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Abstrat

Answering a question of Alon, Ding, Oporowski and Vertigan [4℄, we show that there exists an

absolute onstant C suh that every graph G with maximum degree 5 has a vertex partition into

2 parts, suh that the subgraph indued by eah part has no omponent of size greater than C.

We obtain similar results for partitioning graphs of given maximum degree into k parts (k > 2)

as well.

A related theorem is also proved about transversals induing only small omponents in graphs

of a given maximum degree.

1 Introdution

In this paper we are onerned with �nding (large) indued subgraphs of graphs of given maximum

degree, whih indue omponents of size independent of the size of the graph. We will onsider two

somewhat di�erent but related setups.

First, we aim at partitioning the vertex-set into �nitely many parts and require all parts to indue

small omponents. In the extreme ase, when the omponents are of size one, this formulation

orresponds to the usual proper oloring of graphs.

In the seond approah, we are given a partition of the vertex-set into large enough lasses and we

would like to selet a transversal (i.e. one vertex from eah lass) whih indues small omponents.

This setup is a generalization of a theorem from [10℄ onerned with independent transversals, a topi

that has onnetions to other areas of ombinatoris suh as graph olouring.

Let us formalize the above. For a graph G and a �xed k, what is the smallest C for whih

the vertex set of G an be partitioned into k parts, suh that the subgraph indued by eah part

has no omponents of size larger than C? As mentioned above, this question an be viewed as a

generalization of the lassial problem of oloring a graph, sine C = 1 would say preisely that
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G has hromati number at most k. The general goal is to �nd onditions on G that guarantee a

onstant C independent of n, the number of verties in G.

Earlier work on this subjet [1, 2, 6, 11, 3, 8℄ mainly foused on more spei� questions onerning

line graphs of 3-regular graphs. These investigations ulminated in [13℄, in whih Thomassen proved

that the edges of every 3-regular graph an be 2-olored suh that eah monohromati omponent

is a path of length at most 5. Alon, Ding, Oporowski and Vertigan [4℄ proved a number of results

showing that C is independent of n under ertain onditions involving bounds on the tree-width and

maximum degree of G. In partiular, they proved that if G has maximum degree 4, and k is taken

to be 2, then C � 57. On the other hand, they give a family of 6-regular graphs for whih every

2-partition of the verties results in arbitrarily large omponents in one of the indued subgraphs.

They therefore asked the following natural question [4, Question 2.4℄: is there a onstant C suh

that every graph G with maximum degree 5 has a vertex partition into 2 parts, eah part induing a

subgraph with no omponents of size greater than C? In Setion 2.1 we answer this question in the

aÆrmative. In Setion 2.2 we disuss the 2-partitioning of graphs of maximum degree 4, and show

that here C ould be hosen as small as 6. We also note that C must be at least 4; thus in this ase

it ould very well be feasible to determine the onstant C exatly.

As in [4℄, 2-partitioning theorems lead to partitioning results for ertain other values of k; these

appear in Setion 3. In Theorem 3.2, we show that it is possible to partition a graph G of maximum

degree at most 8 into 3 parts, suh that eah part indues omponents of size at most an absolute

onstant C. There is a family of 10-regular graphs that do not admit suh a 3-partition [4℄, so only

the ase of 9-regular graphs remains undeided. We also study the largest maximum degree �

k

whih still aommodates a k-partition into parts with bounded omponents. An asymptoti upper

bound of 4k was given in [4℄. In Theorem 3.5 we improve the asymptoti lower bound to (3 + Æ)k,

where Æ > 0 is a positive onstant.

In Setion 4 we onsider a related problem onerning transversals that indue only omponents

of bounded size. In [10℄ it was shown that if the vertex set of a graph with maximum degree � is

partitioned into lasses of size at least 2�, then it is possible to hoose a set of verties, one from

eah lass, that is an independent set in G. Suh a hoie of one vertex from eah lass is alled a

transversal of the partition. In Theorem 4.1 we generalize this result by showing that if eah lass

has size at least � + b�=r then there exists a transversal that indues in G a subgraph with all

omponents bounded in size by r.

Our disussion leaves open a lot of threads. In Setion 5 we gather the numerous unresolved

problems.
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2 Partitioning into two parts

2.1 Graphs of maximum degree 5

Throughout this paper, by graph we will mean simple multigraph, i.e., we allow parallel edges but

we do not allow loops. For a graph H and a subset V

0

of its vertex set, HjV

0

denotes the subgraph

of H indued by the verties of V

0

.

The main aim of this setion is to prove the following theorem.

Theorem 2.1 There exists an absolute onstant C suh that the following holds. Let G be a graph

with maximum degree at most 5. Then there is a partition V

1

[ V

2

= V (G) of the vertex set of G,

suh that for i = 1; 2, eah omponent of GjV

i

has at most C verties.

Before beginning the proof of Theorem 2.1, we �rst establish some properties about a speial

family of vertex partitions that will be important in the proof. Let G be a graph with maximum

degree 5, and let (U

1

; U

2

) be a maximum ut of G (referred to as a max-ut), i.e., a partition of the

vertex set of G into lasses U

1

, U

2

, suh that the number of edges going between the two lasses

is maximized. In general, for any partition we will refer to these edges as the edges going aross,

or the rossing edges. Let G

0

= GjU

1

+ GjU

2

, and let C

1

; : : : ; C

s

be the omponents of G

0

. Let

W = fv 2 V (G) : d

G

0

(v) = 2g be the subset of those verties whose degree in G

0

(their G

0

-degree) is

exatly two. We denote by H the bipartite subgraph of G onsisting of the verties in W and the

edges of G going aross the partition (W \U

1

;W \U

2

). The vertex sets of the omponents of H will

be alled ladders. The following proposition ollets some simple but important fats.

ladders2 W

2 E(H)2 E(G

0

)

Figure 1: Ladders and suh...

