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Abstract

According to a well known theorem of Haussler and Welzl (1987), any range space
of bounded VC-dimension admits an ε-net of size O

(

1

ε
log 1

ε

)

. Using probabilistic
techniques, Pach and Woeginger (1990) showed that there exist range spaces of VC-
dimension 2, for which the above bound is sharp. The only known range spaces of
small VC-dimension, in which the ranges are geometric objects in some Euclidean
space and the size of the smallest ε-nets is superlinear in 1

ε
, were found by Alon

(2010). In his examples, every ε-net is of size Ω
(

1

ε
g( 1

ε
)
)

, where g is an extremely
slowly growing function, related to the inverse Ackermann function.

We show that there exist geometrically defined range spaces, already of VC-
dimension 2, in which the size of the smallest ε-nets is Ω

(

1

ε
log 1

ε

)

. We also construct
range spaces induced by axis-parallel rectangles in the plane, in which the size of the
smallest ε-nets is Ω

(

1

ε
log log 1

ε

)

. By a theorem of Aronov, Ezra, and Sharir (2010),
this bound is tight.

1 Introduction

Let X be a finite set and let R be a system of subsets of an underlying set which
contains X. In computational geometry, the pair (X,R) is usually called a range space.
The elements of X and R are said to be the points and the ranges of the range space,
respectively. Consider a subset A ⊆ X. A is called shattered if for every subset B ⊆ A,
one can find a range RB ∈ R with RB ∩A = B. The size of the largest shattered subset
of points, A ⊆ X, is said to be the Vapnik-Chervonenkis dimension (or VC-dimension)
of the range space (X,R).

In their seminal paper [VaC71], Vapnik and Chervonenkis proved that, from the
point of view of random sampling, all range spaces whose VC-dimensions are bounded
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by a constant behave very nicely. In particular, for any ε > 0, a randomly selected
“small” subset of X, whose number of elements depends only on the VC-dimension d
and ε, will “hit” every range containing at least ε|X| points of X, with large probability.

A set of points in X with the property that every range R ∈ R with |R ∩X| ≥ ε|X|
contains at least one of its elements is called an ε-net for the range space (X,R). Note
that these sets are often called strong ε-nets in the literature, to distinguish them from
the so-called weak ε-nets, which may also contain points from

⋃

R \ X, but must still
hit all ranges that contain at least ε|X| elements of X. In this paper, we will consider
only strong ε-nets, apart from some remarks in the last section. The ideas of Vapnik and
Chervonenkis have been adapted by Haussler and Welzl [HaW87], who introduced the
above terminology and proved that the minimum number f = fd(ε) such that every range
space of VC-dimension d admits an ε-net of size at most f satisfies fd(ε) = O

(

d
ε log d

ε

)

.
They asked whether the logarithmic factor can be removed in this formula. Pach and
Woeginger [PaW90] proved that while f1(ε) = max(2, ⌈1

ε⌉ − 1), the logarithmic factor
is needed for every d ≥ 2. Moreover, it was shown by Komlós et al. [KoPW92, PaA95]
that for any d ≥ 2,

(d − 2 +
1

d + 2
+ o(1))

1

ε
ln

1

ε
≤ fd(ε) ≤ (d + o(1))

1

ε
ln

1

ε
,

as ε tends to 0. (Here ln denotes the natural logarithm.)

Haussler and Welzl discovered that the above results apply to many geometrically
defined range spaces, i.e., when X is a subset of some Euclidean space R

d. Roughly
speaking, the VC-dimension is bounded by a constant for any set of ranges with bounded
description complexity, for example if they are semi-algebraic sets given by a bounded
number of bounded degree polynomial inequalities. This observation has far reaching
consequences. The application of small epsilon-nets has become one of the most powerful
general techniques in computational geometry (see [Ch00, EvRS05]).

In a number of basic geometric scenarios it was possible to improve on the above
bounds. For instance, for any finite set of points in the plane, one can find an ǫ-net
of size linear in 1/ε, where the ranges are half-planes, translates of a convex polygon,
disks or certain kind of pseudo-disks. Similar results hold in three-dimensional space for
half-space ranges [PaW90, MaSW90, Ma92, PyR08]. We state two results here.

