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Abstract

It is known that any open necklace with beads of t types in which the number of

beads of each type is divisible by k, can be partitioned by at most (k − 1)t cuts into

intervals that can be distributed into k collections, each containing the same number

of beads of each type. This is tight for all values of k and t.

Here, we consider the case of random necklaces, where the number of beads of each

type is km. Then the minimum number of cuts required for a “fair” partition with the

above property is a random variable X(k, t,m). We prove that for fixed k, t, and large

m, this random variable is at least (k − 1)(t+ 1)/2 with high probability. For k = 2,

fixed t, and large m, we determine the asymptotic behavior of the probability that

X(2, t,m) = s for all values of s ≤ t. We show that this probability is polynomially

small when s < (t+1)/2, it is bounded away from zero when s > (t+1)/2, and decays

like Θ(1/ logm) when s = (t+ 1)/2.

We also show that for large t, X(2, t, 1) is at most (0.4+o(1))t with high probability

and that for large t and large ratio k/ log t, X(k, t, 1) is o(kt) with high probability.
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�Rényi Institute, Budapest and MIPT, Moscow. Supported by NKFIH grant K-131529, Austrian

Science Fund Z 342-N31, Ministry of Education and Science of the Russian Federation MegaGrant No.

075-15-2019-1926, ERC Advanced Grant “GeoScape.” Email: pach@cims.nyu.edu.
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1 Introduction

Let N be an open necklace with the same number of beads belonging to each of t classes,

and suppose that this number is divisible by k. As was proved in [1], it is always possible

to cut N in at most (k−1)t points and distribute the resulting intervals into k collections,

each containing the same number of beads of each type. This is tight for all values of the

parameters, as shown by any necklace in which the beads of each type appear contiguously.

A possible interpretation of the result is the following. Suppose that k mathematically

oriented thieves want to fairly distribute a necklace among each other. If the necklace is

comprised of the same number of beads belonging to t different types (colors) and this

number is a multiple of k, then they can always achieve this by making at most (k − 1)t

cuts between beads.

The aim of the present paper is to study this problem for random necklaces. The

random model we consider here is a necklace of total length n = ktm consisting of exactly

km beads of type i for each 1 ≤ i ≤ t, chosen uniformly among all intervals of n beads

as above. Call a set of cuts of such a necklace fair, if it is possible to split the resulting

intervals into k collections, each containing exactly m beads of each type. For a necklace

N , let X = X(N) be the minimum number of cuts in a fair collection. When N is chosen

randomly as above, X is a random variable which we denote by X(k, t,m). By the result

of [1] mentioned above, we have X(k, t,m) ≤ (k− 1)t with probability 1. Our objective is

to study the typical behavior of the random variable X = X(k, t,m). All results presented

here are asymptotic, where at least one of the three variables k, t,m tends to infinity. As

usual, we say that a result holds with high probability (whp, for short), if the probability

that it holds tends to 1, when the relevant parameter(s) tend to infinity.

The problem of determining the asymptotic behavior of X(k, t,m) turns out to be

connected to several seemingly unrelated topics, including matchings in nearly regular

hypergraphs and random walks in Euclidean spaces. For some values of the parameters

k,m and t, we were able to determine this behavior quite accurately, showing that the

typical number of required cuts is sometimes significantly smaller than the deterministic

upper bound (k − 1)t which is always valid.

We start with the following observation.

Proposition 1.1. For every fixed k and t, as m tends to infinity, we have X = X(k, t,m) ≥⌈
(k−1)(t+1)

2

⌉
whp.

In our main result, we describe the asymptotic behavior of X = X(k, t,m) for two

thieves (k = 2) and any fixed number of types t, as m tends to infinity.
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Theorem 1.2. Let t be a fixed positive integer and m→∞.

1. For all 1 ≤ s < t+1
2 , we have that

P
(
X(2, t,m) = s

)
= Θ

(
ms− t+1

2
)
. (1)

2. When t is odd and s = t+1
2 , we have

P
(
X(2, t,m) = s

)
= Θ

( 1

logm

)
. (2)

3. For all t+1
2 < s ≤ t, we have that

P
(
X(2, t,m) = s

)
= Θ(1). (3)

The most surprising aspect of the last result and, in fact, of the present paper is that

the distribution of the values of X(2, t,m) is not concentrated: they are spread over the

interval ( t+1
2 , t], each value being assumed with positive probability.

We also consider the case m = 1, in which every thief should get a single bead of each

type.

Theorem 1.3. For t and k/ log t tending to infinity, the random variable X = X(k, t, 1)

is o(kt) whp.

For k = 2, m = 1 and large t, we prove

Theorem 1.4. The random variable X = X(2, t, 1) is at least 2H−1(1/2)t − o(t) =

0.220...t − o(t) whp, where H−1(x) is the inverse of the binary entropy function H(x) =

−x log2 x− (1− x) log2(1− x) taking values in the interval [0, 1/2].

On the other hand, X ≤ 0.4t+ o(t) holds whp.

The upper bound above was obtained jointly with Ryan Alweiss, Colin Defant and

Noah Kravitz. We show that both the upper and the lower bounds can be slightly im-

proved, but the arguments leave a considerable gap between the two estimates. We further

prove that the probability that X(2, t, 1) deviates from its expectation by at least C
√
t is

at most O(e−Ω(C2)).

The rest of this paper is organized as follows. In the next section, we analyze the case

where k and t are fixed. We start with the simple proof of Proposition 1.1. Since the

proof of Theorem 1.2 is rather long and technical, in Subsection 2.1, we settle the special

3



case t = 3, which requires similar ideas but is considerably simpler. The argument, in its

full generality, encompasses the following three subsections.

In Section 3, we study the case where each thief gets one bead of each type and the

number of types, t, tends to infinity and present the proofs of Theorems 1.3 and 1.4. We

conclude our paper with several remarks and open problems.

To simplify the presentation, throughout the paper, we ignore all floor and ceiling

signs, whenever they are not crucial.

2 Fixed k and t: Proof of Theorem 1.2

Let N be a random open necklace with km beads in each of the t types. Let P be

a partition of the positions of the beads into k parts. We call P balanced if each part

contains tm beads and we call it fair if each part contains exactly m beads of each type.

Thus, only balanced partitions can be fair. Let k = 2 and consider two balanced partitions

P1 and P2. For a part H1 of P1, we can choose a part H2 of P2 with q := |H1\H2| ≤ tm/2.

We call q the distance of the balanced partitions P1 and P2. (Note that the distance is

symmetric and does not depend on the choice of the part H1 of P1.)

We will use the first and second moment methods. Therefore, we need to estimate

the probability that a given partition is fair and that two given partitions are both fair.

The asymptotic notation in this section refers to behavior as m goes to infinity, while

parameters k, t, and s (where appropriate) remain fixed.

Claim 2.1. (i) The probability P (k, t,m) that a fixed balanced partition is fair is

(1 + o(1))
t(k−1)/2k(t−1)/2

(2πm)(k−1)(t−1)/2
= Θk,t(m

−(k−1)(t−1)/2).

(ii) If k = 2 and the distinct balanced partitions P1 and P2 have distance q, then we have

P(P1, P2 are fair) = Θt((qm)−(t−1)/2).

Proof: First, we show part (i). The total number of necklaces is (ktm)!/((mk)!)t. For

any fixed balanced partition, the number of necklaces making it fair is ((mt)!)k/(m!)tk.

Therefore, we have

P (k, t,m) =
((mt)!)k/(m!)tk

(ktm)!/((mk)!)t
= (1 + o(1))

t(k−1)/2k(t−1)/2

(2πm)(k−1)(t−1)/2

The claimed estimate follows by Stirling’s formula.
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For (ii), choose parts H1 of P1 and H2 of P2 with |H1 \ H2| = q. Assuming P1 is

fair, then P2 is also fair if and only if in each color, H1 \ H2 and H2 \ H1 contain the

same number of beads. Note that the distributions of the colors in these two intervals are

independent so-called multivariate hypergeometric distributions. In this case, we choose a

uniform random q-set from a base set containing m beads from each of the t types. The

conditional probability P(H2 is fair | H1 is fair) is, therefore, the same as the probability

that two independent variables from the same multivariate hypergeometric distributions

agree. This is easily seen to be Θt(q
(1−t)/2). For completeness, we sketch the proof of this

statement below.

The random sample can be characterized by the numbers qi of beads of type i, for

every i. We must have qi ≥ 0,
∑t

i=1 qi = q. If this holds, then the probability of this

specific outcome is

Pq1,...,qt =
(mt− q)!q!/

∏t
i=1((m− qi)!qi!)

(mt)!/(m!)t
.

To prove the upper bound Ot(q
(1−t)/2) for the probability that two independent samples

agree, it is enough to notice that Pq1,...,qt = Ot(q
(1−t)/2) holds for any sequence (q1, . . . , qt).