Proposition 2.2 Using the above de�nitions, the following hold for any max-ut (U

1

; U

2

).

(i) �(G

0

) � 2, so eah omponent C

i

is either a yle or a path,

(ii) �(H) � 3,

(iii) any two H-neighbors of a vertex w 2W are adjaent in G,
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(iv) for eah ladder L, L \ U

j

onsists of onseutive elements of some (path or yle) omponent

C

k

of G

0

, for eah j = 1; 2. Thus ladders, unless they onsists of one vertex, have nontrivial

intersetion with exatly one omponent of eah side of the partition U

1

[ U

2

,

(v) if d

H

(w) = 3, and w 2 U

j

\ L for some ladder L, then U

3�j

\ L onsists only of the three

H-neighbors of w. Furthermore jLj � 6.

Proof.

(i) If the degree of a vertex in G

0

were at least 3, then putting the vertex into the other lass would

inrease the number of edges going aross.

(ii) This follows immediately from the de�nition of the vertex set W of H and the fat that

�(G) � 5.

(iii) Suppose on the ontrary that w

0

; w

00

2 W are two H-neighbors of w that are not adjaent in

G. Then swithing the lasses for w;w

0

; w

00

would inrease the number of edges going aross

the partition.

(iv) Follows diretly from (i) and (iii).

(v) by (iii), the three H-neighbors of w need to form a triangle in G

0

, whih is already a omplete

omponent of G

0

. Thus U

j

\L an only ontain 2 more verties besides w, sine any vertex in

U

j

\ L is a neighbor of the neighbors of w, thus (again by (iii)) a neighbor of w in G

0

as well.

But w has only two G

0

-neighbors in U

j

. �

The above proposition shows that ladders an onsist of just a single vertex, a single edge going

aross the partition, or, typially, strutures like the ones shown in Figure 1.

The next proposition shows that we an �nd a max-ut that has no long ladders. We remark

that the onstant 13 an be improved to 10 by a more detailed analysis, but as we do not strive for

the optimal onstant in Theorem 2.1 this formulation is suÆient.

Proposition 2.3 Let G be a graph with �(G) � 5. Then there exists a max-ut U = (U

1

; U

2

) of the

vertex set of G in whih eah ladder has size at most 13.

Proof. We say that a max-ut U = (U

1

; U

2

) has property (M) if jW j is minimized. We �x a partition

U having property (M), whih minimizes the number

i(U) =

X

L

(jLj � 8);

where the summation extends over the ladders L of size greater than 8.

We assume U has a ladder of size 14 or more and onstrut another partition

�

U ontraditing

the hoie of U . This ontradition will prove the proposition.
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Let L be a ladder of size at least 14. By Proposition 2.2 (ii) and (v), �(HjL) � 2. So we an �nd

verties x

1

; : : : ; x

14

2 L suh that x

i

is onneted in H to x

i+1

for i = 1; : : : ; 13. We may assume

x

i

2 U

1

for odd i and x

i

2 U

2

for even i. By Proposition 2.2 (iii) we have that x

i

and x

i+2

are

adjaent in G (and thus also in G

0

) for i = 1; : : : ; 12.

We de�ne the partition

�

U = (

�

U

1

;

�

U

2

) by swithing x

7

and x

8

:

�

U

1

= (U

1

n fx

7

g) [ fx

8

g and

�

U

2

= (U

2

n fx

8

g) [ fx

7

g.

First note that the number of rossing edges in

�

U is at least the number of rossing edges in U .

Hene sine U is a max-ut, so is

�

U , and Proposition 2.2 applies to

�

U as well. We denote by

�

W ,

�

G

0

and

�

H the analogues (for

�

U) of W , G

0

and H, respetively.

Note that the verties x

5

and x

10

have degree 1 in

�

G

0

, and therefore are not in

�

W . Sine U has

property (M), there must be at least two verties in

�

W nW . Besides the verties in W , the only

verties whih have a hane to beome members of

�

W are the neighbors of the displaed verties x

7

and x

8

. Eah had four neighbors in W , so both must have a �fth one in

�

W nW . Let a 2 U

1

; b 2 U

2

be these neighbors of x

8

and x

7

, respetively. Note then that

�

U also has property (M). We then have

the following.

(1)

�

W \

�

U

1

= (W \ U

1

n fx

5

; x

7

g) [ fx

8

; ag,

(2)

�

W \

�

U

2

= (W \ U

2

n fx

8

; x

10

g) [ fx

7

; bg, and

(3) E(

�

H) = (E(H)nfx

4

x

5

; x

5

x

6

; x

6

x

7

; x

8

x

9

; x

9

x

10

; x

10

x

11

g)[fx

6

x

8

; x

7

x

9

g[E

0

, where E

0

denotes

the edges of

�

H inident with a or b.

x

1

x

3

x

5

x

7

x

9

x

13

x

11

a

b

x

4

x

6

x

8

x

10

x

12

x

14

x

2

Figure 2: Before...

b

x

7

x

1

x

3

x

5

x

9

x

13

x

11

a

x

8

x

2

x

4

x

6

x

10

x

12

x

14

Figure 3: ...and after

We all a ladder of size greater than 8 long.

Let

�

L be the ladder of

�

U ontaining x

7

(and thus x

8

). We laim that

�

L is not long. Indeed,

otherwise

�

Hj

�

L would be a path or a yle by Proposition 2.2(ii) and (v) and it would extend by at

least three verties beyond at least one end of the path x

6

x

8

x

7

x

9

. By symmetry we may assume

it extends by at least three verties beyond x

9

. By (3) the next vertex must be b. By Proposition

2.2(iii) the vertex after that must be a

�

G

0

neighbor of x

9

, so (as x

8

is already in the path) it must

be x

11

. Again by (3) the next vertex must be x

12

. Now by Proposition 2.2(iii) b and x

12

must be
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onneted in G, so also in G

0

. Sine the only G

0

-neighbors of x

12

(x

10

and x

14

) are in W while b is

not, b annot be a neighbor of x

12

. This ontradition proves the laim.