Theorem A. (Matoušek, Seidel, Welzl [MaSW90, Ma92]) All range spaces (X,R),
where X is a finite set of points in R

3 and R consists of half-spaces, admit ε-nets of size
O(1/ε).

Theorem B. (Aronov, Ezra, Sharir [ArES10]) All range spaces (X,R), where X is a
finite set of points in R

2 (or R
3) and R consists of axis-parallel rectangles (boxes), admit

ε-nets of size O
(

1
ε log log 1

ε

)

.
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Aronov et al. have also established a similar result for “fat” triangular ranges in the
place of axis-parallel rectangles. For weak ε-nets, Ezra [Ez10] extended Theorem B to
higher dimensions.

In algorithmic applications, it is often natural to consider the dual range space, in
which the roles of points and ranges are swapped [BrG95, PaA95]. Given a finite family
R of ranges in R

m, the dual range space induced by them is defined as a set system
(hypergraph) on the underlying set R, consisting of the sets Rx := {R | x ∈ R ∈ R},
for all x ∈ R

m. (Note that Rx and Ry may coincide for x 6= y.) It is easy to see
(cf. [PaA95]) that if the VC-dimension of the range space (X,R) is less than d for every
X ⊂ R

m, then the VC-dimension of the dual range space induced by any subset of R is
less than 2d.

Clarkson and Varadarajan [ClV07] found a simple and beautiful connection in the
plane between the complexity of the boundary of the union of n members of R and the
size of the smallest epsilon-net in the dual range space. If the complexity of the boundary
is o(n log n), then the dual range space admits ε-nets of size o

(

1
ε log 1

ε

)

. This connection
has been further explored and improved in [Va09, ArES10, EzAS11]. In particular, it
was shown that dual range spaces of “fat” triangles in the plane admit ε-nets of size
O

(

1
ε log log∗ 1

ε

)

, where log∗ stands for the iterated logarithm function.

In most range spaces (X,R), one can find roughly 1/ε pairwise disjoint ranges R ∈ R
such that the sets R ∩ X are of size at least ε|X|. In these cases, the size of any ε-net
is Ω(1/ε). For the last two decades, “the prevailing conjecture” was that in “geometric
scenarios” this bound is essentially tight: there always exists an ε-net of size O(1/ε) (see,
e.g., [MaSW90, ArES10]). This conjecture had to be revised after Alon [Al12] discovered
some geometric range spaces of small VC-dimension, in which the ranges are straight
lines, rectangles or infinite strips in the plane, and which do not admit ε-nets of size
O(1/ε). Alon’s construction is based on the density version of the Hales-Jewett theo-
rem [HaJ63], due to Furstenberg and Katznelson [FuK89, FuK91], and recently improved
by participants of the Polymath blog project [Po09, Po10]. However, Alon’s lower bound
is only barely superlinear: Ω

(

1
εg(1

ε )
)

, where g is an extremely slowly growing function,
closely related to the inverse Ackermann function.

1.1 New lower bounds

The main aim of this note is to prove that the O
(

1
ε log 1

ε

)

general upper bound for the
size of the smallest ε-nets in range spaces of bounded VC-dimension is tight even in
simple geometric scenarios.

Our first theorem claims that there exist dual range spaces induced by finite families
of axis-parallel rectangles in which the size of the smallest ε-nets is Ω

(

1
ε log 1

ε

)

. More
precisely, we have the following.
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Theorem 1. For any ε > 0 and for any sufficiently large integer n > n0(ε), there exists
a dual range space Σ∗ of VC-dimension 2, induced by n axis-parallel rectangles in R

2,
in which the size of every ε-net is at least 1

9ε log 1
ε .

Here and in the sequel, log always denotes the binary logarithm.
From Theorem 1 it is not hard to deduce the following results for primal range spaces.

Theorem 2. For any ε > 0 and for any sufficiently large integer n > n0(ε), there
exists a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of n
points in R

4, R consists of axis-parallel boxes with one of their vertices at the origin (or
axis-parallel orthants), and in which the size of every ε-net is at least 1

9ε log 1
ε .

