 
hoi
es is j [

i2S

V

i

nHj � jSj(d+

bd=r
)� jHj > (jHj � jW j)(d+ bd=r
)� jHj. Ea
h vertex in H has at most d neighbors to ex
lude.

But GjH 
onsists of at most jW j 
onne
ted 
omponents, so there are at least jHj�jW j edges between

verti
es of H. These edges 
ontribute to the degree of verti
es in H, but they do not ex
lude any

verti
es to be 
onsidered as v

0

. The number of ex
luded verti
es is thus at most djHj�2(jHj� jW j).

To 
on
lude the proof of this 
laim we need (jHj � jW j)(d + bd=r
) � jHj � djHj � 2(jHj � jW j),

whi
h follows from simple rearrangement of the inequality jHj � (r + 1)jW j. Note that v

0

=2 T by

de�nition of S.

We now 
hoose the partial transversal T

0

that minimizes jC(v

0

; T

0

)j, among all partial transversals

T

0

2 T satisfying T

0

\ (W [ fv

0

g) = ; and C(v; T

0

) = C(v; T ) for all v 2 W . (Noti
e that we are


hoosing from a nonempty set, as T is a partial transversal satisfying these properties.) We 
laim

that (W [ fv

0

g; T

0

) is a feasible pair, 
ontradi
ting the 
hoi
e of (W;T ).

For 
ondition (a), 
onsider the sets C(v; T

0

) = C(v; T ) for v 2W ; these are pairwise disjoint and

of size at least r+ 1. The last set C(v

0

; T

0

) is disjoint from any set C(v; T

0

) (v 2W ), as otherwise a

neighbor of v

0

would be in C(v; T

0

) � H. Now assume for 
ontradi
tion that jC(v

0

; T

0

)j � r. Let V

i

be the 
lass in partition P that 
ontains v

0

. If V

i

\ T

0

= ; then T

0

[ fv

0

g is a partial transversal of P

spanning 
omponents of size at most r, 
ontradi
ting the maximality of T

0

. Otherwise V

i

\ T

0

6= ;,

and hen
e V

i

\T 6= ;. Sin
e i 2 S, we must have V

i

\T = fug with some vertex u 2 C(w; T ) for some

w 2W (see Figure 4). Sin
e C(w; T

0

) = C(w; T ), and w =2 T

0

, we see that T

0

\C(w; T ) = T \C(w; T )

so we also have u 2 T

0

. Therefore T

00

= (T

0

nfug)[fv

0

g is a partial transversal in T . Sin
e v

0

does not

have neighbors inH we get that C(v; T

00

) = C(v; T ) for all v 2W nfwg and C(w; T

00

) � C(w; T )nfug.

This 
ontradi
ts property (b) of the feasibility of (W;T ) and thus proves property (a) of the feasibility

of (W [ fv

0

g; T

0

).

Finally, for 
ondition (b) in the de�nition of feasibility of (W [ fv

0

g; T

0

) noti
e that for v

0

2 W

this 
ondition simply follows from the 
orresponding 
ondition of the feasibility of (W;T ). For v

0

= v

0

the 
ondition follows from the 
hoi
e of T

0

.

The 
ontradi
tion of the feasibility of (W [ fv

0

g; T

0

) with the maximality of (W;T ) implies the

theorem. �
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Figure 4: A feasible pair extremum?

We state the r = d+ 1 spe
ial 
ase of the above result separately:

Corollary 4.2 Let G be a graph of maximum degree d. Let V

1

[ : : : [ V

k

= V (G) be a partition of

the vertex set into subsets with jV

i

j � d for ea
h i. Then it is possible to 
hoose a transversal T su
h

that GjT has 
omponents of size at most d+ 1.

The above 
orollary is optimal in terms of the 
lass size. No upper bound 
an be given on the


omponent size of a transversal if the 
lasses are size d � 1. This 
an be seen by 
onsidering the


omplete (d � 1)-ary tree H with root w. Partition the vertex set of H n fwg by letting the sets of

d � 1 sibling verti
es be the 
lasses. This way the largest 
onne
ted 
omponent in any transversal

will be the depth of the tree, whi
h 
an be arbitrarily large.

We remark however that the above 
orollary is probably not optimal in the 
omponent size.

Indeed, the following 
orollary tells us that in the spe
ial 
ase d = 2 one 
an have 
omponents of

size at most 2. We do not know if a similar statement limiting the 
omponent size by 2 instead of

d+ 1 holds for larger d.

Corollary 4.3 Let G be graph with maximum degree at most 2 with its vertex set partitioned into

2-element subsets. Then it is possible to sele
t a transversal T of this partition su
h that �(GjT ) � 1.