Now assume that the ladder

�

L

a

of

�

U ontaining a is long. Then x

8

=2

�

L

a

(otherwise we have

�

L

a

=

�

L) and thus by Proposition 2.2(iii) a must be the last or next-to-last vertex of the path

�

Hj

�

L

a

(as a has at most a single

�

G

0

neighbor in the same ladder). Similarly, if the ladder

�

L

b

of

�

U ontaining

b is long, then b must be the last or next-to-last vertex in the path

�

Hj

�

L

b

.

We now try to establish i(

�

U) < i(U) for a ontradition. Let us onsider all the ladders of the

partition

�

U . By (3), all of these ladders, exept

�

L,

�

L

a

and

�

L

b

, are either ontained in L or are also

ladders in the partition U . Ladders whih do not hange have equal ontribution to i(U) and i(

�

U).

The ontribution of

�

L to i(

�

U ) is zero (as it is not long). The ontribution of

�

L

a

(or

�

L

b

) to i(

�

U ) is at

most 2 more than the ontribution to i(U) of the U -ladders it ontains. Finally, the total ontribution

to i(

�

U ) of the

�

U -ladders ontained in L is at least 6 less than the ontribution of L to i(U), as the

six verties x

5

; x

6

; x

7

; x

8

; x

9

; x

10

2 L are not in a long ladder any more, and the ontribution of jLj

to i(U) is jLj � 8 � 6. We thus have

i(

�

U ) � i(U) + 2 � 2� 6 < i(U);

a ontradition proving the Proposition. �

Besides Proposition 2.3, the other main ingredient in the proof of Theorem 2.1 will be the well-

known Lov�asz Loal Lemma from [9℄ (see also [5℄). The version of the Loal Lemma we use is as

follows. The onstant e below is the base of the natural logarithm.

Theorem 2.4 Let A

1

; : : : ; A

n

be events (usually alled bad events) in an arbitrary probability spae.

Suppose that for eah i, event A

i

is independent of the olletion of all but at most d of the other

events A

j

. If Pr(A

i

) � p for all 1 � i � n, and ep(d+ 1) � 1, then Pr(

V

n

i=1

�

A

i

) > 0.

We are now ready to prove the main theorem of this setion.

Proof of Theorem 2.1. Let a graph G with maximum degree 5 be given. By Proposition 2.3, we

may assume that V (G) has a max-ut U = (U

1

; U

2

) suh that eah ladder L has size at most 13 and

thus by Proposition 2.2(iv), jL \ U

j

j � 7 for j = 1; 2. Let W , G

0

, H, and C

1

; : : : ; C

s

be as de�ned

just before Proposition 2.2.

Our strategy is the following. We selet a set of ladders for whih we swith the sides of their

verties, in order to break up all the long omponents in G

0

. We selet eah ladder with a suitably

hosen probability p, the seletions being independent of eah other. These events are alled elemen-

tary events. The ruial observation is that by performing any number of ladder-swithes at one,

the verties of degree 2 in G

0

, that do not swith sides, do not reeive any new neighbor. This is true

simply beause eah newly arriving vertex also had degree 2 in G

0

, and any degree-2 neighbors it

had on the opposite side of the partition were in the same ladder, so they also swithed sides. Thus,

in hoosing a swith that breaks up the large omponents of G

0

, we just need to take are that the
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verties of degree at most 1 in G

0

do not join up a lot of omponents via the newly swithed verties.

This will be done by applying Theorem 2.4, with some suitably hosen \bad" events.

We begin by �xing a positive onstant p < 1 satisfying 56ep

2

(90d� log(56p

2

)=pe + 1) � 1, and

the onstant `

0

= d� log(56p

2

)=pe. Here and later in this paper, log refers to the natural logarithm.

The hoie p = 0:000003 is suitable. Next, we partition eah omponent C

i

of G

0

for whih C

i

\W

intersets at least 2`

0

ladders as follows. We partition these C

i

into onneted segments A

i

j

, suh

that no ladder intersets more than one A

i

j

on either side U

1

and U

2

, and A

i

j

intersets a

i

j

onseutive

ladders, where `

0

� a

i

j

< 2`

0

.

Let us de�ne the set of bad events we would like to avoid.

Bad event type (i). For eah segment A

i

j

, let E

i

j

be the event that no ladder of A

i

j

is piked for

swithing. The probability of E

i

j

is (1 � p)

a

i

j

� (1 � p)

`

0

< e

�p`

0

. Hene by de�nition of `

0

we see

that Pr(E

i

j

) � 56p

2

.

Bad event type (ii). For any path omponent C

i

with endpoints u and v (if C

i

has length 0 then

u = v), let E

C

i

be the event that at least two ladders, ontaining a neighbor of u or v on the side of

the partition opposite to C

i

, are piked for swithing. Suppose there are k ladders whih ontain a

neighbor of u or v. As �(G) � 5, k � 8. Then

Pr(E

i

j

) �

�

k

2

�

p

2

� 28p

2

:

Bad event type (iii). Finally, �x a numbering of the onseutive ladders of eah omponent C

i

,

and de�ne the event F

i

j

suh that the j

th

and (j + 1)

st

ladder of C

i

are both piked for swithing.

The probability of F

i

j

is learly p

2

.

In order to estimate the parameter d in Theorem 2.4, we use the onept of a determining set.