Theorem 3. For any ε > 0 and for any sufficiently large integer n > n0(ε), there exists
a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of n points in
R

4, R consists of half-spaces, and in which the size of every ε-net is at least 1
9ε log 1

ε .

Theorems 2 and 3 show that Theorems B and A cannot be generalized to 4-dimensional
space. It also follows, by a standard duality argument, that there exist dual range spaces
induced by half-spaces in R

4, for which the size of the smallest ε-net is Ω
(

1
ε log 1

ε

)

.
Our next result shows that Theorem B of Aronov, Ezra, and Sharir is tight.

Theorem 4. For any ε > 0 and for any sufficiently large integer n > n0(ε), there exists
a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of n points in
the plane, R consists of axis-parallel rectangles, and in which the size of every ε-net is
at least ( 1

16 − o(1))1
ε log log 1

ε .

Note that the VC-dimension of the family of all axis-parallel rectangles in the plane
is 4.

The proof of Theorem 1 is based on a construction reminiscent of the one described
and studied in [PaT10] in connection with a hypergraph coloring problem. In fact, we
could use precisely the same construction, but this would require a more complicated
analysis. For the proof of Theorem 4, we use a randomly, but not uniformly, selected set
of roughly 1

ε log log 1
ε points in the unit square. In the conference version of the present

paper [PaT11], we use uniformly distributed random point sets to give an alternative
proof of a slightly weaker version of Theorem 4, in which the VC-dimension of the range
space Σ is 3 rather than 2. Some related properties of uniformly distributed point sets
have been established in [ChPS09]. See Remark 3 in the last section. Our paper is
self-contained: we do not rely on any material from [PaT10] or [ChPS09].

1.2 Organization

In Section 2, we present the proofs of Theorems 1, 2, and 3. Section 3 contains the proof
of Theorem 4. In the final section, we make some concluding remarks and mention open
problems.
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2 Boxes and half-spaces—Proofs of Theorems 1-3

Theorems 2 and 3 are corollaries of Theorem 1, so we start with the proof of Theorem 1.
The proof is based on an explicit construction. In order to describe this construction,
we have to introduce some notations.

Let d be a fixed positive integer. For any integers a, b ≥ 0 and 0 ≤ i ≤ d, let Ri
a,b

denote the half-open axis-parallel rectangle defined as the cross product of two half-open
intervals:

Ri
a,b = [a2i, (a + 1)2i) × [b2d−i, (b + 1)2d−i).

Let
R = {Ri

a,b | 0 ≤ i ≤ d, 0 ≤ a < 2d−i, 0 ≤ b < 2i}.

The elements of R are called canonical rectangles. All elements of R have the same
area 2d. For each i, 0 ≤ i ≤ d, there are precisely 2d canonical rectangles Ri

a,b, and they

form a tiling of the square [0, 2d)2. That is, we have |R| = (d + 1)2d. (Note that in the
proof of Theorem 1 it plays no role whatsoever that the rectangles are half-open: open
or closed rectangles would work as well. Defining canonical rectangles to be half-open
will simplify the presentation in Section 3.)

Consider the set of rectangles

R :=
{

Ri
a,b ∈ R | a, b are even

}

.

R2
1,3

2

R
2,0
2 R

3,0
2

R2R
2,1

2

R2 R
1,0
2

R
1,1
2R

0,1

2

R
2,2
2 R

3,2
2

R
3,3
2R

2,3
2

R
0,2
2 R

1,2
2

R
0,3

3,1

0,0

R3
0,1

R3
0,0

R3
1,0

R3
1,1

R3
0,3

R3
0,2

R3
1,2

R3
1,3

R3
0,5

R3
0,4

R3
1,4

R3
1,5

R3
0,7

R3
0,6

R3
1,6

R3
1,7

Figure 1: The canonical rectangles from R for d = 4, i = 2, 3. Those belonging to R are
shaded.
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See Figure 1 for an illustration. For 0 < i < d we have 2d−2 rectangles Ri
a,b ∈ R,

while for i = 0 or d we have twice as many, so all together we have

|R| = (d + 3)2d−2.

We claim that the dual range space Σ∗ induced by the elements of R meets the
requirements of Theorem 1 for ε ≈ 2−d. Recall that a subset S ⊂ R is an ε-net in Σ∗

if and only if every point in the plane that belongs to at least ε|R| elements of R is
covered by at least one element of S.

