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Abstract In this paper we study the two player randomized communication com-
plexity of the sparse set disjointness and the exists-equal problems and give match-
ing lower and upper bounds (up to constant factors) for any number of rounds for
both of these problems. In the sparse set disjointness problem, each player receives
a k-subset of [m] and the goal is to determine whether the sets intersect. For this

problem, we give a protocol that communicates a total of O(k log(r) k) bits over r
rounds and errs with very small probability. Here we can take r = log∗ k to obtain
a O(k) total communication log∗ k-round protocol with exponentially small error
probability, improving on the O(k)-bits O(log k)-round constant error probability
protocol of H̊astad and Wigderson from 1997.

In the exist-equal problem, the players receive vectors x, y ∈ [t]n and the goal
is to determine whether there exists a coordinate i such that xi = yi. Namely, the
exists-equal problem is the OR of n equality problems. Observe that exists-equal is
an instance of sparse set disjointness with k = n, hence the protocol above applies
here as well, giving an O(n log(r) n) upper bound. Our main technical contribution
in this paper is a matching lower bound: we show that when t = Ω(n), any r-round
randomized protocol for the exists-equal problem with error probability at most
1/3 should have a message of size Ω(n log(r) n). Our lower bound holds even for
super-constant r ≤ log∗ n, showing that any O(n) bits exists-equal protocol should
have log∗ n−O(1) rounds. Note that the protocol we give errs only with less than
polynomially small probability and provides guarantees on the total communication
for the harder set disjointness problem, whereas our lower bound holds even for
constant error probability protocols and for the easier exists-equal problem with
guarantees on the max-communication. Hence our upper and lower bounds match
in a strong sense.

Our lower bound on the constant round protocols for exists-equal show that
solving the OR of n instances of the equality problems requires strictly more than
n times the cost of a single instance. To our knowledge this is the first example of
such a super-linear increase in complexity.



1 Introduction

In a two player communication problem the players, named Alice and Bob, receive
separate inputs, x and y, and they communicate in order to compute the value f(x, y)
of a function f . In an r-round protocol, the players can take at most r turns alternately
sending each other a message and the last player to receive a message declares the
output of the protocol. A protocol can be deterministic or randomized, in the latter
case the players can base their actions on a common random source and we measure the
error probability: the maximum over inputs (x, y), of the probability that the output of
the protocol differs from f(x, y).

1.1 Sparse set disjointness

Set disjointness is perhaps the most studied problem in communication complexity. In
the most standard version Alice and Bob receive a subset of [m] := {1, . . . ,m} each,
with the goal of deciding whether their sets intersect or not. The primary question is
whether the players can improve on the trivial deterministic protocol, where the first
player sends the entire input to the other player, thereby communicating m bits. The
first lower bound on the randomized complexity of this problem was given in [2] by
Babai et al., who showed that any ε-error protocol for disjointness must communicate
Ω(
√
m) bits. The tight bound of Ω(m)-bits was first given by Kalyanasundaram and

Schnitger [28] and was later simplified by Razborov [42] and Bar-Yossef et al. [3].
In the sparse set disjointness problem DISJmk , the sets given to the players are

guaranteed to have at most k elements. The deterministic communication complexity
of this problem is well understood. The trivial protocol, where Alice sends her entire
input to Bob solves the problem in one round using O(k log(2n/k)) bits. On the other
hand, an Ω(k log(2n/k)) bit total communication lower bound can be shown even for
protocols with an arbitrary number of rounds, say using the rank method; see [31], page
175.

The randomized complexity of the problem is far more subtle. The results cited
above immediately imply a Ω(k) lower bound for this version of the problem. The
folklore 1-round protocol solves the problem using O(k log k) bits, wherein Alice sends
O(log k)-bit hashes for each element of her set. H̊astad and Widgerson [23] gave a pro-
tocol that matches the Ω(k) lower bound mentioned above. Their O(k)-bit randomized
protocol runs in O(log k)-rounds and errs with a small constant probability. In Section 2,
we improve this protocol to run in log∗ k rounds, still with O(k) total communication,
but with exponentially small error in k. We also present a r-round protocol for any
r < log∗ k with total communication O(k log(r) k) and error probability well below 1/k;
see Theorem 1. (Here log(r) denotes the iterated logarithm function, see Section 1.5.)
As the exists-equal problem with parameters t and n (see below) is a special case of
DISJtnn , our lower bounds for the exists-equal problem (see below) show that complexity
of this algorithm is optimal for any number r ≤ log∗ k of rounds, even if we allow much
the larger error probability of 1/3. Buhrman et al. [12] and Woodruff [45] (as presented
in [40]) show an Ω(k log k) lower bound for 1-round complexity of DISJmk by a reduction
from the indexing problem (a similar reduction was also given in [16]). We note that
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these lower bounds do not apply to the exists-equal problem, as the input distribution
they use generates instances inherently specific to the disjointness problem; furthermore
this distribution admits a O(log k) protocol in two rounds.

1.2 The exists-equal problem

In the equality problem Alice and Bob receive elements x and y of a universe [t] and they
have to decide whether x = y. We define the two player communication game exists-
equal with parameters t and n as follows. Each player is given an n-dimensional vector
from [t]n, namely x and y. The value of the game is one if there exists a coordinate i ∈ [n]
such that xi = yi, zero otherwise. Clearly, this problem is the OR of n independent
instances of the equality problem.

The direct sum problem in communication complexity is the study of whether n
instances of a problem can be solved using less than n times the communication required
for a single instance of the problem. This question has been studied extensively for
specific communication problems as well as some class of problems [13, 25, 26, 6, 18, 24,
21, 4]. The so called direct sum approach is a very powerful tool to show lower bounds
for communication games. In this approach, one expresses the problem at hand, say
as the OR of n instances of a simpler function and the lower bound is obtained by
combining a lower bound for the simpler problem with a direct sum argument. For
instance, the two-player and multi-player disjointness bounds of [3], the lopsided set
disjointness bounds [41], and the lower bounds for several communication problems
that arise from streaming algorithms [27, 33] are a few examples of results that follow
this approach.

Exists-equal with parameters t and n is a special case of DISJtnn , so our protocols in
Section 2 solve exists-equal. We show that when t = Ω(n) these protocols are optimal,
namely every r-round randomized protocol (r ≤ log∗ n) with at most 1/3 error error
probability needs to send at least one message of size Ω(n log(r) n) bits. See Theorem 4.
Our result shows that computing the OR of n instances of the equality problem requires
strictly more than n times the communication required to solve a single instance of the
equality problem when the number of rounds is smaller than log∗ n−O(1). Recall that
the equality problem admits an ε-error log(1/ε)-bit one-round protocol in the common
random source model.

For r = 1, our result implies that to compute the OR of n instances of the equality
problem with constant probability, no protocol can do better than solving each instance
of the equality problem with high probability so that the union bound can be applied
when taking the OR of the computed results. The single round case of our lower bound
also generalizes the Ω(n log n) lower bound of Molinaro et al. [36] for the one round
communication problem, where the players have to find all the answers of n equality
problems, outputting an n bit string.

1.3 Lower bound techniques

We obtain our general lower bound via a round elimination argument. In such an argu-
ment one assumes the existence of a protocol P that solves a communication problem,
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say f , in r rounds. By suitably modifying the internals of P , one obtains another proto-
col P ′ with r−1 rounds, which typically solves smaller instances of f or has larger error
than P . Iterating this process, one obtains a protocol with zero rounds. If the protocol
we obtain solves non-trivial instances of f with good probability, we conclude that we
have arrived at a contradiction, therefore the protocol we started with, P , cannot ex-
ist. Although round elimination arguments have been used for a long time, our round
elimination lemma is the first to prove a super-linear communication lower bound in the
number of primitive problems involved, obtaining which requires new and interesting
ideas.