The determining set of an event E is the minimum set D(E) of elementary events suh that E is

independent of D(E). In general, an event E is mutually independent of the set of all events whose

determining sets are all disjoint from D(E).

From the de�nitions we see that D(E

i

j

) onsists of the a

i

j

elementary events orresponding to the

ladders interseting A

i

j

. The determining set D(E

C

i

) onsists of the elementary events orresponding

to ladders ontaining some neighbor of an endpoint of C

i

, so jD(E

C

i

)j � 8. Finally D(F

i

j

) onsists

of the two elementary events orresponding to the j

th

and (j+1)

st

ladders of omponent C

i

. On the

other hand, an elementary event E

M

, orresponding to a ladder M , is ontained in the determining

set of at most 2 bad events of type (i), the ones orresponding to segments ontaining its two sides.

Also, E

M

is ontained in the determining set of at most 4 bad events of type (iii), at most two on

eah side. Finally, M has at most 13 verties, eah of them is the neighbor of an endpoint of at

most 3 di�erent omponents of G

0

on the opposite side of the partition, so E

M

is ontained in the

determining set of at most 39 bad events of type (ii).

Thus for any bad event E, there are at most jD(E)j(2+39+4) bad events E

0

withD(E)\D(E

0

) 6=

;. This implies that eah bad event is independent of the set of all but 45jD(E)j � 90`

0

bad events.
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Set d = 90`

0

.

We may now apply Theorem 2.4 to the set of bad events. Sine eah bad event ours with

probability at most 56p

2

, and 56ep

2

(d + 1) � 1 by de�nition of p, we onlude that there exists a

seletion of ladders that an be swithed without ausing any bad event. Let us perform suh a

swith, and denote the lasses of the resulting partition of G by V

1

and V

2

.

Claim 2.5 Eah omponent in GjV

1

or GjV

2

has at most 588`

0

+ 7 verties.

Proof. Let us stop for a seond in the middle of the swith, after the verties of the hosen ladders

were removed from their respetive sides, but were not yet plaed on the other. Sine there are no

bad events of type (i), eah large omponent C

i

is broken into piees by the removal of a ladder from

eah of its segments A

i

j

interseting at most 2`

0

ladders. So at most 28`

0

verties ould stay together

from an old omponent C

i

, sine eah ladder ontributes at most 7 verties.

Now new verties are oming over from the other side by the swith. Sine there are no bad

events of type (iii), no two onseutive ladders arrive, thus the verties oming from the other side

arrive in omponents of size at most 7.

We still have to make sure that not too many \old" and \newly arrived" omponents stik

together. As we noted earlier, if a vertex of G

0

of degree 2 does not swith sides, then it does not

reeive any new neighbors. So old and new omponents an stik together only through a vertex of

an old omponent whose degree in G

0

was at most 1 (it was the endpoint of a path omponent of G

0

).

As there are no bad events of type (ii), at most 1 new ladder is onneted to any old omponent. One

new ladder brings at most 7 verties, eah of whih an be onneted to at most 3 old omponents,

thus at most 7 + 21 � 28`

0

verties stik together for a omponent within a lass V

i

. �

This �nishes the proof of Theorem 2.1. �

Remark In the proof of Theorem 2.1 we do not attempt to obtain the smallest possible value of C.

By making more areful estimates, and using Theorem 4.1 with r = 1 instead of Theorem 2.4, one

an show that C � 17617. However, as this value is almost ertainly very far from being optimal,

we do not inlude the details here.

2.2 Graphs of maximum degree 4

In this subsetion we improve, from 57 to 6, the maximum size of the omponents one an guarantee

when 2-partitioning graphs of maximum degree 4. Our argument depends on the following useful

lemma about partitioning a pair of graphs on the same set of verties. This same lemma will be

applied also in Setion 4 to obtain a result on transversals that indue only small omponents.

Lemma 2.6 Let G

1

and G

2

be graphs with maximum degree at most 2 on the same vertex set X.

Then there exists a partition of X into two parts, X

1

and X

2

, suh that for eah i 2 f1; 2g we have

�(G

i

jX

i

) � 1.

8



Proof. First we assign an arbitrary orientation to eah path or yle in G

1

and G

2

, so from now

on we onsider them as direted graphs. We denote by v

+

i

and v

�

i

the out-neighbor and in-neighbor

of v in G

i

respetively, if they exist. We onstrut the partition one vertex at a time, beginning by

plaing an arbitrary vertex in X

1

. We never remove a vertex from its part of the partition one it

has been plaed. In general, after having plaed a vertex v in X

i

we do the following.

(a) If v

+

i

exists and is not already plaed, we plae it in X

3�i

.

(b) Otherwise if v

�

i

exists and is not plaed yet, we plae v

�

i

in X

3�i

.

() If neither (a) nor (b) applies, we selet an arbitrary unplaed vertex and plae it in X

1

.

We laim that this proedure produes a partition X

1

[ X

2

with the desired property. To see

this, �rst suppose on the ontrary that three distint onseutive verties x, y, and z in G

i

are all

plaed in part X

i

of the partition, where y = x

+

i

and z = y

+

i

. Then by the onstrution, the �rst

vertex of fx; y; zg to be plaed in X

i

must have been z, otherwise by (a) the very next step would

have been to plae y or z in X

3�i

. For the same reason, the next to be plaed in X

i

was y. But

then at this point z = y

+

i

is already plaed, so the next step is to plae x in X

3�i

, ontraditing our

assumption.

Now suppose that x and y are the two verties of a two-vertex yle in G

i

. Then without loss of

generality, x is plaed in X

i

�rst. But then by (a), the next step is to plae y = x

+

i

in X

3�i

. This

ompletes the proof of the lemma. �

We are now ready to turn to the main result of this subsetion.