For the lower bound, note that each qi has a hypergeometric distribution with mean

q/t and variance Ot(q), so with a constant probability the numbers qi will simultaneously

satisfy |qi − q/t| = Ot(
√
q) for every i. There are Ot(q

(t−1)/2) such integer vectors also

satisfying
∑t

i=1 qi = q, so the collision probability is Ωt(q
(1−t)/2). This proves the bound

and the claim. �

The proof of Proposition 1.1 is a simple first moment argument based on part (i) of

the previous claim.

Proof of Proposition 1.1: Let N be an open necklace consisting of km beads of each

of the t types.

We estimate the number n(s, k,m, t) of balanced partitions that can be obtained by

s cuts of the open necklace. Note that s cuts result in s + 1 intervals, and the partition

can be reconstructed from the ordered list of the lengths of theses intervals together with

the information which part of the partition contains which interval. In fact, we can save

by not specifying the length of the last interval in each part, because it can be computed

from the lengths of the other intervals in the same part, as the partition must be balanced.

The intervals have lengths at most tm, so we have

n(s, k,m, t) ≤ ks+1(tm)s+1−k = Os,k,t(m
s−k+1).
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From Claim 2.1(i), the expected number of fair partitions obtained by s cuts is

n(s, k,m, t)P (k, t,m) = Ok,s,t(m
s−k+1−(t−1)(k−1)/2) = Ok,s,t(m

s−(t+1)(k−1)/2).

For any fixed k and t, if s < (t+ 1)(k − 1)/2, then the above expectation tends to 0 as m

tends to infinity. This implies the assertion of Proposition 1.1. �

2.1 Proof of Theorem 1.2 for t = 3

The proof of Theorem 1.2 in its full generality is rather lengthy and technical. In the

present subsection, we settle the special case t = 3. For this special case, the argument is

much simpler. However, it is based on some of the same ideas as the general proof.

One cut is sufficient to fairly distribute the random necklace N (that is, X(N) = 1) if

and only if the partition of N into its first and second halves is fair, which has probability

Θ(1/m) by Claim 2.1(i). According to the (deterministic) result of Alon [1], for every

N , we have X(N) ≤ 3. Thus, it remains to show that the probability that X(N) ≤ 2 is

Θ(1/ logm). In order to estimate this probability, note that two cuts suffice if and only if

there is a balanced partition of N into two cyclic intervals that is fair. There are exactly

3m balanced partitions into two cyclic intervals. For 0 ≤ i < 3m, we denote by Pi the

balanced partition into an interval starting at position i+1 and ending at position i+3m,

and its complement.

Let Y = Y (N) denote the random variable counting the number of fair partitions

into cyclic intervals. Clearly, X(N) ≤ 2 if and only if Y is positive. We first establish

a lower bound for the probability of this event using the second moment method. The

random variable Y is a sum of 3m random variables Yi, where Yi is the indicator variable

for Pi being fair. Each of these indicator random variables has expectation P (2, 3,m) =

(1 + o(1))
√

3
πm by Claim 2.1(i), so

E(Y ) =
3m−1∑
i=0

E(Yi) = 3m · (1 + o(1))

√
3

πm
= (1 + o(1))

3
√

3

π
= Θ(1).

The expected value of Y 2 is ∑
0≤i,j≤3m−1

E(YiYj),

where the sum is taken over ordered pairs. For i = j, we have E(Y 2
i ) = E(Yi) =

P (2, 3,m) = Θ(1/m) by Claim 2.1(i). If i 6= j we have E(YiYj) = Θ(1/(mq)) by

Claim 2.1(ii), where q is the distance between the corresponding partitions. Note that
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q = min(|i − j|, 3m − |i − j|). Therefore, for all 1 ≤ q < 3m/2, we have 6m pairs (i, j)

with q being the distance between Pi and Pj . If m is even, we also have the special

case q = 3m/2 with half as many terms. We can ignore this special case, as we are only

interested in the order of magnitude. Therefore,

E(Y 2) = 3m ·Θ
(

1

m

)
+ 6m

∑
1≤q≤3m/2

Θ

(
1

mq

)
= Θ(logm).

By the Paley-Zygmund Inequality [14], [15] or, equivalently, by the Chung-Erdős Inequality

[4],

P(Y > 0) ≥ E(Y )2

E(Y 2)
= Θ

(
1

logm

)
.

We next prove an upper bound for the probability that Y is positive. To this end, we

define another random variable Z = Z(N). We will show that Z is positive with probability

O(1/ logm), and the probability that Y is positive but Z is not, is even lower. The crucial

step in bounding the probability that Z is positive, is the analysis of the probability that

an appropriate two-dimensional random walk does not return to the origin in a certain

number of steps. For this, we apply a slightly modified version of a classical argument of

Dvoretzky and Erdős ([5], see also [7], [18]). This is the subject of Claim 2.2 below.

Let Z = Z(N) denote the number of fair partitions into two cyclic intervals such that

if we shift the parts by at most, say, s = d
√
m e positions to the right, then the resulting

partition is no longer fair. Note, first, that if Y is positive and Z is zero, then in every

set of s consecutive balanced partitions into two cyclic intervals, there is at least one fair

partition. However, in this case, we have Y ≥ 3m/s >
√
m and, as the expectation of Y

is O(1), the probability of this event is O(1/
√
m).

Next, we need to bound the probability that Z is positive. For this, we use a first

moment (union bound) argument. The variable Z is the sum of 3m indicator variables

and, by symmetry, these variables have the same expected value. Therefore, we have

P(Z > 0) ≤ E(Z)

= 3m · P(P0 is fair, but no Pi is fair for 1 ≤ i ≤ s)

= 3mProb1Prob2,

where Prob1 = P(P0 is fair) and Prob2 = P(no Pi is fair for 1 ≤ i ≤ s | P0 is fair). We

have Prob1 = Θ(1/m), by Claim 2.1(i), and Prob2 = O(1/ logm), by Claim 2.2 below.

All this yields

P(Z > 0) = 3m ·Θ(1/m) ·O(1/ logm) = O(1/ logm).

7



Combining this bound with our earlier estimate for the probability that Y > 0 and

Z = 0, implies that

P(Y > 0) ≤ O(1/ logm) +O(1/
√
m) = O(1/ logm).

This completes the proof of the theorem for t = 3, modulo Claim 2.2, which we still have

to establish. �

Claim 2.2. The conditional probability Prob2 defined above satisfies Prob2 = O(1/ logm).

Proof: To evaluate Prob2, we will always assume that P0 is fair and consider N to be a

random necklace satisfying this condition. For simplicity, we call the three types of beads

blue, red, and green, respectively. For 1 ≤ i ≤ s, let bi be the (signed) difference between

the number of blue beads in positions 1 through i and the number of blue beads in positions

3m + 1 through 3m + i. Let ri be similarly calculated for the red beads. Clearly, Pi is

fair if and only if bi = ri = 0. We consider the vectors (bi, ri), as locations of a random

walk starting at (b0, r0) = (0, 0). The steps (bi, ri) − (bi−1, ri−1) can be calculated as the

difference between two vectors from the set S = {(0, 0), (1, 0), (0, 1)}, one corresponding

to the color of bead at position i+ 3m, the other to the color of the bead at position i.

For 1 ≤ i ≤ s, let P (i) denote the probability that this walk returns to the origin after

i steps, that is, bi = ri = 0 (equivalently, Pi is fair), and let Q(i) denote the probability

that the random walk does not return to the origin for i steps. By Claim 2.1(ii), we have

P (i) = Θ(1/i). We also have Prob2 = Q(s).

It is simpler to analyze the random walk if it is memoryless, that is, if the steps are

independent random variables. This is not exactly the case, but is “almost true.” Let the

random variables b′i and r′i be calculated in the same way after we fill all the positions from

1 to s and from 3m+ 1 to 3m+ s with beads of independently and uniformly distributed

random colors. In this case, we have a memoryless random walk that starts at the origin,

and each step can be obtained as the difference of two vectors from S selected uniformly

at random. A fixed arrangement of b blue, r red, and g green beads in the first s positions

(b + r + g = s) has probability exactly 1/3s in the second model, while its probability in

the first model is

(3m− s)!/((m− b)!(m− r)!(m− g)!)

(3m)!/(m!)3
=

(
1

3
+O

( s
m

))s
= Θ

(
1

3m

)
.

A similar statement is true for the colors in positions 3m + 1 through 3m + s, and in

both models, the color arrangements in the two intervals are independent. Therefore, the

probabilities of the same event in the two models differ by at most a constant factor.
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For 1 ≤ i ≤ s, we define P ′(i) as the probability that this memoryless random walk

returns to the origin after i steps and Q′(i) as the probability that the modified random

walk does not return for i steps. By the above argument, we have P ′(i) = Θ(Pi) = Θ(1/i)

and Prob2 = Θ(Q′(s)).

In the following calculation, we split the possible walks according to their last visit at

the origin and use P ′(0) = Q′(0) = 1.

1 =
s∑
i=0

P ′(i)Q′(s− i) ≥ Q′(s)
s∑
i=0

P ′(i),

where the inequality comes from the fact that Q′(i) is a monotone decreasing function of

i. We have
s∑
i=0

P ′(i) = 1 +

s∑
i=1

Θ

(
1

i

)
= Θ(log s) = Θ(logm).