The general round elimination presented in Section 5 is very involved, but the lower
bound on the one-round protocols can also be obtained in a more elementary way. As the
one round case exhibits the most dramatic super-linear increase in the communication
cost and also generalizes the lower bound in [36], we include this combinatorial argument
separately in Section 3, see Theorem 2.

At the heart of the general round elimination lemma is a new isoperimetric inequality
on the discrete cube [t]n endowed with the Hamming distance. We present this result,
Theorem 3, in Section 4. To the best of our knowledge, the first isoperimetric inequality
on this metric space was proven by Lindsey in [32], where the subsets of [t]n of a
certain size with the so called minimum induced-edge number were characterized. This
result was rediscovered in [30] and [15] as well. See [1] for a generalization of this
inequality to universes which are n-dimensional boxes with arbitrary side lengths. In
[8], Bollobás et al. study isoperimetric inequalities on [t]n endowed with the `1 distance.
For the purposes of our proof we need to find sets S that minimize a substantially
more complicated measure. This measure also captures how spread out S is and can be
described roughly as the average over points x ∈ [t]n of the logarithm of the number of
points in the intersection of S and a Hamming ball around x.

1.4 Related work

In [35], a round elimination lemma was given, which applies to a class of problems
with certain self-reducibility properties. The lemma is then is used to get lower bounds
for various problems including the greater-than and the predecessor problems. This
result was later tightened in [44] to get better bounds for the aforementioned problems.
Different round elimination arguments were also used in [29, 19, 38, 34, 17, 5] for various
communication complexity lower bounds and most recently in [9] and [11] for obtaining
lower bounds for the gapped Hamming distance problem.

Independent of and in parallel of the present form of this paper Brody et al. [10] have
also established an Ω(n log(r) n) lower bound for the r-round communication complexity
of the exists-equal problem with parameter n. Their result applies for protocols with a
polynomially small error probability like 1/n. This stronger assumption on the protocol
allows for simpler proof techniques, namely the information complexity based direct
sum technique developed in several papers including [13], but it is not enough to create
an example where solving the OR of n communication problems requires more than
n times the communication of solving a single instance. Indeed, even in the shared
random source model one needs log n bits of communication (independent of the number
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of rounds) to achieve 1/n error in a single equality problem.

1.5 Notation

For a positive integer t, we write [t] for the set of positive integers not exceeding t. For
two n-dimensional vectors x, y, let Match(x, y) be the number of coordinates where x
and y agree. Notice that n −Match(x, y) is the Hamming distance between x and y.
For a vector x ∈ [t]n we write xi for its ith coordinate. We denote the distribution of a
random variable X by dist(X) and the support set of it by supp(X). We write Prx∼ν [·]
and Ex∼ν [·] for the probability and expectation, respectively, when x is distributed
according to a distribution ν. We write µ for the uniform distribution on [t]n. For
instance, for a set S ⊆ [t]n, we have µ(S) = |S|/tn.

For x, y ∈ [t]n we denote the value of the exists-equal game by EEtn(x, y). Recall
that it is zero if and only if x and y differ in each coordinate. Whenever we drop t from
the notation we assume t = 4n. Often we will also drop n and simply denote the game
value by EE(x, y) if n is clear from the context.

All logarithms in this paper are to the base 2. Analogously, throughout this paper
we take exp(x) = 2x. We will also use the iterated versions of these functions:

log(0) x ··= x, exp(0) x ··= x,

log(r) x ··= log(log(r−1) x), exp(r) x ··= exp(exp(r−1) x) for r ≥ 1.

Moreover we define log∗ x to be the smallest integer r for which log(r) x < 2.
Throughout the paper we ignore divisibility problems, e.g., in Lemma 2 in Section 3

we assume that tn/2c+1 is an integer. Dealing with rounding issues would complicate
the presentation but does not add to the complexity of the proofs.

1.6 Information theory

Here we briefly review some definitions and facts from information theory that we use
in this paper. For a random variable X, we denote its binary Shannon entropy by
H(X). We will also use conditional entropies H(X |Y ) = H(X,Y ) − H(Y ). Let µ and
ν be two probability distributions, supported on the same set S. We denote the binary
Kullback-Leibler divergence between µ and ν by D(µ ‖ ν). A random variable with
Bernoulli distribution with parameter p takes the value 1 with probability p and the
value 0 with probability 1 − p. The entropy of this variable is denoted by H2(p). For
two reals p, q ∈ (0, 1), we denote by D2(p ‖ q) the divergence between the Bernoulli
distributions with parameters p and q.

If X ∈ [t]n and L ⊆ [n], then the projection of X to the coordinates in L is denoted
by XL. Namely, XL is obtained from X = (X1, . . . , Xn) by keeping only the coordinates
Xi with i ∈ L. The following lemma of Chung et al. [14] relates the entropy of a variable
to the entropy of its projections.

Lemma 1. (Chung et al. [14]) Let supp(X) ⊆ [t]n. We have l
n H(X) ≤ EL[H(XL)],

where the expectation is taken for a uniform random l-subset L of [n].
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1.7 Structure of the paper

We start in Section 2 with our protocols for the sparse set disjointness. Note that the
exists-equal problem is a special case of sparse set disjointness, so our protocols work
also for the exists-equal problem. In the rest of the paper we establish matching lower
bounds showing that the complexity of our protocols are within a constant factor to
optimal for both the exists-equal and the sparse set disjointness problems, and for any
number of rounds. In Section 3 we give an elementary proof for the case of single round
protocols. In Section 4 we develop our isoperimetric inequality and in Section 5 we use
it in our round elimination proof to get the lower bound for multiple round protocols.
Finally in Section 6 we point toward possible extensions of our results.

2 The upper bound

Recall that in the communication problem DISJmk , each of the two players is given a
subset of [m] of size at most k and they communicate in order to determine whether
their sets are disjoint or not. In 1997, H̊astad and Wigderson [39, 23] gave a probabilistic
protocol that solves this problem with O(k) bits of communication and has constant
one-sided error probability. The protocol takes O(log k) rounds. Let us briefly review
this protocol as this is the starting point of our protocol.

Let S, T ⊆ [m] be the inputs of Alice and Bob. Observe that if they find a set
Z satisfying S ⊆ Z ⊆ [m], then Bob can replace his input T with T ′ = T ∩ Z as
T ′∩S = T ∩S. The main observation is that if S and T are disjoint, then a random set
Z ⊇ S will intersect T in a uniform random subset, so one can expect |T ′| ≈ |T |/2. In the
H̊astad-Wigderson protocol the players alternate in finding a random set that contains
the current input of one of them, effectively halving the other player’s input. If in this
process the input of one of the players becomes empty, they know the original inputs
were disjoint. If, however, the sizes of their inputs do not show the expected exponential
decrease in time, then they declare that their inputs intersect. This introduces a small
one sided error. Note that one of the two outcomes happens in O(log k) rounds. An
important observation is that Alice can describe a random set Z ⊇ S to Bob using an
expected O(|S|) bits by making use of the joint random source. This makes the total
communication O(k).

In our protocol proving the next theorem, we do almost the same, but we choose the
random sets Z ⊇ S not uniformly, but from a biased distribution favoring ever smaller
sets. This makes the size of the input sets of the players decrease much more rapidly,
but describing the random set Z to the other player becomes more costly. By carefully
balancing the parameters we optimize for the total communication given any number of
rounds. When the number of rounds reaches log∗ k − O(1) the communication reaches
its minimum of O(k) and the error becomes exponentially small.