Theorem 2.7 Let G be a graph with maximum degree 4. Then the vertex set of G an be partitioned

into two parts V

1

[ V

2

= V (G) suh that eah part indues omponents of size at most 6.

Proof. Let us start with a max-ut U

1

[W

2

= V (G), with the additional property that it has the

minimum number of verties in U

1

.

Let G

1

= GjU

1

and G

0

2

= GjW

2

. Sine the number of edges going aross is maximum, every

vertex has degree at most 2 in eah of G

1

and G

0

2

. The minimality of jU

1

j implies that G

1

has

maximum degree at most one as swithing a degree 2 vertex of G

1

over to W

2

does not a�et the

number of edges going aross.

Let S be a maximum size independent set of degree 2 verties of G

0

2

, and let us de�ne U

2

=W

2

nS,

W

1

= U

1

[ S, G

2

= GjU

2

and G

0

1

= GjW

1

. Clearly, every element of S has degree (at most) 2 in G

0

1

and the partition (W

1

; U

2

) is also a max-ut. So G

0

1

has maximum degree at most two. The set S is

a maximum size independent set of the degree 2 verties of G

0

1

beause if S

0

is another independent

set, then (W

1

n S

0

; U

2

[ S

0

) is another max-ut of V (G), so jW

1

n S

0

j � jU

1

j. By the hoie of S, G

2

has maximum degree at most one.

Thus G

1

and G

2

onsist of disjoint edges and verties, while G

0

1

and G

0

2

are the disjoint union of

yles and paths (possibly of length 0).

9



Our strategy is to split S between the two sides using Lemma 2.6.

We de�ne the auxiliary graphs H

i

for i = 1; 2 on the vertex set S by letting two verties of S be

adjaent in H

i

if they are at distane 2 or 3 in G

0

i

. We have �(H

i

) � 2 as S is an independent set

of the graph G

0

i

and �(G

0

i

) � 2.

We now apply Lemma 2.6 to H

1

andH

2

to obtain a partitionX

1

[X

2

of S for whih �(H

i

jX

i

) � 1

for i = 1; 2. We let the lasses of the �nal partition be V

i

= U

i

[X

i

for i = 1; 2. Notie that V

i

�W

i

,

and sine W

i

spans the graph G

0

i

of maximum degree at most 2, eah onneted omponent of the

graph GjV

i

is a path or a yle. Suppose suh a omponent D is of size 7 or more. As S is a maximum

size independent subset of the degree two verties of G

0

i

, it must ontain at least three verties of D.

To be in D � V

i

all of these verties must be in X

i

and they are in a onneted omponent of H

i

jX

i

ontraditing the hoie of X

i

. The ontradition proves that all omponents of GjV

i

are of size 6 or

less, as laimed. �

Remark Even the improved bound on the omponent size in Theorem 2.7 is not known to be

optimal. The omplement of the seven-yle shows that the same statement with omponent size

less than four is false. It is a 4-regular graph, and one an easily verify that any subset of the verties

of size four or more span a onneted subgraph.

3 Partitioning into several parts

In this setion we disuss a problem analogous to the one onsidered in Theorem 2.1, but now we

partition the verties into more than two parts. In several ases we utilize ideas from [4℄. We also

need the following partitioning result of Lov�asz [12℄.

Theorem 3.1 Let G be a graph and let k

1

; : : : ; k

m

be non-negative integers suh that k

1

+ : : :+k

m

�

�(G)�m+ 1. Then V (G) has a partition V

1

[ : : : [ V

m

suh that �(GjV

i

) � k

i

for eah i.

Our �rst result is the analogue of Theorem 2.1 for partitioning into 3 parts.

Theorem 3.2 There exists a onstant C

0

suh that the vertex set of any graph of maximum degree

at most 8 an be 3-partitioned suh that eah part spans subgraphs with omponents of size at most

C

0

.

Proof. Let G be a graph of maximum degree at most 8. Using Theorem 3.1, we partition the vertex

set of G into two parts U

1

[U

2

= V (G) suh that �(GjU

1

) � 5 and �(GjU

2

) � 2. By Theorem 2.1,

U

1

an be partitioned into two parts U

1

= V

1

[W , eah spanning omponents of size bounded by

the onstant C guaranteed by the theorem. As in [4℄, we apply Theorem 4.1 with r = 1 (this speial

ase is from [10℄) to get rid of the long paths and yles in U

2

. We de�ne an auxiliary graph H on

the vertex set U

2

, by onneting two verties with an edge if they are adjaent in G or onneted to

the same omponent of GjW . Clearly, �(H) � 64C. We split eah omponent of GjU

2

into pairwise

10



disjoint path-segments of length 128C, suh that in any omponent at most 128C verties are not

overed by these segments. By Theorem 4.1, there exists a transversal T of the segments whih is

an independent set of H. We de�ne the lasses of the 3-partition of V (G) to be V

1

, V

2

=W [ T and

V

3

= U

2

n T . Observe that all omponents of GjV

2

are of size at most 8C +1, sine T is independent

in H. The omponents of GjV

3

are of size less than 384C, sine T is a transversal of the above

de�ned segment-partition. As all omponents of GjV

1

are of size at most C, the theorem is proved

with onstant C

0

= 384C. �

In [4℄ it is proved that every graph with maximum degree � an be partitioned into d(�+ 2)=3e

lasses, suh that eah lass has omponents of size at most f(�). In the following we slightly

improve this result in two ways. On one hand we show that d(� + 1)=3e lasses suÆe for any �,

and that only (1=3� �)� lasses are needed for suitably large values of �, where � is a small positive

onstant. On the other hand for these results we obtain partitions where the size of the omponents

is independent of �.