The heart of the proof is the following statement.

Lemma 2.1. Let d be a positive integer, let R and Σ∗ be defined as above and let
0 < ε < 1. If S ⊆ R is an ε-net in Σ∗, then we have

|S| > (1 − 2d−1ε)|R| = (1 − 2d−1ε)(d + 3)2d−2.

Proof. Let S be a fixed ε-net in Σ∗. Assign to S a collection of canonical rectangles
T = T (S) ⊂ R, as follows. Let

T := {Ri
a,b | Ri

2⌊a/2⌋,2⌊b/2⌋ ∈ S and a 6≡ b, or Ri
2⌊a/2⌋,2⌊b/2⌋ 6∈ S and a ≡ b}.

Here “≡” is taken modulo 2. See Figure 2.
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R
2,0
2 R

3,0
2

R
2,1

2

R2 R
1,0
2

R
0,1

R
3,3
22

R
0,2
2 R

1,2
2

R
0,3

0,0

2R
2,2

Figure 2: The rectangles in S are shaded. For each 0 < i < d, we divide the canonical
rectangles Ri

a,b into 2 × 2 boxes. In each box, we select two of the rectangles to be
included in T , shown striped here. S and T are disjoint.
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It follows from the definition that for each i, precisely half of the canonical rectangles
Ri

a,b ∈ R belong to T . It is also clear that S and T are disjoint, moreover, every element
of R \ S belongs to T .

Notice that the elements of T can be decomposed into 2d−1 disjoint “chains” R0, R1,
..., Rd, where each Ri is a 2i×2d−i canonical rectangle, and

⋂d
i=0 Ri 6= ∅. Indeed, by our

construction, for every 20×2d rectangle R0 ∈ T , there is precisely one 21×2d−1 rectangle
R1 ∈ T that intersects it. Analogously, there is precisely one 22×2d−2 rectangle R2 ∈ T
that intersects R1, and this rectangle must also intersect R0 ∩ R1. Proceeding like this,
starting with a fixed R0 ∈ T , we obtain a uniquely determined chain of size d + 1 whose
elements have a point in common. There are 2d−1 possible choices for R0, and each
element of T belongs to precisely one of the resulting chains. Note that any point in the
plane is contained in at most d + 1 canonical rectangles, so a point in the intersection
of the rectangles forming a chain is not covered by any canonical rectangle outside the
chain. See Figure 3 for a chain.

R
1,2
2R3

0,5

R0
6,0

R4
0,11

R1
3,1

Figure 3: A chain of length d + 1 (d = 4). Equal coordinates are slightly perturbed for
better visibility. All elements of a chain have a point in common.

Since all elements of R\S belong to T , but T is disjoint from S, it follows from the
above chain decomposition that there is a point x ∈ R

2 contained

1. in at least |R\S|
2d−1

elements of R, and

2. in no element of S.

Since S is an ε-net we must have

|R \ S|

2d−1
< ε|R|
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proving the lemma. ✷

We also need the following simple property. Let Σ
∗

denote the dual range space
induced by all canonical rectangles in R. Let Σ denote the (primal) range space dual
to Σ

∗
. In other words, Σ can be defined as follows. The canonical rectangles, i.e., the

elements of R, divide the plane into finitely many cells. Two points belong to the same
cell if they are contained in the same rectangles. Pick a point in each cell, and let X
denote the set of points we picked. The range space Σ is the pair (X,R).

Lemma 2.2. All of Σ, Σ∗, and Σ
∗

have VC-dimension 2.

Before turning to the proof of the lemma, we introduce a partial order on the family
of axis-parallel rectangles in the plane. For any two axis-parallel rectangles R and R′,
we write R ≺ R′ if the orthogonal projection of R on the x-axis is contained in the
orthogonal projection of R′ on the x-axis, and the orthogonal projection of R on the
y-axis contains the orthogonal projection of R′ on the y-axis. That is, R and R′ intersect
in a crosslike fashion, as shown on Figure 4. Obviously, this is a partial order.

R R R

R’ R’
R’

Figure 4: Illustration for the definition of R ≺ R′.