Theorem 1. For any r ≤ log∗ k, there is an r-round probabilistic protocol for DISJmk
with O(k log(r) k) bits total communication. There is no error for intersecting input
sets, and the probability of error for disjoint sets can be made O(1/ exp(r)(c log(r) k) +
exp(−

√
k))� 1/k for any constant c > 1.
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For r = log∗ k −O(1) rounds this means an O(k)-bit protocol with error probability
O(exp(−

√
k)).

Proof. We start with the description of the protocol. Let S0 and S1 be the input sets
of Alice and Bob, respectively. For 1 ≤ i ≤ r, i even Alice sends a message describing
a set Zi ⊃ Si based on her “current input” Si and Bob updates his “current input”
Si−1 to Si+1 ··= Si−1 ∩ Zi. In odd numbered rounds the same happens with the role
of Alice and Bob reversed. We depart from the H̊astad-Wigderson protocol in the way
we choose the sets Zi: Using the shared random source the players generate li random
subsets of [m] containing each element of [m] independently and with probability pi. We
will set these parameters later. The set Zi is chosen to be the first such set containing
Si. Alice or Bob (depending on the parity of i) sends the index of this set or ends the
protocol by sending a special error signal if none of the generated sets contain Si. The
protocol ends with declaring the inputs disjoint if the error signal is never sent and we
have Sr+1 = ∅. In all other cases the protocol ends with declaring “not disjoint”.

This finishes the description of the protocol except for the setting of the parameters.
Note that the error of the protocol is one-sided: S0 ∩ S1 = Si ∩ Si+1 for i ≤ r, so
intersecting inputs cannot yield Sr+1 = ∅.

We set the parameters (including ki used in the analysis) as follows:

u = (c+ 1) log(r) k,

pi =
1

exp(i) u
for 1 ≤ i ≤ r,

l1 = k exp(ku),

li = k2k/2
i−4

for 2 ≤ i ≤ r,
k0 = k1 = k,

ki =
k

2i−4 exp(i−1) u
for 2 ≤ i ≤ r,

kr+1 = 0.

The message sent in round i > 1 has length dlog(li+1)e < k/2i−4+log k+1, thus the
total communication in all rounds but the first is O(k). The length of the first message
is dlog(l1 + 1)e ≤ ku+ log k + 1. The total communication is O(ku) = O(ck log(r) k) as
claimed (recall that c is a constant).

Let us assume the input pair is disjoint. To estimate the error probability we call
round i bad if an error message is sent or a set Si+1 is created with |Si+1| > ki+1. If no
bad round exists we have Sr+1 = ∅ and the protocol makes no error. In what follows
we bound the probability that round i is bad assuming the previous rounds are not bad
and therefore having |Sj | ≤ kj for 0 ≤ j ≤ i.

The probability that a random set constructed in round i contains Si is p
−|Si|
i ≥ p−kii .

The probability that none of the li sets contains Si and thus an error message is sent is
therefore at most (1− pkii )li < e−k.

If no error occurs in the first bad round i, then |Si+1| > ki+1. Note that in this case
Si+1 = Si−1 ∩ Zi contains each element of Si−1 independently and with probability pi.
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This is because the choice of Zi was based on it containing Si, so it was independent
of its intersection with Si−1 (recall that Si ∩ Si−1 = S1 ∩ S0 = ∅). For i < r we use
the Chernoff bound. The expected size of Si+1 is |Si−1|pi ≤ ki−1pi ≤ ki+1/2, thus the
probability of |Si+1| > ki+1 is at most 2−ki+1/4. Finally for the last round i = r we use
the simpler estimate prkr−1 ≤ k/ exp(r) u for |Sr+1| > kr+1 = 0.

Summing over all these estimates we obtain the following error bound for our pro-
tocol:

Pr[error] ≤ re−k +
k

exp(r) u
+

r∑
i=2

2−ki/4.

In case kr ≥ 4
√
n this error estimate proves the theorem. In case kr < 4

√
k we need

to make a minor adjustments in the setting of our parameters. We take j to be the
smallest value with kj < 4

√
k, modify the parameters for round j and stop the protocol

after this round declaring “disjoint” if Sj+1 = ∅ and “intersecting” otherwise. The new

parameters for round j are k′j = 4
√
k, p′j = 2−2

√
k, l′j = k28k. This new setting of the

parameters makes the message in the last round linear in k, while both the probability
that round j − 1 is bad because it makes |Sj | > k′j , or the probability that round j is

bad for any reason (error message or Sj+1 6= ∅) is O(2−
√
k). This finishes the analysis

of our protocol.

3 Lower bound for single round protocols

In this section we give an combinatorial proof that any single round randomized protocol
for the exists-equal problem with parameters n and t = 4n has complexity Ω(n log n) if
its error probability is at most 1/3. As pointed out in the Introduction, to our knowledge
this is the fist established case when solving the OR of n instances of a communication
problem requires strictly more than n times the complexity needed to solve a single
such instance.

We start with with a simple and standard reduction from the randomized protocol
to the deterministic one and further to a large set of inputs that makes the first (and in
this case only) message fixed. These steps are also used in the general round elimination
argument therefore we state them in general form.

Let ε > 0 be a small constant and let P be an 1/3-error randomized protocol for
the exists-equal problem with parameters n and t = 4n. We repeat the protocol P in
parallel taking the majority output, so that the number of rounds does not change, the
length of the messages is multiplied by a constant and the error probability decreases
below ε. Now we fix the coins of of this ε-error protocol in a way to make the resulting
deterministic protocol err on at most ε fraction of the possible inputs. Denote the
deterministic protocol we obtain by Q.

Lemma 2. Let Q be a deterministic protocol for the EEn problem that makes at most
ε error on the uniform distribution. Assume Alice sends the first message of length c.
There exists an S ⊂ [t]n of size µ(S) = 2−c−1 such that the first message of Alice is
fixed when x ∈ S and we have Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε for all x ∈ S.
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Proof. Note that the quantity e(x) = Pry∼µ[Q(x, y) 6= EE(x, y)], averaged over all x, is
the error probability of Q on the uniform input, hence is at most ε. Therefore for at
least half of x, we have e(x) ≤ 2ε. The first message of Alice partitions this half into at
most 2c subsets. We pick S to consist of tn/2c+1 vectors of the same part: at least one
part must have this many elements.

We fix a set S as guaranteed by the lemma. We assume we started with a single
round protocol, so Q(x, y) = Q(x′, y) whenever x, x′ ∈ S. Indeed, Alice sends the same
message by the choice of S and then the output is determined by Bob, who has the
same input in the two cases.

We call a pair (x, y) bad if x ∈ S, y ∈ [t]n and Q errs on this input, i.e., Q(x, y) 6=
EE(x, y). Let b be the number of bad pairs. By Lemma 2 each x ∈ |S| is involved in at
most 2εtn bad pairs, so we have

b ≤ 2ε|S|tn.

We call a triple (x, x′, y) bad if x, x′ ∈ S, y ∈ [t]n, EE(x, y) = 1 and EE(x′, y) = 0. The
proof is based on double counting the number z of bad triples. Note that for a bad
triple (x, x′, y) we have Q(x, y) = Q(x′, y) but EE(x, y) 6= EE(x′, y), so Q must err on
either (x, y) or (x′, y) making one of these pairs bad. Any pair (bad or not) is involved
in at most |S| bad triples, so we have

z ≤ b|S| ≤ 2ε|S|2tn.