In general, our next theorem ontains a slightly weaker statement than its follow-up, but besides

being instrutional, it provides a stronger result for small values of �.

Theorem 3.3 There exists a onstant C

0

suh that the following holds. Let G be a graph of maximum

degree �. Then it is possible to d(� + 1)=3e-partition the vertex set suh that eah part spans

omponents of size at most C

0

.

Proof. First suppose d(� + 1)=3e = 2k is even.

Let us partition the vertex set into k lasses V

1

[ : : :[V

k

= V (G), suh that the number of edges

going within the lasses is minimized. As � � 6k � 1 the maximum degree of the graph GjV

i

is at

most 5 for every i = 1; : : : ; k. By Theorem 2.1 eah V

i

an be separated into two parts V

0

i

[V

00

i

= V

i

,

suh that both parts indue graphs with largest omponent size bounded by C, where C is as in

Theorem 2.1.

Thus [

k

i=1

(V

0

i

[ V

00

i

) is an appropriate partition into 2k lasses.

Next we onsider the ase when d(�+1)=3e = 2k+1 is odd. Let us partition the vertex set into

k lasses V

1

[ : : : [ V

k

= V (G), suh that �(GjV

i

) � 5 for i = 1; : : : ; k � 1 and �(GjV

k

) � 8. Suh

a partition exists by Theorem 3.1. Now we use Theorem 3.2 to 3-partition V

k

and Theorem 2.1 to

2-partition eah of the other lasses. Then all omponents spanned by any of the resulting 2k + 1

parts are bounded in size by the onstant from Theorems 2.1 or 3.2. �

In order to improve on the onstant multiplier 1=3 of �, �rst we show that in fat, for large k,

any 6k-regular graph an be partitioned into 2k parts with bounded size omponents.

Theorem 3.4 There exist onstants K and C

00

suh that the following holds. Let G be a graph with

maximum degree at most 6k, k � K. Then it is possible to 2k-partition the vertex set suh that eah

part ontains omponents of size at most C

00

.

11



Proof. We hoose C as in Theorem 2.1 and set K = 450C

3

and C

00

= 6C + 1. Let us start again

with a partition into k lasses V

1

[ : : : [ V

k

= V (G), suh that the number of edges going within the

lasses is minimized. Now we annot say that the maximum degree of eah graph GjV

i

is at most 5

for every i = 1; : : : ; k; there ould be some verties whose degree within their lass is six. Let M be

the set of these verties. By hoosing our partition suh that jV

k

j is maximal, we an assume that

all of M is ontained in V

k

. (A vertex v 2M has exatly six neighbors in eah lass, so it ould be

moved to V

k

without inreasing the number of edges within the lasses.) Therefore �(GjV

i

) � 5 for

i = 1; : : : ; k � 1.

Let W �M be a maximum independent set in GjM . Clearly, Gj(V

k

nW ) has maximum degree

at most 5. By Theorem 2.1 eah V

i

, i = 1; : : : ; k � 1, and V

k

nW an be partitioned into two parts

V

0

i

and V

00

i

, and respetively V

0

k

and V

00

k

suh that all GjV

0

i

and GjV

00

i

have omponents bounded by

C.

Our goal is to distribute the verties of W among these 2k lasses, suh that they don't glue

too many existing omponents together. We put eah vertex into a ertain lass with probability

p = 1=(2k), the hoies for distint verties being mutually independent.

One vertex v 2W has at most 6 neighbors in a lass, so it an glue together at most 6 omponents

in that lass. Thus if we an make sure that no omponent reeives more than 1 neighbor, after W

is distributed the largest omponent in eah lass will have size at most 6C + 1. It is important to

note here that the verties arriving from W are independent, so arrive in omponents of size 1.

We plan to use the Lov�asz Loal Lemma, Theorem 2.4. For eah omponent F of GjV

0

i

or GjV

00

i

we de�ne a bad event E

F

: that at least two neighbors of verties of F from W are put in the lass

of F . Suppose there are f neighbors of the verties of F in W . Then Pr(E

F

) �

�

f

2

�

p

2

.

An event E

F

is independent of the set of all events E

F

0

where F and F

0

have no ommon neighbor

inW . A vertex u 2 F with degree d

u

within its lass V

i

, has at most 6�d

u

neighbors inW . Otherwise

moving these neighbors into V

i

would inrease d

u

above 6, implying that the number of edges within

the lasses is not minimal (the moving of a subset of W does not hange that; again independene

of W is ritial). Thus F has at most 6C neighbors in W , eah of those possibly having 6k� 1 other

adjaent omponents F

0

. Therefore the parameter d in Theorem 2.4 an be taken to be d = 36kC�6.

By Theorem 2.4, if e(36kC � 5)

�

f

2

�

p

2

< 1, then with positive probability none of the bad events

happen. In partiular there is an assigment of the verties ofW to the lasses, suh that no omponent

larger than 6C + 1 is reated. Sine f � 6C the above ondition is satis�ed. This ompletes the

proof. �

Theorem 3.5 There exist onstants � > 0, C

00

and �

0

suh that the following holds. Every graph

G of maximum degree � � �

0

an be partitioned into �(1=3� �) lasses, suh that eah lass spans

a graph with omponents bounded by C

00

.

Proof. LetK and C

00

be the onstants laimed by the preeding theorem. Let t = d(�+1)=(6K+1)e.