Proof of Lemma 2.2. Clearly, we have VC-dim(Σ) ≥ 2, VC-dim(Σ∗) ≥ 2, and VC-
dim(Σ

∗
) ≥ 2.

Observe first that any two intersecting rectangles in R are comparable by ≺.
Assume for contradiction that Σ, Σ∗ or Σ

∗
has VC-dimension 3 or more. The exis-

tence of a shattered 3-element set would imply that there are three distinct points p1, p2,
and p3 in the plane and three rectangles R1, R2, R3 ∈ R with {p1, p2, p3} \Ri = {pi} for
i = 1, 2, 3. The rectangles Ri pairwise intersect, and hence must be linearly ordered by
≺. See Figure 5. Suppose without loss of generality R1 ≺ R2 ≺ R3. Then R1∩R3 ⊆ R2,
contradicting our assumption that p2 is contained in the left-hand side but not in the
right. ✷

Proof of Theorem 1. Suppose without loss of generality that ε ≤ 2/3. Let ε = α/2d−1,
where d is a positive integer and 1/3 ≤ α ≤ 2/3. According to Lemmas 2.2 and 2.1,
the dual range space Σ∗ defined for this d has VC-dimension 2 and it does not admit an
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R1

R2

3

3

R

p

p1

Figure 5: The nonexistence of a shattered 3-element set: There is no good place for p2.

ε-net of size smaller than α(1−α)
2 (d + 3)1

ε . Here d + 3 > log 1
ε and α(1−α)

2 ≥ 1
9 , proving

that Σ∗ satisfies the statement of the theorem. Note that, if log 1
ε is an integer, the

constant 1
9 can be replaced by 1

8 in the bound.
This example is very special: for every ε, we have defined a single dual range space

Σ∗, induced by Θ
(

1
ε log 1

ε

)

rectangles. However, from one small example we can easily
construct arbitrarily large ones, as required by the theorem. Keep ε fixed, and choose
a large integer t. Replace each rectangle R ∈ R by a chain of rectangles R1 ≺ R2 ≺
· · · ≺ Rt, where ≺ denotes the ordering relation defined after Lemma 2.2, and each
Ri differs only very little from R. Let Rt denote the resulting family of rectangles. It
is not difficult to see that this transformation can be carried out keeping the property
that intersecting rectangles are comparable by ≺. Therefore, the VC-dimension of the
dual range space Σ∗

t induced by Rt, as well as the VC-dimension of the corresponding
“primal” space remains 2.

We have |Rt| = t|R|, and the size of the smallest ε-net for Σ∗
t is at least as large as

it was in Σ∗. Suppose to the contrary that there is a smaller set S ′ of rectangles in Rt

that form an ε-net in Σ∗
t . Let S ′′ be the set of rectangles in R that were replaced by

the elements of S ′. Since |S ′′| ≤ |S ′|, the rectangles in S ′′ do not form an ε-net in Σ∗.
Thus, there is a point in the plane contained in at least ε|R| elements of R, which is
not covered by any element of S ′′. We can choose such a point lying not too close to
the boundaries of the rectangles in R, and then it is contained in at least tε|R| = ε|Rt|
elements of Rt, none of which belongs to S ′, a contradiction. ✷
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Proof of Theorem 2. The statement follows from Theorem 1 by a standard duality
argument (see, e.g., [KaRS08]). We assume without loss of generality that the rectangles
whose existence is guaranteed by Theorem 1 are closed and lie in the first quadrant
of the plane. We assign to each rectangle R = [x1, x2] × [y1, y2] the point p(R) =
(x1, 1/x2, y1, 1/y2) ∈ R

4. Now a point q = (a, b) of the first quadrant lies in R if and
only if x1 ≤ a ≤ x2 and y1 ≤ b ≤ y2, that is, if and only if the point p(R) is contained
in the 4-dimensional box

B(q) = [0, a] × [0, 1/a] × [0, b] × [0, 1/b]. ✷

Theorem 3 is an immediate corollary of Theorem 2 and the following lemma.