Proof. Apply Lemma 2.6 to the graphs G

1

= G and G

2


onstru
ted on the same vertex set V (G) by

pla
ing two parallel edges between ea
h pair of verti
es belonging to the same set V

i

. The resulting

15



set X

1

satis�es �(GjX

1

) � 1 and X

1


ontains at least one vertex from ea
h set V

i

. Taking one vertex

from ea
h V

i

\X

1

gives a transversal of the required type. �

5 Remarks and Open Problems

1. Theorem 4.1 leads us to the following question. For a �xed degree d and 
omponent size r, let

us de�ne p(d; r) to be the smallest integer su
h that any d-regular graph partitioned into 
lasses of

size at least p(d; r) has a transversal that spans only 
omponents of size at most r. In Se
tion 4 we

showed d � p(d; r) � d + bd=r
. Tight results are known for r = 1 [7, 14℄, when p(d; 1) = 2d. We

also have p(2; 2) = 2 by Corollary 4.3. Right now it is even possible that p(d; 2) = d for all d. Any

asymptoti
 tightening of the gap between the upper and lower bounds would be very interesting.

The smallest unknown 
ase is p(3; 2); that is, how big must the partition 
lasses of a 3-regular graph

be, to guarantee the existen
e of a transversal that spans at most a mat
hing? The answer is either

3 or 4.

2. With a more detailed analysis we 
an prove a maximum 
omponent size C = 17617 in Theorem 2.1,

but it is de�nitely far from the truth. The determination of the smallest possible su
h C would be of

interest but might be out of rea
h. Not so for Theorem 2.7; there the required maximum 
omponent

size is between 4 and 6.

3. There are lots of questions 
on
erning the partitioning of graphs into more than two parts. The

most general one is to determine for every �xed k the largest maximum degree �

k

, su
h that every

graph with maximum degree �

k


an be partitioned into k parts, where ea
h part spans 
omponents

of size bounded by a 
onstant. In Se
tion 2 we proved �

2

= 5. As shown in [4℄, �

k

< 4k � 2 for

any k, while for large enough k Theorem 3.5 implies (3 + Æ)k < �

k

with a positive 
onstant Æ > 0.

It would be of great interest to determine �

k

asymptoti
ally.

The smallest unknown 
ase is interesting in its own right: we don't know whether �

3

is 8 or 9.

In other words, is it possible to 
olor the vertex set of a graph with maximum degree 9 by three


olors su
h that every mono
hromati
 
omponent is bounded by a 
onstant?

4. In the following we de�ne a density version of the results of Se
tion 2. We intend to weaken

the maximum degree 
ondition by bounding the density of the graph, whi
h allows a few very large

degree verti
es. We �nd this question interesting but 
an only show modest results.

Let �(G) = maxfjE(GjW )j=jW j : W � V (G)g. We raise the problem of determining the

supremum value �, su
h that every graph G with �(G) < � has a partition into two parts spanning


omponents of bounded size. Here we 
an only show that 1 � � � 2.

To see the upper bound, 
onsider the following 
onstru
tion. Let n � 1 and let A

n

be the graph

with 2n + 1 verti
es and 4n � 1 edges, su
h that two verti
es of A

n

have degree 2n. Noti
e that

whenever we 2-partition the vertex set of A

n

su
h that ea
h part spans 
omponents of size at most

n, the two full-degree verti
es must be pla
ed in the same part. Now 
onsider the graph B

n

that

is the union of n isomorphi
 
opies of A

n

sharing a single 
ommon vertex x that has full degree
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in ea
h of the graphs. Noti
e that �(B

n

) < 2 for all n. If the vertex set of B

n

is 2-partitioned

then either one part spans a 
onne
ted 
omponent of size more than n of a 
opy of A

n

, or the part


ontaining x 
ontains the other n high-degree verti
es and they form a 
omponent of size greater

than n. Therefore � � 2.

For the lower bound, we 
laim that if �(G) � 1, then G 
an be 2-partitioned, V

1

[ V

2

= V (G),

su
h that for i = 1; 2, ea
h 
omponent of GjV

i

has at most 2 verti
es. Indeed, by the density 
ondition

ea
h 
omponent of G is a tree or has unique 
y
le. Therefore it is possible to remove a mat
hing M

from G, su
h that G�M is bipartite. Then G�M 
ould be two-partitioned into two independent

sets. Adding ba
k the edges of the mat
hing will 
reate 
omponents of size at most two.

Similar problems 
ould be raised for partitioning into k parts, k > 2, as well.
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