Partition V (G) into t parts U

1

; : : : ; U

t

suh that the number of edges going within the lasses is

12



minimal. Then eah graph GjU

i

is of maximum degree at most 6K. By the previous theorem we

an partition it into 2K parts suh that eah part spans a graph with maximum omponent size at

most C

00

. This therefore gives an appropriate partitioning into

2Kt <

2K

6K + 1

�+ 2K

parts. Thus � = 1=(36K + 6) and �

0

= 200K

2

are appropriate hoies. �

Remark Let us say that that degree � allows d-partitioning if the following is true: There is a

onstant C suh that the verties of any graph of maximum degree at most � an be d-partitioned

with eah part spanning omponents of size at most C. The idea of the previous proofs easily

generalizes to the following. If degree � allows d-partitioning, then degree k(� + 1) � 1 allows

kd-partitioning for any k � 1 and degree k(� + 1) allows kd-partitioning for large enough k.

4 Transversals induing bounded size omponents

For a vertex v, we denote by C(v;H) the onneted omponent of v in the graph H. Whenever there

is no ambiguity about the base graph, we write C(v; V

0

) instead of C(v;HjV

0

[ fvg).

Let G be a graph and let P be a partition of V (G) into sets V

1

; : : : ; V

m

. A transversal of P is

a subset fv

1

; : : : ; v

m

g of V (G) for whih v

i

2 V

i

for eah i. In this setion we are onerned with

the problem of �nding transversals T with the property that GjT has only small omponents. The

following theorem was proved for omponent size r = 1 in [10℄. Here we prove a generalization for

arbitrary r.

Theorem 4.1 Let r; d be arbitrary positive integers. Let G be a graph of maximum degree d, and

let P be a partition V

1

[ : : :[ V

m

= V (G) of V (G) suh that jV

i

j � d+ bd=r for i = 1; : : : ;m. Then

there exists a transversal T of P suh that the indued subgraph GjT has omponents of size at most

r.

Proof. Let T

0

be a maximal size partial transversal of P suh that all omponents of GjT

0

have size

at most r. We assume for ontradition that T

0

is not a omplete transversal. Let T be the set of

partial transversals T of P whih span only omponents of size at most r and satisfy jT\V

i

j = jT

0

\V

i

j

for i = 1; : : : ;m.

We all a pair (W;T ) with T 2 T and W � V (G) n T feasible if

(a) the sets C(v; T ) are pairwise disjoint for v 2W and eah of them is of size at least r + 1, and

(b) there is no v

0

2 W and T

0

2 T with T

0

\ W = ; suh that jC(v

0

; T

0

)j < jC(v

0

; T )j and

C(v; T

0

) = C(v; T ) for every v 2W n fv

0

g.

13



Clearly, (;; T

0

) is feasible. We hoose a feasible pair (W;T ) with jW j being maximal. Our goal

is to onstrut another feasible pair ontraditing the maximality of jW j and by this ontradition

proving the theorem.

We let H = [

v2W

C(v; T ) and S = fj 2 [m℄ : V

j

\ T � Hg. By (a) we have jHj � (r + 1)jW j.

Eah vertex in H nW is in T , thus we have jSj > jHj � jW j. (The strit inequality follows from

our assumption that T is not a omplete transversal of P, sine S ontains eah index i 2 [m℄ with

V

i

\ T = ;.)

We laim that there exists a vertex v

0

2 [

i2S

V

i

n H that is not onneted to any vertex in H.

We prove this by simple ounting of the number of possible hoies for v

0

and the number of verties

exluded by being neighbors of some verties in H. The number of hoies is j [

i2S

V

i

nHj � jSj(d+

bd=r)� jHj > (jHj � jW j)(d+ bd=r)� jHj. Eah vertex in H has at most d neighbors to exlude.

But GjH onsists of at most jW j onneted omponents, so there are at least jHj�jW j edges between

verties of H. These edges ontribute to the degree of verties in H, but they do not exlude any

verties to be onsidered as v

0

. The number of exluded verties is thus at most djHj�2(jHj� jW j).

To onlude the proof of this laim we need (jHj � jW j)(d + bd=r) � jHj � djHj � 2(jHj � jW j),

whih follows from simple rearrangement of the inequality jHj � (r + 1)jW j. Note that v

0

=2 T by

de�nition of S.

We now hoose the partial transversal T

0

that minimizes jC(v

0

; T

0

)j, among all partial transversals

T

0

2 T satisfying T

0

\ (W [ fv

0

g) = ; and C(v; T

0

) = C(v; T ) for all v 2 W . (Notie that we are

hoosing from a nonempty set, as T is a partial transversal satisfying these properties.) We laim

that (W [ fv

0

g; T

0

) is a feasible pair, ontraditing the hoie of (W;T ).

For ondition (a), onsider the sets C(v; T

0

) = C(v; T ) for v 2W ; these are pairwise disjoint and

of size at least r+ 1. The last set C(v

0

; T

0

) is disjoint from any set C(v; T

0

) (v 2W ), as otherwise a

neighbor of v

0

would be in C(v; T

0

) � H. Now assume for ontradition that jC(v

0

; T

0

)j � r. Let V

i

be the lass in partition P that ontains v

0

. If V

i

\ T

0

= ; then T

0

[ fv

0

g is a partial transversal of P

spanning omponents of size at most r, ontraditing the maximality of T

0

. Otherwise V

i

\ T

0

6= ;,

and hene V

i

\T 6= ;. Sine i 2 S, we must have V

i

\T = fug with some vertex u 2 C(w; T ) for some

w 2W (see Figure 4). Sine C(w; T

0

) = C(w; T ), and w =2 T

0

, we see that T

0

\C(w; T ) = T \C(w; T )

so we also have u 2 T

0

. Therefore T

00

= (T

0

nfug)[fv

0

g is a partial transversal in T . Sine v

0

does not

have neighbors inH we get that C(v; T

00

) = C(v; T ) for all v 2W nfwg and C(w; T

00

) � C(w; T )nfug.

This ontradits property (b) of the feasibility of (W;T ) and thus proves property (a) of the feasibility

of (W [ fv

0

g; T

0

).