Lemma 2.3. Let P be a finite set of points in the positive orthant of R
d. To each p ∈ P ,

we can assign a point p′ in the positive orthant of R
d so that the set P ′ = {p′ | p ∈ P}

satisfies the following condition.
For any axis-parallel box B ⊂ R

d that contains the origin, there is a half-space
H(B) ⊂ R

d which contains the origin and for which

{p′ | p ∈ B ∩ P} = P ′ ∩ H(B).

Proof. Let x1, x2, . . . , xd denote the orthogonal coordinates in R
d. Observe that from

the point of view of intersections with axis-parallel boxes, the actual values of the co-
ordinates do not matter: we need to know only the order of the xi-coordinates of the
points of P for each i. For every i (1 ≤ i ≤ d), let 0 < ξi,1 < ξi,2 < ξi,3 < . . . denote
the sequence of different values of the xi-coordinates of the elements of P . Every such
sequence is of length at most |P |. By rescaling the coordinates if necessary, we can
assume that ξi,j+1/ξi,j > d holds for every i and j.

Consider now an axis-parallel box B, which contains the origin and intersects P in
at least one element. We can shrink B if necessary, without changing its intersection
with P , so that we can suppose without loss of generality that B is of the form

B = [0, b1] × [0, b2] × . . . × [0, bd],

where each bi is equal to ξiji
for a suitable ji.

We claim that B ∩ P is equal to the intersection of P with the half-space H(B)
defined by

x1

b1
+

x2

b2
+ . . . +

xd

bd
≤ d.

For every point in B, each term of the above sum is at most 1, so that we have B ⊂ H(B),
and hence B∩P ⊆ H(B)∩P . Suppose now that p is a point of P that does not belong to
B. Then one of its coordinates, xi(p), say, is more than d times larger than bi. Therefore,
the i-th term in the above sum is already larger than d, which implies that p 6∈ H(B). ✷
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3 Axis-parallel rectangles—Proof of Theorem 4

To make sure that the range spaces constructed in this section have VC-dimension 2,
we use the family R of canonical rectangles introduced at the beginning of the previous
section and apply Lemma 2.2.

Proof of Theorem 4. Let d and r be positive integers to be specified later. Select a
random set X of r2d points from the square [0, 2d)× [0, 2d), as follows. Let X = {pj | j =
0, 1, . . . , r2d−1}, where the x-coordinate of pj is set deterministically to xj = j/r, while
its y-coordinate yj is an integer from [0, 2d), selected by a randomized process described
below.

One possible method to generate the y-coordinates is to select for every j an integer
0 ≤ yj < 2d such that |R ∩ X| = r holds for all canonical rectangles R ∈ R, and to
select uniformly among all assignments meeting this requirement. However, for technical
reasons, it will be more convenient to consider the binary expansion of the integers yj

and to generate their digits one by one. This process, described in detail in the next
paragraph, will yield precisely the same distribution on the point sets X as the first
method.

Let us write yj in binary form: yj =
∑d

i=1 y
(i)
j 2d−i. The digits y

(i)
j ∈ {0, 1} of yj will

be selected in stages starting with stage 1. At stage i (1 ≤ i ≤ d), we choose the digits

y
(i)
j for all j. Before making these choices, the sets

Sh
a,b = {0 ≤ j < r2d | pj ∈ Rh

a,b}

have already been determined for every h < i and for every Rh
a,b ∈ R. In particular,

the set S0
a,0 depends only on the x-coordinates of the points pj , so we have S0

a,0 =

{ar, ar + 1, . . . , ar + r − 1} for any 0 ≤ a < 2d. At stage i (1 ≤ i ≤ d), consider the 2r-
element set Si−1

2a,b ∪ Si−1
2a+1,b, and partition it uniformly and randomly into two r-element

subsets T and T ′. Set

y
(i)
j =

{

0 if j ∈ T,

1 if j ∈ T ′.

Consequently, we have Si
a,2b = T and Si

a,2b+1 = T ′. We do the partitioning independently

for all 0 ≤ a < 2d−i and 0 ≤ b < 2i−1. Finally, all sets of the form Si
a,b will be of size r.

Suppose first that ε = 2−d. Then we have ε|X| = r, therefore every ε-net S of the
range space (X,R) must intersect all canonical rectangles.