Thus, Prob2 = Θ(Q′(s)) = O(1/ logm), as needed. �

2.2 The second moment method

In this subsection, we prove part (1) of Theorem 1.2 as well as the lower bound in part

(2) of Theorem 1.2.

Let N be a random open necklace with 2m beads of each of t types. Fix an integer

s ≤ t for the number of cuts. Recall that in the proof of Proposition 1.1, we calculated

the number of balanced partitions achievable with s cuts as n(s, 2, t,m) = Os,t(m
s−1).

However, here we can be more precise. We call a balanced partition achievable by s cuts

but not with fewer cuts an s-cut partition. In an s-cut partition the necklace is cut into s+1

non-empty segments and these segments alternate between the two participants. Taking

the odd numbered intervals we obtain an arbitrary partition of tm beads to d(s + 1)/2e
nonempty intervals while the even numbered intervals partition tm beads to b(s + 1)/2c
nonempty intervals. Therefore, the exact number of s-cut partitions is

n′(s, t,m) =

(
tm− 1

d(s− 1)/2e

)
·
(

tm− 1

b(s− 1)/2c

)
= Θs,t(m

s−1).

By Claim 2.1(i), the probability that a fixed balanced partition is fair is P (2, t,m) =

Θt(m
−(t−1)/2).

Let Y be the random variable counting the number of fair s-cut partitions. By linearity

of expectation and the estimates above we have

E(Y ) = n′(s, t,m)P (2, t,m) = Θs,t(m
s−(t+1)/2). (4)
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It follows from Markov’s inequality that

P
(
X(2, t,m) = s

)
≤ P(Y > 0) ≤ E(Y ) = Os,t

(
ms− t+1

2
)
. (5)

This finishes the proof of the upper bound in part (1) of Theorem 1.2.

We note that for odd t and s = (t+ 1)/2, the above expectation is Θt(1) and therefore

the upper bound in part (2) of Theorem 1.2 does not follow from Markov’s inequality as

in part (1). We will present the considerably more involved proof of that upper bound in

Subsection 2.4.

We proceed to estimate the second moment of Y , the number of fair s-cut partitions.

For an s-cut partition P let YP denote the indicator random variable whose value is 1 if

and only if P is fair. By Claim 2.1(ii), for any two distinct balanced partitions P and P ′,

the probability that both P and P ′ are fair is

E(YPYP ′) = Θt((mq)
−(t−1)/2),

where q is the distance between P and P ′. For 0 < q ≤ tm/2, let n∗(q, t,m, s) denote the

number of ordered pairs of s-cut partitions (P, P ′), such that the distance between P and

P ′ is q. To estimate the number n∗(q, t,m, s), consider the collection of 2s cuts of both

partitions, where if both contain a cut at the same point we take it twice. These cuts

partition the interval of beads into 2s + 1 pairwise disjoint intervals (including possibly

some empty intervals, when the two partitions share a cut). Let us select a part H of P

and a part H ′ of P ′ such that |H \ H ′| = q. The non-empty intervals can be classified

as follows: the ones belonging to H ∩H ′, the ones belonging to H \H ′, to H ′ \H, and

those not in H ∪ H ′. The total number of beads in the intervals of the first type is

|H ∩H ′| = tm− q, and this is also the total number of beads in the intervals of the fourth

type. The number of beads in intervals of the second type is |H \H ′| = q, and so is the

number of beads in intervals of the third type. Call the first and fourth types even and

the second and third odd (this indicates the parity of the number of sets among H,H ′ to

which the corresponding interval belongs). With appropriate classification of the empty

intervals into one of the four types one can make sure that even and odd intervals alternate

so we either have s+ 1 even and s odd intervals or vice versa.

We can reconstruct both partitions P and P ′ from the ordered list of types and lengths

of all the 2s + 1 intervals. In fact, we can save by not specifying the length of the last

interval in each type as that can be computed from the lengths of the other intervals.

We clearly have at most 42s+1 possibilities for the sequence of types. Even intervals have

lengths between 0 and tm−q and odd intervals have lengths between 0 and q. So, in total,
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we have at most 42s+1(tm− q + 1)s−1(q + 1)s−2 possibilities if there are s+ 1 odd and s

even intervals, and at most 42s+1(tm− q + 1)s−2(q + 1)s−1 in the reversed case. We have

n∗(q, t,m, s) = Os,t(m
s−1qs−2),

because the estimate holds for both of these numbers if s and t are fixed.

Recall that the random variable Y can be written as Y =
∑
YP , where P ranges over

the s-cut partitions. Therefore

E(Y 2) ≤ E(Y ) +
∑

1≤q≤tm/2

n∗(q, t,m, s)Θ((mq)−(t−1)/2)

= Θs,t(m
s−(t+1)/2) +

∑
1≤q≤tm/2

Os,t(m
s−(t+1)/2qs−1−(t+1)/2).

(6)

When s < (t+1)/2, the last inequality shows that E(Y 2) = Os,t
(
ms− t+1

2

)
. Thus, using

(4) and Paley-Zygmund Inequality, we get

P
(
X(2, t,m) ≤ s

)
≥ P(Y > 0) ≥ E(Y )2

E(Y 2)
= Ωs,t

(
ms− t+1

2
)
.

Combining this result with (5), we obtain for all 1 ≤ s < t+1
2 ,

P
(
X(2, t,m) = s

)
= P

(
X(2, t,m) ≤ s

)
− P

(
X(2, t,m) ≤ s− 1

)
= Ωs,t

(
ms− t+1

2
)
.

This finishes the proof of part (1) of Theorem 1.2.

When t is odd and s = t+1
2 , the inequality (6) shows that E(Y 2) = Os,t

(
logm

)
. Thus,

using the same arguments we get that

P
(
X(2, t,m) = s

)
= Ωs,t

( 1

logm

)
.

This finishes the proof of the lower bound in part (2) of Theorem 1.2.

Finally, we note that when t is even and s = t/2 + 1, we get from (6) that E(Y 2) =

Os,t(
√
m) and therefore by the same arguments

P
(
X(2, t,m) = s

)
= Ωt(1). (7)

This is a special case of part (3) of Theorem 1.2. The proof in the general case is similar,

but requires an additional twist. We present it the next subsection. Since the computation

involved is similar to the one above, we omit some of the details.

11



2.3 Proof of part (3) of Theorem 1.2

We have P(X(2, t,m) = s) = 0 for s > t, by the deterministic result, and P(X(2, t,m) = s)

goes to zero if s ≤ (t + 1)/2 by parts (1) and (2) of Theorem 1.2. We proved part (1) in

the previous subsection and will prove the relevant direction of part (2) in the next. Our

goal here is to prove P(X(2, t,m) = s) = Ωt(1) in all remaining cases t/2 + 1 ≤ s ≤ t.

According to (7), this is true for s = t/2 + 1 and can be proved by straightforward second

moment argument. For the general case we will also use the second moment method, but

with a modified distribution.

We will use the following simple claim. It holds for real intervals too, but here we use

the word “interval” to represent any set of consecutive elements in a sequence (such as

beads on a necklace).

Claim 2.3. There exists an absolute positive constant c so that the following holds. Let

x, y and U be positive and let X be a uniform random subset of x points of an interval Y

of length y.

Then the probability that there exists an interval Z (of any length) in Y so that |X∩Z|
deviates from its expectation, |Z|x/y, by at least U is at most 8e−cU

2/x.

Proof: If there exists a interval of Y with deviation above U , then there also exists an

initial interval (starting at the left end of Y ) with deviation larger than U/2, so it suffices

to consider initial intervals. It is also enough to considers initial intervals of length at

most y/2 by symmetry. Consider the first y/2 elements of Y one by one from left to right,

exposing for each of them in turn if it belongs to the random set X. If during the process

we ever reach an initial interval in which the number of elements of X deviates from its

expectation by more than U/2, stop the process and reveal all remaining elements of X.

Conditioning on having a large deviation where we stopped the process, with probability

at least, say, 1/4 we still have deviation of at least U/4 in the interval of the y/2 first

points of Y . But this probability is at most ecU
2/x for some absolute positive constant c,

by standard estimates for large deviations of a hypergeometric distribution (see [9] or [10],

Theorem 2.10 and Theorem 2.1.) This implies that the probability of any initial segment

of Y of length at most y/2 has deviation above U/2 is at most 4e−cU
2/x. The probability

of an initial segment of any length existing with such a high deviation is at most twice

this and if no such initial interval exists then the deviation of any interval is at most U .

This proves the claim. �

Returning to the proof of the theorem, recall that s, t and m are positive integers

satisfying t/2 + 1 ≤ s ≤ t. We will treat t and s as a constants and assume in our

12



calculation that m is sufficiently large depending on t. Let D be the uniform distribution

over necklaces N with 2m beads of type i for every 1 ≤ i ≤ t. We need to prove that

PD(X(N) = s) = Ωt(1). In what follows we consider another distribution D′ on some of

the same possible necklaces obtained in a two step process as follows.