Let us fix arbitrary x, x′ ∈ S with Match(x, x′) ≤ n/2. We estimate the num-
ber of y ∈ [t]n that makes (x, x′, y) a bad triple. Such a y must have Match(x, y) >
Match(x′, y) = 0. To simplify the calculation we only count the vectors y with Match(x, y) =
1. The match between y and x can occur at any position i with xi 6= x′i. After fixing
the coordinate yi = xi we can pick the remaining coordinates yj of y freely as long as
we avoid xj and x′j . Thus we have

|{y | (x, x′y) is bad}| ≥ (n−Match(x, y))(t− 2)n−1 ≥ (n/2)(t− 2)n−1 > tn/14,

where in the last inequality we used t = 4n. Let s be the size of the Hamming ball
Bn/2(x) = {y ∈ [t]n | Match(x, y) > n/2}. By the Chernoff bound we have s < tn/nn/2

(using t = 4n again). For a fixed x we have at least |S| − s choices for x′ ∈ S with
Match(x, x′) ≤ n/2 when the above bound for triples apply. Thus we have

z ≥ |S|(|S| − s)tn/14.

Combining this with the lower bound on the number of bad triples we get

28ε|S| ≥ |S| − s.

Therefore we conclude that we either have large error ε > 1/56 or else we have
|S| ≤ 2s < 2tn/nn/2. As we have |S| = tn/2c+1 the latter possibility implies

c ≥ n log n/2− 2.

Summarizing we have the following.
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Theorem 2. A single round probabilistic protocol for EEn with error probability 1/3
has complexity Ω(n log n).

A single round deterministic protocol for EEn that errs on at most 1/56 fraction of
the inputs has complexity at least n log n/2− 2.

4 An isoperimetric inequality on the discrete grid

The isoperimetric problem on the Boolean cube {0, 1}n proved extremely useful in
theoretical computer science. The problem is to determine the set S ⊆ {0, 1}n of a fixed
cardinality with the smallest “perimeter”, or more generally, to establish connection
between the size of a set and the size of its boundary. Here the boundary can be defined
in several ways. Considering the Boolean cube as a graph where vertices of Hamming
distance 1 are connected, the edge boundary of a set S is defined as the set of edges
connecting S and its complement, while the vertex boundary consists of the vertices
outside S having a neighbor in S.

Harper [20] showed that the vertex boundary of a Hamming ball is smallest among
all sets of equal size, and the same holds for the edge boundary of a subcube. These
results can be generalized to other cardinalities [22]; see the survey by Bezrukov [7].

Consider the metric space over the set [t]n endowed with the Hamming distance.
Let f be a concave function on the nonnegative integers and 1 ≤M < n be an integer.
We consider the following value as a generalized perimeter of a set S ⊆ [t]n:

E
x∼µ

[f (|BM (x) ∩ S|)],

where BM (x) = {y ∈ [t]n | Match(x, y) ≥M} is the radius n−M Hamming ball around
x. Note that when M = n − 1 and f is the counting function given as f(0) = 0 and
f(l) = 1 for l > 0 (which is concave), the above quantity is exactly the normalized
size of the vertex boundary of S. For other concave functions f and parameters M
this quantity can still be considered a measure of how “spread out” the set S is. We
conjecture that n-dimensional boxes minimize this measure in every case.

Conjecture 1. Let 1 ≤ k ≤ t and 1 ≤M < n be integers. Let S be an arbitrary subset
of [t]n of size kn and P = [k]n. We have

E
x∼µ

[f (|BM (x) ∩ P |)] ≤ E
x∼µ

[f (|BM (x) ∩ S|)].

Even though a proof of Conjecture 1 remained elusive, in Theorem 3, we prove an
approximate version of this result, where, for technical reasons, we have to restrict our
attention to a small fraction of the coordinates. Having this weaker result allows us to
prove our communication complexity lower bound in the next section but proving the
conjecture here would simplify this proof.

We start the technical part of this section by introducing the notation we will use.
For x, y ∈ [t]n and i ∈ [n] we write x ∼i y if xj = yj for j ∈ [n] \ {i}. Observe that ∼i is
an equivalence relation. A set K ⊆ [t]n is called an i-ideal if x ∼i y, xi < yi and y ∈ K
implies x ∈ K. We call a set K ⊆ [t]n an ideal if it is an i-ideal for all i ∈ [n].
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For i ∈ [n] and x ∈ [t]n we define downi(x) = (x1, . . . , xi−1, xi− 1, xi+1, . . . , xn). We
have downi(x) ∈ [t]n whenever xi > 1. Let K ⊆ [t]n be a set, i ∈ [n] and 2 ≤ a ∈ [t].
For x ∈ K, we define downi,a(x,K) = downi(x) if xi = a and downi(x) /∈ K and we set
downi,a(x,K) = x otherwise. We further define downi,a(K) = {downi,a(x,K) | x ∈ K}.
For K ⊆ [t]n and i ∈ [n] we define

downi(K) =
{
y ∈ [t]n | yi ≤ |{z ∈ K | y ∼i z}|

}
.

Finally for K ⊆ [t]n we define

down(K) = down1(down2(. . . downn(K) . . .)).

The following lemma states few simple observations about these down operations.

Lemma 3. Let K ⊆ [t]n be a set and let i, j ∈ [n] be integers. The following hold.

(i) downi(K) can be obtained from K by applying several operations downi,a.

(ii) | downi,a(K)| = |K| for each 2 ≤ a ≤ t, |downi(K)| = |K| and |down(K)| = |K|.

(iii) downi(K) is an i-ideal and if K is a j-ideal, then downi(K) is also a j-ideal.

(iv) down(K) is an ideal. For any x ∈ down(K) we have P ··= [x1]× [x2]×· · ·× [xn] ⊆
down(K) and there exists a set T ⊆ K with P = down(T ).

Proof. For statement (i) notice that as long as K is not an i-ideal one of the operations
downi,a will not fix K and hence will decrease

∑
x∈K xi. Thus a finite sequence of these

operations will transform K into an i-ideal. It is easy to see that the operations downi,a
preserve the number of elements in each equivalence class of ∼i, thus the i-ideal we
arrive at must indeed be downi(K).

Statement (ii) follows directly from the definitions of each of these down operations.
The first claim of statement (iii), namely that downi(K) is an i-ideal, is trivial from

the definition. Now assume j 6= i and K is a j-ideal, y ∈ downi(K) and yj > 1. To
see that downi(K) is a j-ideal it is enough to prove that downj(y) ∈ downi(K). Since
y ∈ downi(K), there are yi distinct vectors z ∈ K that satisfy z ∼i y. Considering the
vectors downj(z) ∼i downj(y) and using that these distinct vectors are in the j-ideal K
proves that downj(y) is indeed contained in downi(K).

By statement (iii), down(K) is an i-ideal for each i ∈ [n]. Therefore down(K) is
an ideal and the first part of statement (iv), that is, P ⊆ K ′ follows. We prove the
existence of suitable T by induction on the dimension n. The base case n = 0 (or even
n = 1) is trivial. For the inductive step consider K ′ = down2(down3(. . . downn(K) . . .)).
As x ∈ down(K) = down1(K ′), we have distinct vectors x(k) ∈ K ′ for k = 1, . . . , x1,
satisfying x(k) ∼1 x. Notice that the construction of K ′ from K is performed inde-
pendently on each of the (n − 1)-dimensional “hyperplanes” Sl = {y ∈ [t]n | y1 = l}
as none of the operations down2, . . . ,downn change the first coordinate of the vec-

tors. We apply the inductive hypothesis to obtain the sets T (k) ⊆ Sx
(k)
1 ∩K such that

down2(. . . downn(T (k)) . . .) = {x(k)
1 } × [x2] × · · · × [xn]. Using again that these sets
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are in distinct hyperplanes and the operations down2, . . . ,downn act separately on the
hyperplanes Sl, we get for T := ∪x1k=1T

(k) that

down2(. . . downn(T ) . . . ) = {x(k)
1 | k ∈ [x1]} × [x2]× · · · × [xn].