Lemma 3.1. Let ε = 2−d. The probability that the range space (X,R) constructed

above has an ε-net of size at most r2d−2 is less than 2r2d

(1 − 2−2r)d2d−2

.
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Figure 6: At stage i, the point pj can be any point of the vertical interval of length
2d−i with x-coordinate j/r. Every interval is divided into two equal halves, one of which
is selected for stage i + 1. The intervals with the same y-projection are divided into
consecutive groups of size 2r. In each group, there are exactly r intervals for which the
upper half is selected.

Proof. Fix a set I ⊂ {0, 1, . . . , r2d−1} of size at most r2d−2, and estimate the probability
that S = {pi | i ∈ I} is an ε-net. S is not an ε-net if and only if at some stage i of the
process, we partition at least one set T0 = Si−1

2a,b ∪ Si−1
2a+1,b in an “unlucky” way, so that

all of its elements that belong to S end up in the same part. If |T0 ∩ I| ≤ r, then there
exists at least one such partition. Therefore, in this case the probability of selecting an

unlucky partition is at least
(

2r
r

)−1
> 2−2r. At any stage, we independently partition

2d−1 pairwise disjoint sets, so, using that |I| ≤ r2d−2, at least half of them contain at
most r elements of I.

Thus, the probability that there is no unlucky partition at a fixed stage i (1 ≤ i ≤ d),

is at most (1 − 2−2r)2
d−2

. This is valid at each stage, independently of the outcome of

the earlier stages. Therefore, S is an ε-net with probability at most (1 − 2−2r)d2d−2

.

Since there are fewer than 2r2d

choices for I, the probability that (X,R) has an ε-net of

size at most r2d−2 is less than 2r2d

(1 − 2−2r)d2d−2

. ✷

Using the inequality 1 − 2−2r < exp(−2r), we obtain that the upper bound in
Lemma 3.1 is smaller than

exp
(

ln 2r2d − 2−2rd2d−2
)

.

This expression is less than one whenever d ≥ 4 ln 2r4r. In this case, there exists a choice
of X such that the size of any 2−d-net of (X,R) is at least r2d−2.

Now we show how to choose the parameters d and r for any ε > 0. Let d = ⌊log 1
ε⌋.

This will guarantee that any ε-net is a 2−d-net. Next, choose r to be the largest integer
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such that 4r4r ≤ d. By the last paragraph, there exists a range space (X,R) of axis-
parallel rectangles, for which the size of any ε-net is at least r2d−2 > r

8ε > ( 1
16 −

o(1))1
ε log log 1

ε . As was pointed out at the beginning of this section, it follows from
Lemma 2.2 that the VC-dimension of this range space is 2.

Once we have one example of a range space Σ = (X,R) that admits no small ε-net
for a given value of ε, we can create arbitrarily large examples with the same property,
by replacing each point p ∈ X with t new points, contained in the same ranges of R.
This procedure does not increase the VC-dimension of the range space. (The same trick
was applied in [Al12] and in the proof of Theorem 1.) This completes the proof of
Theorem 4. ✷

4 Concluding remarks

1. It was shown in [PaW90] that any range space (X,R), where X is a finite point set
in the plane and R consists of half-planes, admits ε-nets of size at most ⌈2/ε⌉ − 1, and
that this bound is tight up to an additive constant at most 1. The corresponding result
on the line is almost trivial. Consequently, Theorem A holds in any dimension d ≤ 3,
and our Theorem 3 shows that it is false for d > 3.

The epsilon-net problem for half-spaces (containing the origin) is self-dual. That
is, any dual range space induced by half-spaces in R

d admits an ε-net of size O(1/ε) if
d ≤ 3, and this statement is false whenever d > 3.

2. Recall that a weak ε-net for a range space (X,R) is a set of elements of
⋃

R∈R R (not
necessarily in X) such that every range R ∈ R with |R∩X| ≥ ε|X| contains at least one
of them. In [Ez10], Ezra proved that if X is any finite set of points in R

d and R consists
of all axis-parallel boxes, then (X,R) admits a weak ε-net of size O

(

1
ε log log 1

ε

)

. This
implies that our Theorem 2 does not hold if one replaces ǫ-nets by weak ǫ-nets.