We split the necklace N into s intervals Ii, each consisting of 2mt/s consecutive beads.

Further we split each interval Ii into three equal length subintervals Ii,1, Ii,2 and Ii,3 out

which Ii,2 lies in the middle. Strictly speaking, some rounding is necessary unless 3s

divides 2mt, but we ignore these roundings as they do not matter in our calculations. We

will choose the positive integer L < m/2 later. In the first step of our two step process we

place L random beads of type i uniformly in both of the intervals Ii,1 and Ii,3, for every

i. We call the beads so placed seeds, so we have 2sL seeds in total. As the second step of

our process generating the distribution D′ we place the remaining 2mt − 2sL beads (the

non-seeds, 2m−2L of them of type i for i ≤ s and 2m beads of type i for i > s) uniformly

in the available slots.

For a type i and an interval J in the necklace we denote the number of beads of type

i in J by ni(J). The dependence on N is implicit. We call a necklace N normal if the

distribution of types in every interval is close to its expectation, that is, if for every interval

J and every type i, we have |ni(J)− ED′(ni(J))| < L/(4t).

We use the asymptotic notations Ot(·), Ωt(·) and Θt(·) to hide positive multiplica-

tive factors depending on t alone. These factors are not allowed to depend on m or L.

(Dependence on s is allowed as s ≤ t can take finitely many distinct values for a fixed t.)

Claim 2.4.

PD′(N is not normal) = Ot(1)e−Ωt(L2/m)

Proof: We can identify 2s+t sets placed uniformly in the process defining the distribution

D′. For i ≤ s we have two sets of seeds of type i placed uniformly in the intervals Ii,1 and

Ii,3, respectively. And for any type i we have the set of non-seed beads of type i placed

uniformly in the positions not occupied by seeds. We apply Claim 2.3 for each of these

processes. The union bound yields the estimate stated in the lemma for the existence of

an interval in any of these processes where the number of beads placed in the interval

deviates from its expectation by more than L/(12t). It remains to prove that assuming

no deviation exceeds L/(12t) the resulting necklace N is normal.

To see this, let us fix an interval J and a type i. Let E stand for the expectation of

ni(J) in the distribution D′ and let E′ stand for the same expectation conditioned on the

placement of the seeds (so E′ is a random variable as ni(J) but E is a constant). Note
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that E′ is determined by how many of the seeds are placed inside J in each of the 2s

relevant subintervals. This is deterministic for all but at most two of the subintervals (the

ones containing the ends of J). Note also that the dependence of E′ on these numbers is

linear with all coefficients below 1 in absolute value. With our low deviation assumption

on the seeds this means that |E′ − E| < 2L/(12t) as E is the expectation of E′. We also

assumed that the number of non-seeds of type i in J differs from its expectation after the

seeds are placed by at most L/(12t). So we have |ni(J) − E′| ≤ L/(12t) and therefore

|ni(J)− E| < L/(4t) as needed. �

Claim 2.5. If N is normal, then X(N) ≥ s.

Proof: We prove the contrapositive: IfX(N) < s, thenN is not normal. So let us fix a fair

partition of N with fewer than s cuts. Note that one of the intervals Ii is not cut at all. Fix

such an i and note that one of the players receive no part of Ii. We look at the expected

value of type i beads (necessarily non-seeds) in the intervals he receives. For any j, a

position of Ij,2 receives a bead of type i with probability (2m−2L)/(2mt−2sL) ≤ 1/t, while

a position in Ij,1 or Ij,3 receives a seed with probability 3sL/(2mt), so it receives a non-seed

of type i with probability (1−3sL/(2mt))(2m−2L)/(2mt−2sL) ≤ 1/t−3sL/(2mt2). As

the partition is balanced the player receives mt beads. There are only 2mt/3 beads in the

middle subintervals Ij,2, so at least mt/3 beads are coming from non-middle subintervals

and therefore the expected number of type i beads this part contains is at mostm−sL/(4t).
Our partition is fair, so the actual number of type i beads the player receives is exactly m.

The discrepancy is coming from the at most s intervals the player receives, so the actual

number of type i beads in one of those deviates from its expectation by at least L/(4t).

This proves that N is not normal. �

Claim 2.6.

PD′(X(N) ≤ s) = Ωt(1)

Proof: We call a balanced partition of the necklace between the two players central if

it is obtained from s cuts, one in each of the middle intervals Ii,2 by distributing the

resulting s + 1 intervals alternately between the two players. Note that the seeds are

distributed equally between the players in a central partition: each players receive exactly

L seeds of each type. Thus, a central partition is fair if and only if both players receive

an equal number on non-seeds of type i for each i. The distribution of the non-seeds are

uniform on the available slots, so both parts of Claim 2.1 applies: the probability under

the distribution D′ that a central partition is fair is Θt(m
−(t−1)/2) and the probability of

14



two distinct central partitions are simultaneously fair is Θt((mq)
−(t−1)/2), where q is the

distance between the central partitions. It should be acknowledged that the situation here

differs from the situation considered in Claim 2.1 in that there we have 2m beads of each

type whereas here we have 2m − 2L non-seed beads in types 1 ≤ i ≤ s. But as 2m − 2L

is between m and 2m the estimate still holds and the original proof of Claim 2.1 applies

in this modified setting almost verbatim. Note that the hidden constant in our estimate

does not depend on L.

We apply the Paley-Zygmund Inequality for the random variable Y counting the fair

central partitions. This argument is very similar to the one presented at the end of the

previous subsection. We have Θ(ms−1) central partitions, so

ED′(Y ) = Θt(m
s−1)Θt(m

−(t−1)/2) = Θt(m
s−(t+1)/2).

We calculate ED′(Y 2) as the sum of probabilities for ordered pairs of central partitions

that they are simultaneously fair. We have Θt(s
m−1) pairs of equal partitions and for

1 ≤ q we have O(ms−1qs−2) pairs of distance q. This gives

ED′(Y 2) = Ot(m
s−(t+1)/2) +

mt/2∑
q=1

O(ms−(t+1)/2qs−(t+1)/2−1) = O(m2s−t−1),

where we used s > (t + 1)/2 in the last step. Using the Paley-Zygmund Inequality we

obtain

PD′(Y > 0) ≥ (ED′(Y ))2

ED′(Y 2)
= Ωt(1).

To finish the proof of the claim simply observe that Y > 0 means that there is a fair

central partition, so X(N) ≤ s as central partitions have s cuts. �

We set L such that N is normal with probability at least 1 − PD′(X(N) ≤ s)/2. By

Claims 2.4 and 2.6 this can be achieved by an appropriate choice also satisfying L =

O(
√
m). With this choice of L we have that N is normal and X(N) ≤ s with probability

Ωt(1). In this case we actually have X(N) = s by Claim 2.5. These estimates hold for

a random necklace N in the distribution D′. To prove part (3) of Theorem 1.2 we need

a similar estimate in the uniform distribution D. The following Claim finishes the proof

because it establishes that if L = O(
√
m), then D′-weight of a normal necklace is only

constant times its D-weight.

Claim 2.7. We have P ′(N)/P (N) ≤ eOt(L2/m) for any normal necklace N , where P ′(N)

stands for the probability of obtaining N in the distribution D′ and P (N) is the probability

of obtaining it in D.
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Proof: This calculation is tedious but very elementary. The probability P ′(N) depends

on N through the number ni(Ii,j) of beads of type i in the interval Ii,j for 1 ≤ i ≤ s and

j = 1 or 3. We have
(ni(Ii,j)

L

)
choices to select seeds in the interval Ii,j consistent with N .

Thus, the probability of selecting all seeds consistent with N is∏s
i=1

(ni(Ii,1)
L

)(ni(Ii,3)
L

)(2mt/(3s)
L

)2s .

The distribution of non-seeds is uniform, so after such a consistent choice of the seeds we

obtain N with probability
(2m− 2L)!s(2m)!t−s

(2mt− 2sL)!
.

For a random necklace in the distribution D′, the interval Ii,j (j = 1 or 3) contains L

seeds of type i, and the expected number of non-seeds of type i is (2m− 2L)(2mt/(3s)−
L)/(2mt− 2sL) ≤ 2m/(3s)−L/t. As N is normal, the actual value ni(Ii,j) deviates from

its expectation by less than L/t, so we have ni(Ii,j) < 2m/(3s) + L. Using this estimate

and the calculations above, we obtain

P ′(N) ≤
(2m/(3s)+L

L

)2s
((2m− 2L)!s(2m)!t−s(2mt/(3s)

L

)2s
(2mt− 2sL)!

.

As D is uniform, P (N) does not depend on N :

P (N) =
(2m)!t

(2mt)!
.

To estimate P ′(N)/P (N), we use the inequalities (a− b)b <
(
a
b

)
b! ≤ ab and obtain

P ′(N)

P (N)
≤
(

2mt(2m/(3s) + L)

(2m− 2L)(2mt/(3s)− L)

)2sL

.