Applying down1 on both sides finishes the proof of this last part of the lemma.

For sets x ∈ [t]n, I ⊆ [n], and integer M ∈ [n] we define BI,M (x) = {y ∈ [t]n |
Match(xI , yI) ≥ M}. The projection of BI,M to the coordinates in I is the Hamming
ball of radius |I| −M around the projection of x.

Lemma 4. Let I ⊆ [n], M ∈ [n] and let f be a concave function on the nonnegative
integers. For arbitrary K ⊆ [t]n we have

E
x∼µ

[f(|BI,M (x) ∩ down(K)|)] ≤ E
x∼µ

[f(|BI,M (x) ∩K|)].

Proof. By Lemma 3(i), the set down(K) can be obtained from K by a series of opera-
tions downi,a with various i ∈ [n] and 2 ≤ a ≤ t. Therefore, it is enough to prove that
the expectation in the lemma does not increase in any one step. Let us fix i ∈ [n] and
2 ≤ a ≤ t. We write Nx = BI,M (x) ∩K and N ′x = BI,M (x) ∩ downi,a(K) for x ∈ [t]n.
We need to prove that

E
x∼µ

[f(|Nx|)] ≥ E
x∼µ

[f(|N ′x|)].

Note that |Nx| = |N ′x| whenever i /∈ I or xi /∈ {a, a−1}. Thus, we can assume i ∈ I and
concentrate on x ∈ [t]n with xi ∈ {a, a− 1}. It is enough to prove f(|Nx|) + f(|Ny|) ≥
f(|N ′x|)+f(|N ′y|) for any pair of vectors x, y ∈ [t]n, satisfying xi = a, and y = downi(x).

Let us fix such a pair x, y and set C = {z ∈ K \ downi,a(K) | Match(xI , zI) =
M}. Observe that Nx = N ′x ∪ C and N ′x ∩ C = ∅. Similarly, observe that N ′y =
Ny ∪ downi,a(C) and Ny ∩ downi,a(C) = ∅. Thus we have |N ′x| = |Nx| − |C| and
|N ′y| = |Ny|+ |downi,a(C)| = |Ny|+ |C|.

The inequality f(|Nx|)+f(|Ny|) ≥ f(|N ′x|)+f(|N ′y|) follows now from the concavity
of f , the inequalities |N ′x| ≤ |Ny| ≤ |N ′y| and the equality |Nx| + |Ny| = |N ′x| + |N ′y|.
Here the first inequality follows from downi,a(N

′
x) ⊆ downi,a(Ny), the second inequality

and the equality comes from the observations of the previous paragraph.

Lemma 5. Let K ⊆ [t]n be arbitrary. There exists a vector x ∈ K having at least n/5
coordinates that are greater than k ··= t

2µ(K)5/(4n).

Proof. The number of vectors that have at most n/5 coordinates greater than k can be
upper bounded as (

n

n/5

)
tn/5k4n/5 = tn

(
n

n/5

)
(k/t)4n/5 = |K|

(
n
n/5

)
24n/5

,

where in the last step we have substituted k
t = 1

2µ(K)5/(4n) and µ(K) = |K|/tn. Esti-

mating
(
n
n/5

)
≤ 2nH2(1/5), we obtain that the above quantity is less than |K|. Therefore,

there must exists an x ∈ K that has at least n/5 coordinates greater than k.
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Theorem 3. Let S be an arbitrary subset of [t]n. Let k = t
2µ(S)5/(4n) and M =

nk/(20t). There exists a subset T ⊂ S of size kn/5 and I ⊂ [n] of size n/5 such that,
defining Nx = {x′ ∈ T | Match(xI , x

′
I) ≥M}, we have

(i) Prx∼µ[Nx = ∅] ≤ 5−M and

(ii) Ex∼µ[log |Nx|] ≥ (n/5−M) log k − n log k/5M , where we take log 0 = −1 to make
the above expectation exist.

Proof. By Lemma 3(ii), we have |down(S)| = |S|. By Lemma 5, there exists an x ∈
down(S) having at least n/5 coordinates that are greater than k. Let I ⊂ [n] be a set of
n/5 coordinates such that xi ≥ k for a fixed x ∈ down(S). By Lemma 3(iv), down(S) is
an ideal and thus it contains the set P =

∏
i Pi, where Pi = [k] for i ∈ I and Pi = {1}

for i /∈ I. Also by Lemma 3(iv), there exists a T ⊆ S such that P = down(T ). We fix
such a set T . Clearly, |T | = kn/5.

For a vector x ∈ [t]n, let h(x) be the number of coordinates i ∈ I such that xi ∈ [k].
Note that Ex∼µ[h(x)] = 4M and h(x) has a binomial distribution. By the Chernoff
bound we have Prx∼µ[h(x) < M ] < 5−M . For x with h(x) ≥M we have |BI,M (x)∩P | ≥
kn/5−M , but for h(x) < M we have BI,M (x) ∩ P = ∅. With the unusual convention
log 0 = −1 we have

E
x∼µ

[log |BI,M (x) ∩ P |] ≥ Pr[h(x) ≥M ](n/5−M) log k − Pr[h(x) < M ]

> (n/5−M) log k − n log k/5M

We have down(T ) = P and our unusual log is concave on the nonnegative integers,
so Lemma 4 applies and proves statement (ii):

E
x∼µ

[log |Nx|] ≥ E
x∼µ

[log |BI,M (x) ∩ P |]

≥ (n/5−M) log k − n log k/5M .

To show statement (i), we apply Lemma 4 with the concave function f defined as
f(0) = −1 and f(l) = 0 for all l > 0. We obtain that

Pr
x∼µ

[Nx = ∅] = − E
x∼µ

[f(|Nx|)]

≤ − E
x∼µ

[f(|BI,M (x) ∩ P |)]

= Pr
x∼µ

[BI,M (x) ∩ P = ∅]

< 5−M .

This completes the proof.

5 Lower bound for multiple round protocols

In this section we prove our main lower bound result:
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Theorem 4. For any r ≤ log∗ n, an r-round probabilistic protocol for EEn with error
probability at most 1/3 sends at least one message of size Ω(n log(r) n).

Note that the r = 1 round case of this theorem was proved as Theorem 2 in Section 3.
The other extreme, which immediately follows from Theorem 4, is the following.

Corollary 1. Any probabilistic protocol for EEn with maximum message size O(n) and
error 1/3 has at least log∗ n−O(1) rounds.

Theorem 4 is a direct consequence of the corresponding statement on deterministic
protocols with small distributional error on uniform distribution; see Theorem 5 at the
end of this section. Indeed, we can decrease the error of a randomized protocol below
any constant ε > 0 for the price of increasing the message length by a constant factor,
then we can fix the coins of this low error protocol in a way that makes the resulting
deterministic protocol Q err in at most ε fraction of the possible inputs. Applying
Theorem 5 to the protocol Q proves Theorem 4.

In the rest of this section we use round-elimination to prove Theorem 5, that is, we
will use Q to solve smaller instances of the exists-equal problem in a way that the first
message is always the same, and hence can be eliminated.

Suppose Alice sends the first message of c bits in Q. By Lemma 2, there exists a
S ⊂ [t]n of size µ(S) = 2−c−1 such that the first message of Alice is fixed when x ∈ S
and we have Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε for all x ∈ S. Fix such a set S and let

k ··= t/2
5(c+1)

4n
+1 and M ··= nk/(20t). By Theorem 3, there exists a T ⊂ S of size kn/5

and I ⊂ [n] of size n/5 such that defining

Nx = {y ∈ T | Match(xI , yI) ≥M}

we have Prx∼µ[Nx = ∅] ≤ 5−M and Ex∼µ[log |Nx|] ≥ (n/5−M) log k − n log k/5M . Let
us fix such sets T and I. Note also that Theorem 3 guarantees that T is a strict subset
of S. Designate an arbitrary element of S \ T as x′e.