It is easy to see that the analogue of Theorem 3 is also false for weak ε-nets instead
of strong ones. Indeed, any finite system of half-spaces in R

d can be hit by d + 1 points,
so that in (primal or dual) half-space range spaces there always exist weak ε-nets of size
O(1).

However, we have been unable to decide whether the analogue of Theorem 4 holds
for weak ε-nets in place of strong ones.

3. If we are satisfied with a slightly weaker form of Theorem 4, in which the constructed
range spaces have dimension 3, we can use uniformly distributed random point sets in
the unit square. In the conference version of the present paper [PaT11], we proved this
weaker version. The crucial element of the proof was the following lemma of independent
interest.
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Lemma 4.1.[PaT11] Let n > 2, r = ⌈log log n/5⌉ be integers, and let and ε = r/n.
Let X be a set of n randomly and uniformly selected points in the unit square, and let
R denote the family of all axis-parallel rectangles of the form [j/2t, (j + 1)/2t) × [a, b],
where j, t are nonnegative integers, and a < b are reals.

Then, with probability tending to 1, the range space (X,R) does not admit an ε-net
of size at most n/2.

A similar property of random point sets with respect to axis-parallel rectangles was
established in Chen et al. [ChPS09] (see Theorem 9). In their setting, r was a constant,
ε = r/n, and it was shown that every ε-net contains all but a very small fraction of the
point set. Here we allow r to slowly tend to infinity.

The VC-dimension of any family of axis-parallel rectangles in the plane is at most
4. However, the x-components of the rectangles used in Lemma 4.1 are dyadic intervals,
and the VC-dimension of any families of rectangles with this property is at most 3.

4. Let X ⊆ R
n be a finite or infinite set and let R be a family of “ranges” of a certain

type in R
d (e.g., lines, balls, half-spaces, axis-parallel boxes). We say that a subfamily

S ⊂ R forms a k-fold covering of X if every point of X belongs to at least k members
of S. It is an old problem in discrete geometry to decide whether every k-fold covering
selected from a family R can be decomposed into two or more coverings [PaTT09]. For
example, it was shown by Gibson and Varadarajan [GiV09] that every k-fold covering of
the plane with translates of a convex polygon can be decomposed into Ω(k) coverings.

There is an intimate relationship between epsilon-net problems and problems about
decomposition of multiple coverings. If we know that every k-fold covering S ⊂ R with
|S| = n splits into at least ck coverings for some absolute constant c > 0, then one
of these coverings contains at most n/(ck) sets. Setting k = εn, we find a covering
consisting of at most 1/(cε) members of S. This means that the dual range space Σ∗

induced by the members of S admits an ε-net of size O(1/ε). Therefore, if the dual
range space does not always admit an ε-net of size O(1/ε), then it cannot be true that
every k-fold covering with ranges from R splits into Ω(k) coverings.

In particular, Alon [Al12] proved that there are n-element point sets X ⊂ R
2 and

straight-line ranges that do not admit ε-nets of size O(1/ε). The standard duality
between points and lines preserves incidences. Switching to the dual, we obtain dual
range spaces induced by sets of n lines in the plane that do not admit ε-nets of size
O(1/ε). According to the argument in the previous paragraph, this implies that it
cannot be true that every k-fold covering of a finite set of points in R

2 with straight
lines splits into Ω(k) coverings. This consequence of Alon’s theorem had been proved
earlier, using the Hales-Jewett theorem [PaTT09]. Alon [Al12] proved that the same
example also disproves that all range spaces consisting of straight-line ranges in the
plane admit ε-nets of size O(1/ε).

5. Weaker versions of Theorems 1 through 4 can be obtained by direct applications of
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results of earlier papers. In particular, if we replace Lemma 3.1 by a slightly weaker
statement, Theorem 9 in [ChPS09], we obtain a weaker version of Theorem 4, resulting
in an Ω

(

1
ε log log 1

ε/ log log log 1
ε

)

bound on the size of the ε-nets. Similarly, if we replace
Lemma 2.1 by a slightly weaker statement, Theorem 3 in [PaT10], we obtain a weaker
version of Theorem 1 (and hence Theorems 2 and 3) with an Ω

(

1
ε log 1

ε/ log log 1
ε

)

bound
on the size of the ε-nets.
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