Using s ≤ t and L ≤ m/2, we can further estimate

2mt(2m/(3s) + L)

(2m− 2L)(2mt/(3s)− L)
≤ 1 +Ot

(
L

m

)
,

so we have
P ′(N)

P (N)
≤
(

1 +Ot

(
L

m

))2sL

= eOt(L2/m),

as claimed �

16



2.4 Random walks

In this subsection, we prove the upper bound in part (2) of Theorem 1.2. The following

proposition is at the heart of the argument. In this proposition we bound the probability

that a certain equation cannot be solved in the trajectories of independent random walks.

To prove the proposition we modify and generalize a proof of Lawler [11]. In [11] and [12]

Lawler studied the probability that the traces of two independent random walks on Z4 are

disjoint. See also [6, 7] for works of Erdős and Taylor on the same problem.

Throughout this subsection, we fix t ≥ 1 odd, s = t+1
2 and let the O notations

depend on t. Recall that an infinite two-sided random walk W (n) is a sequence of random

variables in some Euclidean space such that W (n+ 1)−W (n) for n ∈ Z are independent

and identically distributed. We say that the walk has a finite range if there is a finite

set A for which P(W (1) − W (0) /∈ A) = 0. Finally, the walk W is called centered if

E[W (1)−W (0)] = 0.

Proposition 2.8. Let 〈Wj(n), n ∈ Z〉 for j ≤ s be independent and identically distributed

two-sided random walks on Z2s−2. Suppose that Wj(0) = 0 for all j and that the walks are

centered and have a finite range. Then, there exists C > 0 depending on s and the step

distribution of the walks such that for all N ≥ 2,

P
(
∀k = (k1, . . . , ks) ∈ AN ,

s∑
j=1

Wj(kj) 6= 0

)
≤ C

logN
,

where

AN :=

{
k ∈ Zs :

s∑
j=1

kj = 0 and k >` 0

}
∩ [−N,N ]s,

and where >` is the lexicographic order on Zs.

We first show how to use Proposition 2.8 in order to prove the upper bound in part

(2) of Theorem 1.2.

2.4.1 Proof of the upper bound in part (2) of Theorem 1.2

We parameterize a partition of the necklace with s cuts by a vector of integers i =

(i0, i1, . . . , is, is+1) with

0 = i0 ≤ i1 ≤ · · · ≤ is ≤ is+1 = 2mt.
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This corresponds to a partition where the first thief gets beads 1 to i1, the second one gets

beads i1 + 1 to i2 and so on. Let I be the set of balanced partitions. That is

I :=

{
(i0, i1, . . . , is+1)

∣∣∣ s∑
j=0

(−1)j (ij+1 − ij) = 0

}
.

For n ≤ 2mt, let U(n) ∈ Nt−1 be the random variable that, in the j’th coordinate, counts

the number of beads of type j out of the first n beads. It is clear that i = (i0, i1, . . . is+1) ∈ I
is fair if and only if

s∑
j=0

(−1)j(U(ij+1)− U(ij)) = 0. (8)

Indeed, equation (8) says that the first t − 1 types are equally distributed between the

thieves. Therefore, as each thief gets in total mt beads, it follows that the last type must

be equally distributed as well.

Next, let Z be the number of fair partitions in I. It suffices to prove that

P(Z > 0) = O

(
1

logm

)
. (9)

To this end, define the sets of partitions

I1 :=
{
i ∈ I

∣∣ ∀0 ≤ j ≤ s, ij+1 − ij > 2m
1
4

}
, I2 := I \ I1,

and let Z2 be the number of fair partitions in I2.

We define a total order on I. For i, i′ ∈ I, we write i′ � i if

(i′1,−i′2, i′3,−i′4, . . . ) >` (i1,−i2, i3,−i4, . . . ),

where <` is the lexicographic order on Zs. For a partition i ∈ I1, define the set

Bi :=
{
i′ ∈ I

∣∣ i′ � i and ∀j ≤ s, |ij − i′j | ≤ m
1
4

}
and the event

Bi :=
{
i is fair and ∀i′ ∈ Bi, i′ is not fair

}
.

Finally, let

Z1 :=
∑
i∈I1

1Bi .

We claim that

{Z > 0} ⊆ {Z1 > 0} ∪ {Z2 > 0}. (10)
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Indeed, suppose that Z > 0 and let i ∈ I be the maximal fair partition with respect

to �. If i ∈ I2 then Z2 > 0 and therefore we may assume that i ∈ I1. Since i is maximal,

for all i′ ∈ Bi, i′ is not fair. Thus, Bi holds and Z1 > 0.

We turn to bound the probabilities of the two events on the right-hand side of (10). It is

easy to check that |I2| = O(ms− 7
4 ) and therefore by Markov’s inequality and Claim 2.1(i),

P(Z2 > 0) ≤ E(Z2) =
∑
i∈I2

P(i is fair) ≤ |I2| ·O
(
m−

t−1
2
)

= O
(
m−

3
4
)
. (11)

Next, we bound P(Z1 > 0). We have that

P(Bi) = O
(
m−

t−1
2
)
· P
(
∀i′ ∈ Bi, i′ is not fair | i is fair

)
. (12)

We bound the last probability in the following claim.

Claim 2.9. We have that

P
(
∀i′ ∈ Bi, i′ is not fair | i is fair

)
= O

(
1

logm

)
. (13)

Using Claim 2.9, equation (12) and Markov’s inequality we get

P(Z1 > 0) ≤ E(Z1) =
∑
i∈I1

P(Bi) = O

(
m−

t−1
2

logm

)
· |I1| = O

(
1

logm

)
. (14)

Finally, (9) follows from (14), (11) and (10). This finishes the proof of part (2) of Theo-

rem 1.2.

It remains to prove Claim 2.9

Proof of Claim 2.9: Throughout this proof, we consider a uniform necklace N with 2m

beads of each type such that the partition i is fair. As before, we denote by U(n) ∈ Nt−1

the counting vector. In this case, by (8), i′ ∈ I is fair if and only if

s∑
j=1

(−1)j+1
(
U(i′j)− U(ij)

)
= 0. (15)

For 1 ≤ j ≤ s and |n| ≤ m
1
4 , define

W̃j(n) := t(−1)j+1
(
U(ij + (−1)j+1n)− U(ij)

)
− (n, . . . , n).

Using this notation and (15) we have that i′ ∈ Bi is fair if and only if

s∑
j=1

W̃j

(
(−1)j+1(i′j − ij)

)
= 0.
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Here, we also used that
s∑
j=1

(−1)j+1(i′j − ij) = 0,

which follows as i, i′ ∈ I. Thus, letting

A :=
{(

(−1)j+1(i′j − ij)
)s
j=1
| i′ ∈ Bi

}
⊆ Zs,

we obtain that the probability in (13) is given by

P
(
∀k ∈ A,

s∑
j=1

W̃j(kj) 6= 0

)
.

Moreover, from the definition of Bi it is clear that

A =

{
k ∈ Zs :

s∑
j=1

kj = 0 and k >` 0

}
∩ [−m

1
4 ,m

1
4 ]s.

We cannot use Proposition 2.8 yet, because the processes W̃j are not exactly indepen-

dent random walks. We will show that it is possible to couple them with random walks.

To this end, let Y be a random variable in Zt−1 with distribution

∀j ≤ t− 1, P(Y = tej − (1, . . . , 1)) =
1

t
and P(Y = −(1, . . . , 1)) =

1

t
.

Let Wj(n) for j ≤ s and |n| ≤ m
1
4 be independent two-sided random walks on Zt−1 with

steps distributed like Y and with Wj(0) = 0. We claim that one can couple {Wj}sj=1 and

{W̃j}sj=1 such that

P
(
∀j, W̃j = Wj

)
= 1−O

(
m−

1
2
)
. (16)

We give a sketch of proof for this fact. Consider a new necklace N ′ of length l = 2tbm
1
4 c

obtained from N by concatenating intervals of beads of length 2bm
1
4 c around each of

the cuts. We also let N ′′ be another necklace of the same length obtained by choosing

independently and uniformly the type of each bead. It is not hard to see that (16) follows

from a coupling of N ′ and N ′′ such that P(N ′ = N ′′) = 1−O(m−
1
2 ). The first bead of N ′

is clearly uniform. Conditioning on the first m beads of N ′, a simple counting argument

shows that the probability that the next bead is of a certain type is 1
t + O(m−

3
4 ). Thus,

the probability to get any particular sequence of beads of length l is(1

t
+O(m−

3
4 )
)l

=
1

tl

(
1 +O(m−

1
2 )
)
.
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This shows that N ′ and N ′′ can be coupled such that P(N ′ 6= N ′′) = O(m−
1
2 ), which

proves (16).

By (16) and Proposition 2.8, we obtain that

P
(
∀k ∈ A,

s∑
j=1

W̃j(kj) 6= 0

)
= O

(
m−

1
2
)

+ P
(
∀k ∈ A,

s∑
j=1

Wj(kj) 6= 0

)
= O

(
1

logm

)
.

This finishes the proof of Claim 2.9.