5.1 Embedding the smaller problem

The players embed a smaller instance u, v ∈ [t′]n
′

of the exists-equal problem in EEn
concentrating on the coordinates I determined above. We set n′ ··= M/10 and t′ ··= 4n′.
Optimally, the same embedding should guarantee low error probability for all pairs of
inputs, but for technical reasons we need to know the number of coordinate agreements
Match(u, v) for the input pairs (u, v) in the smaller problem having EEn′(u, v) = 1. Let
R ≥ 1 be this number, so we are interested in inputs u, v ∈ [t′]n

′
with Match(u, v) = 0

or R. We need this extra parameter so that we can eliminate a non-constant number
of rounds and still keep the error bound a constant. For results on constant round
protocols one can concentrate on the R = 1 case.

In order to solve the exist-equal problem with parameters t′ and n′ Alice and Bob
use the joint random source to turn their input u, v ∈ [t′]n

′
into longer random vectors

X ′, Y ∈ [t]n, respectively, and apply the protocol Q above to solve this exists-equal
problem for these larger inputs. Here we informally list the main requirements on
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the process generating X ′ and Y . We require these properties for the random vectors
X ′, Y ∈ [t]n generated from a fixed pair u, v ∈ [t′]n

′
satisfying Match(u, v) = 0 or R.

(P1) EE(X ′, Y ) = EE(u, v) with large probability,

(P2) supp(X ′) = T ∪ {x′e} and

(P3) for most x′ ∼ X ′, we have dist(Y |X ′ = x′) is close to uniform distribution on
[t]n.

Combining these properties with the fact that Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε for
each x ∈ S, we will argue that for the considered pairs of inputsQ(X ′, Y ) equals EE(u, v)
with large probability, thus the combined protocol solves the small exists-equal instance
with small error, at least for input pairs with Match(u, v) = 0 or R. Furthermore, by
Property (P2) the first message of Alice will be fixed and hence does not need to be
sent, making the combined protocol one round shorter.

The random variablesX ′ and Y are constructed as follows. Letm ··= 2n/(MR) be an
integer. Each player repeats his or her input (u and v, respectively) m times, obtaining
a vector of size n/(5R). Then using the shared randomness, the players pick n/(5R)
uniform random maps mi : [t′] → [t] independently and apply mi to ith coordinate.
Furthermore, the players pick a uniform random 1-1 mapping π : [n/(5R)]→ I and use
it to embed the coordinates of the vectors they constructed among the coordinates of
the vectors X and Y of length n. The remaining n−n/(5R) coordinates of X is picked
uniformly at random by Alice and similarly, the remaining n − n/(5R) coordinates of
Y is picked uniformly at random by Bob. Note that the marginal distribution of both
X and Y are uniform on [t]n. If Match(u, v) = 0 the vectors X and Y are independent,
while if Match(u, v) = R, then Y can be obtained by selecting a random subset of I of
cardinality mR, copying the corresponding coordinates of X and filling the rest of Y
uniformly at random.

This completes the description of the random process for Bob. However Alice gener-
ates one more random variable X ′ as follows. Recall that Nx = {z ∈ T | Match(zI , xI) ≥
M}. The random variable X ′ is obtained by drawing x ∼ X first and then choosing
a uniform random element of Nx. In the (unlikely) case that Nx = ∅, Alice chooses
X ′ = x′e.

Note that X ′ either equals x′e or takes values from T , hence Property (P2) holds.
In the next lemma we quantify and prove Property (P1) as well.

Lemma 6. Assume n ≥ 3, M ≥ 2 and u, v ∈ [t′]n
′
. We have

(i) if Match(u, v) = 0 then Pr[EE(X ′, Y ) = 0] > 0.77;

(ii) if Match(u, v) = R, then Pr[EE(X ′, Y ) = 1] ≥ 0.80.

Proof. For the first claim, note that when Match(u, v) = 0, the random variables X
and Y are independent and uniformly distributed. We construct X ′ based on X, so its
value is also independent of Y . Hence Pr[EE(X ′, Y ) = 0] = (1 − 1/t)n. This quantity
goes to e−1/4 since t = 4n and is larger than 0.77 when n ≥ 3. This establishes the first
claim.
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For the second claim let J = {i ∈ I | Xi = Yi} and K = {i ∈ I | X ′i = Xi}.
By construction, |J | = Match(XI , YI) ≥ mR and |K| = Match(X ′I , XI) ≥ M unless
NX = ∅. By our construction, each J ⊂ I of the same size is equally likely by symmetry,
even when we condition on a fix value of X and X ′. Thus we have E[|J ∩ K| |NX 6=
∅] ≥ mRM/|I| = 10 and Pr[J ∩K = ∅ |NX 6= ∅] < e−10. Note that X is distributed
uniformly over [t]n, therefore by Theorem 3(i) the probability that NX = ∅ is at most
5−M . Note that Match(X ′, Y ) ≥ |J ∩ K| and thus Pr[EE(X ′, Y ) = 0] ≤ Pr[J ∩ K =
∅] ≤ Pr[J ∩K = ∅ |NX 6= ∅]+Pr[NX = ∅] ≤ e−10 +5−M . This completes the proof.

We measure “closeness to uniformity” in Property (P3) by simply calculating the
entropy. This entropy argument is postponed to the next subsection; here we show how
such a bound to the entropy implies that the error introduced by Q is small.

Lemma 7. Let x′ ∈ S be fixed and let γ be a probability in the range 2ε ≤ γ < 1. If
H(Y |X ′ = x′) ≥ n log t−D2(γ ‖ 2ε) then Pry∼Y |X′=x′ [Q(x′, y) 6= EE(x′, y)] ≤ γ.

Proof. For a distribution ν over [t]n, let e(ν) = Pry∼ν [Q(x′, y) 6= EE(x′, y)]. We prove
the contrapositive of the statement of the lemma, that is assuming Pry∼Y |X′=x′ [Q(x′, y) 6=
EE(x′, y)] > γ we prove H(Y |X ′ = x′) < n log t−D2(γ ‖ 2ε):

n log t−H(Y |X ′ = x′) = D(dist(Y |X ′ = x′) ‖µ)

≥ D2(e(dist(Y |X ′ = x′)) ‖ e(µ))

≥ D2(γ ‖ 2ε),

where the first inequality follows from the chain rule for the Kullback-Leibler divergence.

5.2 Establishing Property (P3)

We quantify Property (P3) using the conditional entropy H(Y |X ′). If Match(u, v) = R
our process generetas X and Y with the expected number E[Match(XI , YI)] of matches
only slightly more than the minimum mR. We lose most of these matches with Y when
we replace X by X ′ and only an expected constant number remains. A constant number
of forced matches with X ′ within I restricts the number of possible vectors Y but it only
decreases the entropy by O(1). The calculations in this subsection make this intuitive
argument precise.

Lemma 8. Let X ′, Y be as constructed above. The following hold.

(i) If Match(u, v) = 0 we have H(Y |X ′) = n log t.

(ii) If M > 100 log n and Match(u, v) = R we have H(Y |X ′) = n log t−O(1).

Proof. Part (i) holds as Y is uniformly distributed and independent of X ′ whenever
EE(u, v) = 0.