Finally, for ondition (b) in the de�nition of feasibility of (W [ fv

0

g; T

0

) notie that for v

0

2 W

this ondition simply follows from the orresponding ondition of the feasibility of (W;T ). For v

0

= v

0

the ondition follows from the hoie of T

0

.

The ontradition of the feasibility of (W [ fv

0

g; T

0

) with the maximality of (W;T ) implies the

theorem. �
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Figure 4: A feasible pair extremum?

We state the r = d+ 1 speial ase of the above result separately:

Corollary 4.2 Let G be a graph of maximum degree d. Let V

1

[ : : : [ V

k

= V (G) be a partition of

the vertex set into subsets with jV

i

j � d for eah i. Then it is possible to hoose a transversal T suh

that GjT has omponents of size at most d+ 1.

The above orollary is optimal in terms of the lass size. No upper bound an be given on the

omponent size of a transversal if the lasses are size d � 1. This an be seen by onsidering the

omplete (d � 1)-ary tree H with root w. Partition the vertex set of H n fwg by letting the sets of

d � 1 sibling verties be the lasses. This way the largest onneted omponent in any transversal

will be the depth of the tree, whih an be arbitrarily large.

We remark however that the above orollary is probably not optimal in the omponent size.

Indeed, the following orollary tells us that in the speial ase d = 2 one an have omponents of

size at most 2. We do not know if a similar statement limiting the omponent size by 2 instead of

d+ 1 holds for larger d.

Corollary 4.3 Let G be graph with maximum degree at most 2 with its vertex set partitioned into

2-element subsets. Then it is possible to selet a transversal T of this partition suh that �(GjT ) � 1.

Proof. Apply Lemma 2.6 to the graphs G

1

= G and G

2

onstruted on the same vertex set V (G) by

plaing two parallel edges between eah pair of verties belonging to the same set V

i

. The resulting
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set X

1

satis�es �(GjX

1

) � 1 and X

1

ontains at least one vertex from eah set V

i

. Taking one vertex

from eah V

i

\X

1

gives a transversal of the required type. �

5 Remarks and Open Problems

1. Theorem 4.1 leads us to the following question. For a �xed degree d and omponent size r, let

us de�ne p(d; r) to be the smallest integer suh that any d-regular graph partitioned into lasses of

size at least p(d; r) has a transversal that spans only omponents of size at most r. In Setion 4 we

showed d � p(d; r) � d + bd=r. Tight results are known for r = 1 [7, 14℄, when p(d; 1) = 2d. We

also have p(2; 2) = 2 by Corollary 4.3. Right now it is even possible that p(d; 2) = d for all d. Any

asymptoti tightening of the gap between the upper and lower bounds would be very interesting.

The smallest unknown ase is p(3; 2); that is, how big must the partition lasses of a 3-regular graph

be, to guarantee the existene of a transversal that spans at most a mathing? The answer is either

3 or 4.

2. With a more detailed analysis we an prove a maximum omponent size C = 17617 in Theorem 2.1,

but it is de�nitely far from the truth. The determination of the smallest possible suh C would be of

interest but might be out of reah. Not so for Theorem 2.7; there the required maximum omponent

size is between 4 and 6.

3. There are lots of questions onerning the partitioning of graphs into more than two parts. The

most general one is to determine for every �xed k the largest maximum degree �

k

, suh that every

graph with maximum degree �

k

an be partitioned into k parts, where eah part spans omponents

of size bounded by a onstant. In Setion 2 we proved �

2

= 5. As shown in [4℄, �

k

< 4k � 2 for

any k, while for large enough k Theorem 3.5 implies (3 + Æ)k < �

k

with a positive onstant Æ > 0.

It would be of great interest to determine �

k

asymptotially.

The smallest unknown ase is interesting in its own right: we don't know whether �

3

is 8 or 9.

In other words, is it possible to olor the vertex set of a graph with maximum degree 9 by three

olors suh that every monohromati omponent is bounded by a onstant?

4. In the following we de�ne a density version of the results of Setion 2. We intend to weaken

the maximum degree ondition by bounding the density of the graph, whih allows a few very large

degree verties. We �nd this question interesting but an only show modest results.

Let �(G) = maxfjE(GjW )j=jW j : W � V (G)g. We raise the problem of determining the

supremum value �, suh that every graph G with �(G) < � has a partition into two parts spanning

omponents of bounded size. Here we an only show that 1 � � � 2.

To see the upper bound, onsider the following onstrution. Let n � 1 and let A

n

be the graph

with 2n + 1 verties and 4n � 1 edges, suh that two verties of A

n

have degree 2n. Notie that

whenever we 2-partition the vertex set of A

n

suh that eah part spans omponents of size at most

n, the two full-degree verties must be plaed in the same part. Now onsider the graph B

n

that

is the union of n isomorphi opies of A

n

sharing a single ommon vertex x that has full degree
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in eah of the graphs. Notie that �(B

n

) < 2 for all n. If the vertex set of B

n

is 2-partitioned

then either one part spans a onneted omponent of size more than n of a opy of A

n

, or the part

ontaining x ontains the other n high-degree verties and they form a omponent of size greater

than n. Therefore � � 2.

For the lower bound, we laim that if �(G) � 1, then G an be 2-partitioned, V

1

[ V

2

= V (G),

suh that for i = 1; 2, eah omponent of GjV

i

has at most 2 verties. Indeed, by the density ondition

eah omponent of G is a tree or has unique yle. Therefore it is possible to remove a mathing M

from G, suh that G�M is bipartite. Then G�M ould be two-partitioned into two independent

sets. Adding bak the edges of the mathing will reate omponents of size at most two.

Similar problems ould be raised for partitioning into k parts, k > 2, as well.
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