2.4.2 Proof of Proposition 2.8

The proof is somewhat similar to the proof of Claim 2.2. In the proof of Claim 2.2, we

split the possible walks according to their last visit at the origin. Then, we use the Markov

property to argue that the probability that the last visit is at time k equals the probability

that the walk returns to the origin at time k times the probability that the walk avoids

the origin in the remaining time.

Similarly, in the following proof, we consider the last integer vector k (according to

the lexicographic order) for which
∑
Wj(kj) = 0. Then, we condition on the trajectories

of all walks other then the first one and use the Markov property for the first walk. The

proof becomes slightly more technical as we need to control probabilities conditioned on

the last walks with high probability. Throughout the proof we let the O notations depend

on the step distribution of the random walk as well as on s.

Consider the set

E :=

{
ξ = (ξ2, . . . , ξs)

∣∣∣∣ ξj : [−2N, 2N ] ∩ Z→ Z2s−2

}
.

We think of E as the set of trajectories of the walks W2, . . . ,Ws. Let K = (K1, . . . ,Ks)

be the maximal element (k1, . . . , ks) ∈ AN ∪ {0} with respect to >` such that

s∑
j=1

Wj(kj) = 0.

For ξ ∈ E and k ∈ AN define the event

A(ξ, k) := {K = k} ∩
s⋂
j=2

{∀l ∈ {−2N, . . . , 2N}, Wj(kj + l)−Wj(kj) = ξj(l)}.
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It is clear that these events are disjoint and that

A(ξ, k) ⊇
{
W1(k1) =

s∑
j=2

ξj(−kj)
}

∩
s⋂
j=2

{
∀l ∈ {−2N, . . . , 2N}, Wj(kj + l)−Wj(kj) = ξj(l)

}
∩
{
∀n ∈ A2N , W1(k1 + n1)−W1(k1) +

s∑
j=2

ξj(nj) 6= 0

}
.

(17)

All the s+1 events whose intersection gives the right-hand side of (17) are independent

(the first and last events are independent as k1, n1 ≥ 0) and, therefore,

P (A(ξ, k)) ≥ P (ξ) · P
(
W1(k1) =

s∑
j=2

ξj(−kj)
)

· P
(
∀n ∈ A2N , W1(n1) +

s∑
j=2

ξj(nj) 6= 0

)
,

(18)

where

P (ξ) :=
s∏
j=2

P
(
∀l ∈ {−2N, . . . , 2N}, Wj(l) = ξj(l)

)
.

Next, for ξ ∈ E define the function

G(ξ) :=
∑
k∈AN

P
(
W1(k1) =

s∑
j=2

ξj(−kj)
)
.

The following lemma shows that G is typically of the order of Ω(logN).

Lemma 2.10. There exists c > 0 such that

P
(
G(W2, . . . ,Ws) < c logN

)
= O

(
1

logN

)
.

We postpone the proof of Lemma 2.10 and proceed with the proof of Proposition 2.8.

To this end, define the set

G :=
{
ξ ∈ E : G(ξ) ≥ c logN

}
.
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Summing the inequality in (18) over ξ ∈ G and k ∈ AN , we get

1 ≥ P
( ⋃
ξ∈G

⋃
k∈AN

A(ξ, k)

)
=
∑
ξ∈G

∑
k∈AN

P (A(ξ, k))

≥
∑
ξ∈G

P (ξ) ·G(ξ) · P
(
∀n ∈ A2N , W1(n1) +

s∑
j=2

ξj(nj) 6= 0

)

= Ω(logN)
∑
ξ∈G

P (ξ) · P
(
∀n ∈ A2N , W1(n1) +

s∑
j=2

ξj(nj) 6= 0

)

= Ω(logN) · P
(

(W2, . . . ,Ws) ∈ G and ∀n ∈ A2N ,
s∑
j=1

Wj(nj) 6= 0

)

= Ω(logN) · P
(
∀n ∈ A2N ,

s∑
j=1

Wj(nj) 6= 0

)
−O(1).

where the last equality follows from Lemma 2.10. Thus,

P
(
∀n ∈ A2N ,

s∑
j=1

Wj(nj) 6= 0

)
= O

(
1

logN

)
. (19)

This completes the proof of Proposition 2.8.

We turn to prove Lemma 2.10. For the proof we need the following standard claim on

integer valued random walks.

Claim 2.11. Let W (n) be a centered, finite range random walk on Zd with W (0) = 0.

Suppose that the covariance matrix of W (1) is Σ and that Σ is nonsingular. Then

1. For all n ≥ 1, k ∈ Zd and a > 0 such that ||k|| ≤ a
√
n and P(W (n) = k) > 0, we

have that

P(W (n) = k) = Ωa

(
n−

d
2
)
.

2. For all n ≥ 1 and r > 0, we have that∣∣P(||W (n)|| ≤ r
√
n)− P(||Z|| ≤ r)

∣∣ = O
( 1√

n

)
,

where Z ∼ N(0,Σ).

Proof: The second part follows from [17, Theorem 1.1].

Now we prove the first part. We start by showing that without loss of generality, W

is irreducible. Indeed, otherwise consider the set

Λ := {k ∈ Zd : ∃n ≥ 0, P(W (n) = k) > 0}.
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For a general walk, Λ is a semigroup. However, since W is centered, it is not hard to

check that Λ is in fact a lattice. If we let T be a linear transformation that maps Λ to Zd

then the new walk T (W ) is an irreducible walk. Now, we can use [19, Theorem 3.1] that

determines the asymptotic behavior of P(W (n) = k) for an irreducible (possibly periodic)

walk. See also the work of Polya on the simple random walk [16].

Proof of Lemma 2.10: Fix k2, . . . , ks such that −N/s ≤ k2, . . . , ks < 0 and let k1 :=

−k2 − · · · − ks. It is clear that k = (k1, . . . , ks) ∈ AN . On the event

B :=
{
∀2 ≤ j ≤ s, ||Wj(−kj)|| ≤

√
|kj |
}
,

we have that ∣∣∣∣∣∣∣∣ s∑
j=2

Wj(−kj)
∣∣∣∣∣∣∣∣ ≤√|k2|+ · · ·+

√
|ks| ≤ s

√
k1

and therefore, by the first part of Claim 2.11, on B we have

P
(
W1(k1) =

s∑
j=2

Wj(−kj)
∣∣∣∣ W2, . . .Ws

)
= Ω

( 1

ks−1
1

)
.

Note that in order to use Claim 2.11 we have to first verify that the last probability is

positive. This is indeed the case since, with positive probability, the walk W1 takes the

same −k2 steps as W2, then the same −k3 steps as W3 and so on. We obtain that

G(W2, . . . ,Ws) ≥ Ω(1)

N/s∑
k2=1

· · ·
N/s∑
ks=1

1(
k2 + · · ·+ ks

)s−1

s∏
j=2

1
{
||Wj(kj)|| ≤

√
kj
}

≥ Ω(1)

logN∑
p=1

2−p(s−1)
2p+1−1∑
k2=2p

· · ·
2p+1−1∑
ks=2p

s∏
j=2

1
{
||Wj(kj)|| ≤

√
kj
}
.

(20)

Denote by X the sum on the right-hand side of (20). Intuitively, X is of order logN

since each dyadic scale p contributes order 1 to the sum and far away scales are weakly

correlated. We make this heuristic rigorous using the second moment method.

By the central limit theorem we have that

E(X) =

logN∑
p=1

2−p(s−1)
2p+1−1∑
k2=2p

· · ·
2p+1−1∑
ks=2p

Ω(1) = Ω(logN).

We turn to bound the variance of X. We have that

V ar(X) ≤
logN∑
p=1

logN∑
q=1

2−(p+q)(s−1)
2p+1∑
k2=2p

· · ·
2p+1∑
ks=2p

2q+1∑
l2=2q

· · ·
2q+1∑
ls=2q

s∏
j=2(

P
(
||Wj(kj)|| ≤

√
kj , ||Wj(lj)|| ≤

√
lj

)
− P

(
||Wj(kj)|| ≤

√
kj

)
P
(
||Wj(lj)|| ≤

√
lj

))
.
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For all j with kj ≤ lj , we have that

P
(
||Wj(kj)|| ≤

√
kj , ||Wj(lj)|| ≤

√
lj

)
≤ P

(
||Wj(kj)|| ≤

√
kj , ||Wj(lj)−Wj(kj)|| ≤

√
lj +

√
kj

)
= P

(
||Wj(kj)|| ≤

√
kj

)
P
(
||Wj(lj − kj)|| ≤

√
lj +

√
kj

)
.

(21)

When lj ≥ 2kj , let

r :=

√
lj +

√
kj√

lj − kj
= 1 +O

(√
kj√
lj

)
.

By the second part of Claim 2.11 for lj ≥ 2kj ,

P
(
||Wj(lj − kj)|| ≤

√
lj +

√
kj

)
= P (||Z|| ≤ r) +O

(
1√
lj

)
= P(||Z|| ≤ 1) +O

(√
kj√
lj

)
= P

(
||Wj(lj)|| ≤

√
lj

)
+O

(√
kj√
lj

)
.