For part (ii) recall that if Match(u, v) = R one can construct X and Y by uniformly
selecting a size mR set L ⊆ I and selecting X and Y uniformly among all pairs satisfying
XL = YL. Recall that L is the set of coordinates the mR matches between um and vm
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were mapped. These are the “intentional matches” between XI and YI . Note that there
may be also “unintended matches” betweenXI and YI , but not too many: their expected
number is (n/5 − mR)/t < 1/20. As given any fixed L, the marginal distribution of
both X and Y are still uniform, so in particular X is independent of L and so is X ′

constructed from X. Therefore we have

H(Y |X ′) = H(Y |X ′, L) + H(L)−H(L |Y,X ′).

We treat the terms separately. First we split the first term:

H(Y |X ′, L) = H(YL |X ′, L) + H(Y[n]\L |X ′, L, YL)

and use that Y[n]\L is uniformly distributed for any fixed L, X ′ and YL, making

H(Y[n]\L |X ′, L, YL) = (n−mR) log t.

We have XL = YL, thus

H(YL |X ′, L) = H(XL |X ′, L)

≥ mR

n/5
H(XI |X ′)

≥ mR log t− 10 log k − MR

5M−1
log k,

where the first inequality follows by Lemma 1 as L is a uniform and independent of X
and X ′ and the second inequality follows from Lemma 9 that we will prove shortly and
the formula defining m.

The next term, H(L) is easy to compute as L is a uniform subset of I of size mR:

H(L) = log

(
n/5

mR

)
It remains to bound the term H(L |Y,X ′). Let Z = {i | i ∈ I and X ′i = Yi}. Note

that Z can be derived from X ′, Y (as I is fixed) hence H(L |Y,X ′) ≤ H(L |Z). Further,
let C = |Z \ L|. We obtain

H(L |Y,X ′) ≤ H(L |Z) ≤ H(L |Z,C) + H(C)

< E
Z,C

[
log

(
n/5− |Z|+ C

mR− |Z|+ C

)]
+ E
Z,C

[
log

(
|Z|
C

)]
+ 2

where we used H(C) < 2. Note that for any fixed x′ ∈ T and x ∈ supp(X |X ′ = x′), we
have

E[|Z| − C |X = x,X ′ = x′] = Match(xI , x
′
I)mR/(n/5) ≥ 10

as Match(xI , x
′
I) ≥M by definition.

Hence we have

log

(
n/5

mR

)
− log

(
n/5− |Z|+ |C|
mR− |Z|+ |C|

)
≥ 10 log

n

5m
−O(1),

17



E
Z,C

[
log

(
|Z|
C

)]
≤ E[|Z|] < 20.

Summing the estimates above for the various parts of H(Y |X ′) the statement of the
lemma follows.

It remains to prove the following simple lemma that “reverses” the conditional en-
tropy bound in Theorem 3(ii):

Lemma 9. For any u, v ∈ [t′]n
′

we have H(XI |X ′) ≥ n
5 log t−M log k − n log k/5M .

Proof. Using the fact that H(A,B) = H(A |B) + H(B) = H(B |A) + H(A) we get

H(XI |X ′) = H(X ′ |XI) + H(XI)−H(X ′)

≥ n

5
log t+ H(X ′ |XI)−

n

5
log k,

where in the last step we used H(X ′) ≤ log | supp(X ′)| = log |T | = n
5 log k and H(XI) =

(n/5) log t as X is uniformly distributed.
Observe that H(X ′ |XI) = H(X ′ |X) = Ex∼µ[log |Nx|], where log 0 is now taken to

be 0. From Theorem 3(ii) we get H(X ′ |X) ≥ n
5 log k −M log k − n log k/5M finishing

the proof of the lemma.

5.3 The round elimination lemma

Let νn be the uniform distribution on [t]n × [t]n, where we set t = 4n. The following
lemma gives the base case of the round elimination argument.

Lemma 10. Any 0-round deterministic protocol for EEn has at least 0.22 distributional
error on νn, when n ≥ 1.

Proof. The output of the protocol is decided by a single player, say Bob. For any given
input y ∈ [t]n we have 3/4 ≤ Prx∼µ[EE(x, y) = 0] < e−1/4 < 0.78. Therefore the
distributional error is at least 0.22 for any given y regardless of the output Bob chooses,
thus the overall error is also at least 0.22.

Now we give our full round elimination lemma.

Lemma 11. Let r > 0, c, n be an integers such that c < (n log n)/2. There is a constant
0 < ε0 < 1/200 such that if there is an r-round deterministic protocol with c-bit messages
for EEn that has ε0 error on νn, then there is an (r − 1)-round deterministic protocol

with O(c)-bit messages for EEn′ that has ε0 error on νn′, where n′ = Ω(n/2
5c
4n ).

Proof. We start with an intuitive description of our reduction. Let us be given the
deterministic protocol Q for EEn that errs on an ε0 fraction of the inputs. To solve an
instance (u, v) of the smaller EEn′ problem the players perform the embedding procedure
described in previous subsection k0 times independently for each parameter R ∈ [R0].
Here k0 and R0 are constants we set later. They perform the protocol Q in parallel for
each of the k0R0 pairs of inputs they generated. Then they take the majority of the
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k0 outputs for a fixed parameter R. We show that this result gives the correct value of
EE(u, v) with large probability provided that Match(u, v) = 0 or R. Finally they take
the OR of these results for the R0 possible values of R. By the union bound this gives
the correct value EE(u, v) with large probability provided Match(u, v) ≤ R0. Fixing the
random choices of the reduction we obtain a deterministic protocol. The probability
of error for the uniform random input can only grow by the small probability that
Match(u, v) > R0 and we make sure it remains below ε0. The rest of the proof makes
this argument precise.

For random variables X ′ and Y constructed in Section 5.1, Lemma 8 guarantees
that H(Y |X ′) ≥ n log t − α0 for some constant α0, as long as M > 100 log n and
Match(u, v) = R. Let ε0 be a constant such that D2(1/10 ‖ 2ε0) > 200(α0 + 1). Note
that such ε0 can be found as D2(1/10 ‖ ε) tends to infinity as ε goes to 0. We can
bound Pr(x,y)∼νm [Match(x, y) ≥ l] ≤ 1/(4ll!) for all m ≥ 1. We set R0 such that
Pr(x,y)∼νm [Match(x, y) ≥ R0] ≤ ε0/2 for all m ≥ 1.

Let Q be a deterministic protocol for EEn that sends c < (n log n)/2 in each round
and that has ε0 error on νn. Let S be as constructed in Lemma 2 and let M be as

defined in Theorem 3. We have M = n
402

−5(c+1)
4n as t = 4n and µ(S) = 2−(c+1) by

Lemma 2. Note that by our choice of c, we have M > 100 log n, hence the hypotheses
of Lemma 8 are satisfied.

Let n′ = M/10 = n
4002

−5(c+1)
4n . Now we give a randomized protocol Q′ for EEn′ .

Suppose the players are given an instance of EEn′ , namely the vectors (u, v) ∈ [4n′]n
′ ×

[4n′]n
′
. Let k0 = 10 log(R0 + 1/ε0). For R ∈ [R0] and k ∈ [k0], the players construct

the vectors X ′R,k and YR,k as described in Section 5.1 with parameter R and with fresh
randomness for each of the R0k0 procedures. The players run R0k0 instances of protocol
Q in parallel, on inputs X ′R,k, YR,k for R ∈ [R0] and k ∈ [k0]. Note that the first message
of the first player, Alice, is fixed for all instances of Q by Property (P2) and Lemma 2.
Therefore, the second player, Bob, can start the protocol assuming Alice has sent the
fixed first message. After the protocols finish, for each R ∈ [R0], the last player who
received a message computes bR as the majority of Q(X ′R,k, YR,k) for k ∈ [k0]. Finally,
this player outputs 0 if bR = 0 for all R ∈ [R0] and outputs 1 otherwise.