(22)

It is clear that the probability in the left-hand side of (22) is estimated by the right-hand

side of (22) when kj ≤ lj ≤ 2kj and therefore it holds whenever lj ≥ kj . Substituting this

estimate into (21) and using the same arguments when lj ≤ kj , we get that for all kj , lj ,

P
(
||Wj(kj)|| ≤

√
kj , ||Wj(lj)|| ≤

√
lj

)
≤ P

(
||Wj(kj)|| ≤

√
kj

)
P
(
||Wj(lj)|| ≤

√
lj

)
+O

(√
min(lj , kj)√
max(lj , kj)

)
.

Thus,

V ar(X) ≤ O(1)

logN∑
p=1

logN∑
q=p

2−(p+q)(s−1)
2p+1∑
k2=2p

· · ·
2p+1∑
ks=2p

2q+1∑
l2=2q

· · ·
2q+1∑
ls=2q

2(p−q)(s−1)/2

≤ O(1)

logN∑
p=1

2p(s−1)/2
logN∑
q=p

2−q(s−1)/2 ≤ O(1)

logN∑
p=1

1 = O(logN).

(23)

Finally, by Chebyshev’s inequality there exists c > 0 such that

P(X < c logN) = O

(
1

logN

)
.

This finishes the proof of the lemma using (20).
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3 The case m = 1, many types

In this section, we prove Theorems 1.3 and 1.4 in which the number of beads of each type

is equal to the number of thieves and each collection of intervals should contain exactly

one bead of each type. In order to prove Theorem 1.3, we need a hypergraph edge-coloring

result of Pippenger and Spencer [13].

First, we recall the terminology. A hypergraph is a pair H = (V,E), where V is the

set of vertices and E is a multiset consisting of subsets of vertices called the edges. We

only consider here finite hypergraphs. We say that H is C-uniform if every edge contains

C vertices. The degree dH(v) of a vertex v ∈ V is the number edges containing v. If all

the vertices have the same degree k, we call H k-regular. The codegree of two distinct

vertices is the number of edges which contain both of them. The maximum degree and

maximum codegree of the hypergraph H is the maximum degree of a vertex of H, and the

maximum codegree of two distinct vertices in H, respectively. A set of pairwise disjoint

edges is called a matching.

Theorem 3.1 ([13]). For every integer C ≥ 2 and every ε > 0, there is δ > 0 such that

the following statement holds.

For every positive integer k and any C-uniform hypergraph H with maximum degree

at most k and maximum codegree at most δk, the edges of H can be partitioned into at

most (1 + ε)k matchings.

The original statement published in [13] had two extra assumptions. First, it was

required that the number of vertices of the hypergraph is sufficiently large as a function

of C and ε. Second, it was also assumed that every vertex has degree at least (1 − δ)k.

However, these two conditions are superfluous. One can add any number of isolated

vertices to a hypergraph H to satisfy the former condition. Then one can use the following

lemma to obtain a k-regular hypergraph H ′ containing H without changing the maximal

codegree. Partitioning the edge set of H ′ into few matchings also partitions the edge set

of H into the same number of matchings.

Lemma 3.2. For any C ≥ 2 and any C-uniform hypergraph H with at least one edge and

maximum degree at most k, there exists a k-regular C-uniform hypergraph H ′ ⊇ H with

the same maximum codegree as H.

Proof: A hypergraph is called simple if its maximum codegree is 1. It is easy to construct

a (finite) k-regular (C − 1)-uniform simple hypergraph H∗ = (V ∗, E∗). For example, let
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V ∗ = Uk, where U is a set of size C− 1, and let E∗ consist of all (C− 1)-tuples with k− 1

fixed coordinates. Let L denote the number of edges in H∗.

Let H = (V,E) and M =
∑

v∈V (k − dH(v)). Take M isomorphic copies, H∗1 , . . . ,H
∗
M ,

of H∗ and L isomorphic copies, H1, . . . ,HL, of H on pairwise disjoint vertex sets, where

H1 = H. Construct the hypergraph H ′ = (V ′, E′) as follows. Let V ′ be the disjoint union

of the vertex sets of all Hi and H∗j . Let E′ consist of all the edges of the hypergraphs Hi

and the extensions of the edges of H∗j . Here, an edge of H∗j is extended with a properly

chosen vertex from a hypergraph Hi to obtain a size-C edge of H ′, making H ′ C-uniform,

as required.

We extend different edges in the same copy H∗j of H∗ with vertices from different

copies of H. This guarantees that if a pair of distinct vertices in V ′ are contained in more

than one edge of H ′, then they belong to the same Hi and their codegrees in H ′ and in

Hi coincide. Hence, the maximum codegrees in H and H ′ are the same, as required.

For any j, we have to choose a vertex from each copy of Hi to extend one of the edges

of H∗j . So, for a fixed copy Hi, we have to make M such choices. By the definition of

M , we can make these choices in such a way that every vertex v in Hi is chosen exactly

k − dHi(v) times. Thus, the degree of v in H ′ will be precisely k. The H ′-degree of every

vertex of H∗j is also equal to k, so H ′ is k-regular.

It follows from the assumption H1 = H that the edge set of H is contained in the edge

set of H ′. This completes the proof of the lemma. �

Proof of Theorem 1.3: Let N be a random necklace with exactly k beads of type i for

each 1 ≤ i ≤ t, where t and k/ log t are large. The total number of beads is, therefore,

n = kt. Fix a small ε > 0 and let C be a large integer. Let δ = δ(C, ε) satisfy the assertion

of Theorem 3.1. We assume without loss of generality that δ < ε/C. Split the necklace

into disjoint intervals, each of length C (with possibly one shorter interval if kt is not

divisible by C). This requires fewer than n/C cuts. Call an interval bad if it contains two

beads of the same type (or if it is the last interval with fewer than C beads); otherwise

call it good.

Let H be the C-uniform hypergraph with t vertices that represent the t types, and one

edge for each good interval consisting of the vertices representing the types of beads in the

interval. (Occasionally we might get two good intervals containing beads of the same types,

but this represents no problem as we allowed for a multiset for edges.) The maximum

degree in H at most k. The proof proceeds by showing that, with high probability, the

maximum codegree in H is at most δk and, thus, Theorem 3.1 applies. One can then

take the k largest matchings and use them to partition almost all beads into k collections
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without any further cuts, each containing at most one bead of each type. The remaining

few beads can then be cut loose by a few additional cuts and then they can be placed in

the partition classes as required. Since the number of these remaining beads is small, the

total number of cuts is o(kt) as t and k/ log t tend to infinity.

In what follows, we work out the technical details.

Suppose the following two inequalities hold:

t ≥ 2C

δ
, (24)

t2e−δ
2k/2 ≤ ε. (25)

Note that both of these inequalities hold provided that t and k/ log t are sufficiently large

as functions of C and ε (which determine δ).

For every pair of distinct types, i, j ∈ [t], let Ei,j be the event that more than δk edges

contain both i and j. The probability of this event can be estimated as follows. There

are at most k intervals containing a bead of type i. When placing the k beads of type j

one by one, the conditional probability for each of them to lie in an interval containing a

bead of type i, given any history, is at most (C−1)k
(t−2)k < C

t . The probability that there are at

least δk such beads is, thus, at most the probability that a binomial random variable with

parameters C/t and k is at least δk. This can be estimated using (24) and the Chernoff

bound (c.f. [3], Theorem A.1.4) as P(Ei,j) < e−δ
2k/2.

Let Ei be the event that among the length C intervals of the necklace N , there are at

least δk which contain at least two beads of type i. The probability of this event can be

estimated using the same argument as above. Indeed, when placing the beads of type i

one by one, every time the probability that it falls into an interval which already contains

a bead of type i, is at most C/t. If the event Ei occurs, then this happens at least δk

times, and the probability of this event is less than e−δ
2k/2.

By (25) and the above estimates, it follows that, with probability at least 1− ε, none

of the events Ei,j and Ei holds. Let us assume that this is the case. As none of the events

Ei,j hold, the maximal codegree in H is below δk. Therefore, Theorem 3.1 applies and

the edges of H can be partitioned into at most (1 + ε)k matchings. We choose the largest

k among these matchings (breaking ties arbitrarily) and partition the corresponding good

intervals of the necklace into k parts, each containing at most one bead of each type. We

cut each remaining interval (the bad ones and the good ones that do not belong to any of

the largest k matchings) into individual beads and distribute these beads appropriately to

obtain a fair partition, where each part contains exactly one bead of each type. We used
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fewer than n/C cuts to obtain the intervals and fewer than εn cuts to cut up the good

intervals outside the k largest matchings. Finally, we used at most C−1 cuts for each bad

interval. As none of the events Ei happens, there are fewer than δn+ 1 bad intervals. All

in all, the number of cuts was smaller than n/C + εn+ δCn ≤ n/C + 2εn (where we used

the assumption that δ ≤ ε/C). As ε > 0 can be chosen arbitrarily small, C arbitrarily

large, and the required conditions hold with probability at least 1− ε provided that t and

k/ log t are sufficiently large depending on C and ε, the theorem is true. �

Proof of Theorem 1.4: The lower bound for X = X(2, t, 1) is proved by a simple first

moment argument. Let s be the number of cuts allowed, and let Y be the random variable

counting the number of fair balanced partitions of the necklace using s(≤ t) cuts. For each

fixed balanced partition, the probability that it is fair is

(t!)2 · 2t/(2t)! = Θ(

√
t

2t
).