Suppose now that EE(u, v) = 0. By Lemma 6(i), we have Pr[EE(X ′R,k, YR,k) =
0] ≥ 0.77 for each R and k. Recall that that YR,k is distributed uniformly for each
R and k and since EE(u, v) = 0, it is independent of X ′R,k. Therefore, by X ′R,k ∈ S
(Property (P2)) and the fact that Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε0 for all x ∈ S as per
Lemma 2, we obtain Pr[Q(X ′R,k, YR,k) = 0] ≥ 0.77−2ε0 > 0.76. By the Chernoff bound
we have Pr[bR = 1] < ε0/(2R0), and by the union bound Pr[Q′ outputs 0] ≥ 1− ε0/2.

Let us now consider the case Match(u, v) = R for some R ∈ [R0]. Fix any k ∈ [ko]
and set X ′ = X ′R,k, Y = YR,k. By Lemma 6(ii), Pr[EE(X ′, Y ) = 1] ≥ 0.80. By
Lemma 8, H(Y |X ′) ≥ n log t−α0, and so we have Ex′∼X′ [H(Y )−H(Y |X ′ = x′)] < α0.
Let Z = {x′ | H(Y ) − H(Y |X ′ = x′) > 10α0}. Note that Y is uniform, and has
full entropy, therefore H(Y ) − H(Y |X ′ = x′) ≥ 0. Using Markov’s inequality we have
Pr[X ′ ∈ Z] < 1/10. When X ′ ∈ Z we cannot effectively bound the probability that
EE(u, v) 6= Q(X ′, Y ); namely, we bound this probability by 1. But if X ′ /∈ Z, then by
Lemma 7 and our choice of ε0, we have Pr[EE(X ′, Y ) 6= Q(X ′, Y )] < 1/10. Furthermore,
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by Lemma 6(ii), Pr[EE(u, v) 6= EE(X ′, Y )] < 0.20 hence with probability at least 0.60
we have EE(u, v) = Q(X ′, Y ). This happens independently for all the values of k ∈ [k0],
so by the Chernoff bound and our choice of k0, we have Pr[Q′ outputs 0] ≤ Pr[bR =
0] < ε0/2.

Finally, Pr(u,v)∼νn′ [Match(u, v) ≥ R0] ≤ ε0/2 by our choice of R0. Note that the
protocol Q′ uses a shared random bit string, say W , in the construction of the vectors
X ′R,k and YR,k. Hence, overall, we have

Pr
W,(u,v)∼νn′

[EE(u, v) = Q′(u, v)] ≥ 1− ε0

Since we measure the error of the protocol under a distribution, we can fix W to a value
without increasing the error under the aforementioned distribution by the so called easy
direction of Yao’s lemma. Namely, there exists a w ∈ supp(W ) such that

Pr
(u,v)∼νn′

[EE(u, v) = Q′(u, v) |W = w] ≥ 1− ε0

Fix such w. Observe thatQ′ is a (r−1)-round protocol for EEn′ where n′ = n
4002

−5(c+1)
4n =

Ω(n/2
5c
4n ) and it sends at most R0k0c = O(c) bits in each message. Furthermore, Q′ is

deterministic and has at most ε0 error on νn′ as desired.

Theorem 5. There exists a constant ε0 such that for any r ≤ log∗ n, an r-round
deterministic protocol for EEn which has ε0 error on νn sends at least one message of
size Ω(n log(r) n).

Proof. Suppose we have an r-round protocol with c-bit messages for EEn that has ε0
error on νn, where c = γn log(r) n for some γ < 4/5− o(1). By Lemma 11, this protocol
can be converted to an r − 1 round protocol with αc-bit messages for EEn′ that has
ε0-error on νn′ , where n′ = βn/25c/4n for some α, β > 0. We only need to verify that
αc ≤ γn′ log(r−1) n′. We have

γn′ log(r−1) n′ = γβn/25c/4n log(r−1)(βn/25c/4n)

= γβn/2
5γ
4

log(r) n log(r−1)(βn/25c/4n)

≥ γβn
(

log(r−1) n
)1− 5γ

4
−o(1)

≥ γαn log(r) n

for γ < 4/5 − o(1) and large enough n. Therefore, by iteratively applying Lemma 11
we obtain a 0-round protocol for EEn̄ that makes ε0 error on νn̄ for some n̄ satisfying
γn̄2 = γn̄ log(0) n̄ ≥ cαr. Therefore n̄ ≥ 1 and since ε0 < 0.22, the protocol we obtain
contradicts Lemma 10, showing that the protocol we started with cannot exists.

Remark. We note that in the proof of Theorem 4, to show that a protocol with small
communication does not exist, we start with the given protocol and apply the round
elimination lemma (i.e., Lemma 11) r times to obtain a 0-round protocol with small
error probability, which is shown to be impossible by Lemma 10. Alternatively, one can
apply the round elimination r − 1 times to obtain a 1-round protocol with o(n log n)
communication for EEn, which is ruled out by Theorem 2.
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6 Discussion

The r-round protocol we gave in Section 2 solves the sparse set disjointness problem
in O(k log(r) k) total communication. As we proved in Section 5 this is optimal. The
same, however, cannot be said of the error probability. With the same protocol, but

with more careful setting of the parameters the exponentially small error O(2−
√
k) of

the log∗ k-round protocol can be further decreased to 2−k
1−o(1)

.
For small (say, constant) values of r this protocol cannot achieve exponentially small

error error without the increase in the complexity if the universe size m is unbounded.
But if m is polynomial in k (or even slightly larger, m = exp(r)(O(log(r) k))), we can
replace the last round of the protocol by one player deterministically sending his or her
entire “current set” Sr. With careful setting of the parameters in other rounds, this
modified protocol has the same O(k log(r) k) complexity but the error is now exponen-
tially small: O(2−k/ log k). Note that in our lower bound on the r-round complexity of
the sparse set disjointness we we use the exists-equal problem with parameters n = k
and t = 4k. This corresponds to the universe size m = tn = 4k2. In this case any
protocol solving the exists-equal problem with 1/3 error can be strengthened to expo-
nentially small error using the same number of rounds and only a constant factor more
communication.

Our lower and upper bounds match for the exists-equal problem with parameters
n and t = Ω(n), since the upper bounds were established without any regard of the
universe size, while the lower bounds worked for t = 4n. Extensions of the techniques
presented in this paper give matching bounds also in the case 3 ≤ t < n, where the
r-round complexity is Θ(n log(r) t) for r ≤ log∗ t. Note, however, that in this case one
needs to consider significantly more complicated input distributions. The Ω(n) lower
bound applies for the exists-equal problem of parameters n and t ≥ 3 regardless of the
number of rounds, as the disjointness problem on a universe of size n is a sub-problem.
For t = 2 the situation is drastically different, the exists-equal problem with t = 2 is
equivalent to a single equality problem.

Finally a remark on using the joint random source model of randomized protocols
throughout the paper. By a result of Newman [37] our protocols of Section 2 can be
made to work in private coin model (or even if one of the players is forced to behave
deterministically) by increasing the first message length by O(log log(N) + log(1/ε))
bits, where N =

(
m
k

)
is the number of possible inputs. In our case this means adding

the term O(log logm) + o(k) to our bound of O(k log(r) k), since our protocols make
at least exp(−k/ log k) error. This additional cost is insignificant for reasonably small
values of m, but it is necessary for large values as the equality problem, which is an
instance of disjointness, requires Ω(log logm)-bits in the private coin model.
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