The number of 2-partitions requiring exactly s cuts is exactly
(

2t−1
s

)
. The number of bal-

anced partitions that can be obtained by at most s cuts is therefore at most
∑s

i=0

(
2t−1
i

)
≤

22H(s/(2t))t, where H(x) is the binary entropy function. Therefore, the expected number

of fair partitions with s cuts is at most

22H(s/(2t))tΘ

(√
t

2t

)
.

For any positive ε, large t > t0(ε), and s smaller than (2H−1(1/2)−ε)t, the last expression

is smaller than ε. This implies that whp X(2, t, 1) is at least H−1(1/2)2t−o(t) = 0.22...t−
o(t).

The proof of the upper bound, obtained jointly with Ryan Alweiss, Colin Defant and

Noah Kravitz, follows. Let f(t) denote the expectation of X(2, t, 1).

Claim 3.3.

f(t+ 1) ≤ f(t) +
1

2
− 1

2

f(t)

2t+ 1
+

1

2t+ 2
.

Proof: Expose the random necklace with t+ 1 types and 2 beads of each type as follows:

first expose the last bead, without loss of generality let its type be t+ 1. Then expose the

necklace of the 2t beads of types 1, 2, . . . , t (ignoring the second bead of type t+ 1). This

is uniform random hence in expectation there is a collection of f(t) cuts of this necklace

of t types that gives a fair partition. Fix one such minimum collection of cuts. Let their

number be f , note that f is a random variable whose expectation is f(t). So far we have
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the relative order of 2t + 1 beads. Now expose the other occurrence of the bead of type

t+ 1, which we call here the extra bead: it clearly lies in a uniform random place among

2t + 1 options which are the 2t + 1 spaces before bead number i for some i ≤ 2t + 1. If

this place happens to be one of the existing f cuts then no additional cut is needed, as we

can append this extra bead to an interval of each of the two thieves, as needed, without

adding any new cut. This happens with probability f/(2t + 1). If this is not the case,

then with probability roughly a half (computed precisely in what follows) the extra bead

is placed in an interval that goes to the thief who is not the one to get the last interval.

Note that in this case we do not need an extra cut either. The probability that this occurs

is exactly (t − f/2)/(2t + 1 − f) for even f and (t − (f − 1)/2)/(2t + 1 − f) for odd f .

This is because the total number of beads that this thief gets from among the 2t+1 beads

above is t, and among the spaces just before them, there are f/2 which are spaces among

the f cuts if f is even, and (f −1)/2 if f is odd. (In the odd case, each thief gets (f +1)/2

intervals, but the space before the first interval is not a cut). The above ratio is, thus,

exactly 1/2 for odd f and for even f it satisfies

1

2

2t− f
2t+ 1− f

=
1

2
(1− 1

2t+ 1− f
) ≥ 1

2
(1− 1

t+ 1
).

Here, we used the fact that f ≤ t always holds, by the deterministic result. Therefore,

the probability of the event above is at least 1
2 −

1
2t+2 . In the only remaining case, which

happens with probability at most

(
1

2
+

1

2t+ 2
)(1− f(t)

2t+ 1
) ≤ 1

2
− 1

2

f(t)

2t+ 1
+

1

2t+ 2
,

we need at most one additional cut: just before the very last bead (of type t + 1). This

proves the claim. �

We next show that, by Claim 3.3, lim sup f(t)/t ≤ 0.4. Indeed, if for some value of t,
f(t+1)
t+1 ≥ f(t)

t , then by the claim

f(t)

t
≤ f(t+ 1)

t+ 1
≤ f(t)

t+ 1
− 1

2

f(t)

(2t+ 1)(t+ 1)
+

1

2(t+ 1)
+

1

2(t+ 1)2
.

This gives
f(t)

t

5t+ 2

2t+ 1
≤ 1 +

1

t+ 1
,

implying that in this case f(t)
t ≤ 0.4+O(1/t). However, in this case, by the above inequality

(or by the simple fact that f(t+1) ≤ f(t)+1), we also have f(t+1)/(t+1) ≤ 0.4+O(1/t).
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Hence, if there are infinitely many values of t for which f(t + 1)/(t + 1) > f(t)/t

holds, then lim sup f(t)/t ≤ 0.4. Otherwise, the function f(t)/t is eventually decreasing,

so x = lim f(t)/t exists. In this case Claim 3.3 implies f(t+ 1) ≤ f(t) + 1/2− x/4 + o(1).

Summing this for all values t < t0 we get f(t0) ≤ (1/2 − x/4)t0 + o(t0) or, equivalently,

f(t0)/t0 ≤ 1/2 + x/4 + o(1). Taking limits, we obtain x ≤ 1/2− x/4, yielding x ≤ 0.4 as

needed.

We have thus shown that E(X(2, t, 1)) ≤ 0.4t+ o(t). We can conclude, by the Azuma-

Hoeffding Inequality (see, e.g., [3]), that X(2, t, 1) ≤ 0.4t + o(t) holds whp. Indeed, by

this inequality and the fact that the minimum number of cuts for a fair partition can

change by at most O(1) when swapping two beads, it follows that the probability that

X(2, t, 1) deviates from its expectation by at least C
√
t is at most e−Ω(C2). This implies

that X(2, t, 1) ≤ 0.4t+ o(t) whp, completing the proof of Theorem 1.4. �

Remark. It is possible to slightly improve both estimates in Theorem 1.4. The upper

bound can be improved by observing that in the argument above, if the extra bead appears

in an interval forcing us to add a cut, and it happens to appear between two beads of types

i and j where there is a cut just before the type i bead, then, if the second bead of type

i also appears right after (or before) a cut, it is possible to shift these two cuts and get

a fair partition without increasing the total number of cuts. There are several similar

local scenarios that can be used in a similar way and lead to small improvements in the

upper bound. Optimizing these arguments can be difficult, but they do show that the

expectation is smaller than 0.39t+ o(t) whp.

The lower bound can also be slightly improved as follows. If one has a fair partition

with at most s cuts, then one can choose that to be minimal: first, minimize the number of

cuts, then try to make the cuts as far to the right as possible. Now the first beads after the

cuts have all distinct types, as otherwise two of the cuts could be shifted one position to the

right (and if they reach the next cut, then they would cancel). This gives a tiny advantage

in the probability (probability of a set of cuts being fair versus probability of being the

minimal fair set). This gives a lower bound of roughly 0.227 · t, a tiny improvement over

0.22 · t. These considerations still leave a substantial gap between the upper and lower

bounds.

4 Concluding remarks and open problems

We have studied the minimum possible number of cuts required to partition a random

necklace with km beads of each of t types fairly into k collections. This minimum is
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denoted by X = X(k, t,m). A better understanding of the behavior of the random

variable X for all admissible values of the parameters requires further study.

� Some of the arguments described here for k = 2, fixed t and large m can be extended

to higher values of k. In particular, we note that the argument in the proof of the

upper bound for the probability that X(2, 3,m) = O(1/ logm) implies that for every

fixed k > 2 and t = 3, the probability that X(k, 3,m) = (k−1)(t+1)
2 = 2k − 2 is also

O(1/ logm). Indeed, 2k− 2 cuts split the necklace into 2k− 1 intervals, hence there

is at least one thief who gets a single interval. This interval has to contain exactly m

beads of each of the three types. The probability of the existence of such an interval

is O(1/ logm), by the argument in the proof presented in Subsection 2.1.

� We have seen that the ratio X(2, t, 1)/t is between 0.22 and 0.4 + o(1) whp. Is the

ratio c+ o(1) whp, for some constant c, and if so, what is the value of c?

� The algorithmic problem of finding a small number of cuts yielding a fair partition

efficiently for a given input random necklace is also interesting. For the deterministic

case there are known hardness results for the problem (see [8]) and known approx-

imation algorithms ([2]), and it will be interesting to find efficient algorithms that

work better whp for the random case.

� The random variableX(2, t,m) has the following interpretation in terms of a question

about folding positive random walks in Zt. Consider a random walk of 2tm steps

in Zt. Starting from the origin, every step is one of the t unit vectors ei, where

the sequence of steps is a random sequence consisting of exactly 2m steps in each

direction ei. An elementary folding at j of this sequence of steps switches the signs of

all steps from step number j until the end. We can apply several of these elementary

foldings one after the other. The random variable X(2, t,m) is thus the minimum

number of elementary foldings required to ensure the folded sequence ends at the

origin. A similar question, avoiding parity issues, can be considered for a sequence

of n random, independent, positive steps in Zt. The random variable now is the

minimum number of elementary foldings required to ensure the folded walk ends

within `∞-distance 1 from the origin.
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