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Abstract

Given a point sef? in the plane, thédelaunay graphwith respect to axis-parallel rectangles is a
graph defined on the vertex sBt whose two pointg, ¢ € P are connected by an edge if and only if
there is a rectangle parallel to the coordinate axes thaaowmp and g, but no other elements ap.
The following question of Even et al. [ELRS03] was motivatgda frequency assignment problem in
cellular telephone networks. Does there exist a congtant) such that the Delaunay graph of any set
of n points in general position in the plane contains an indepenset of size at leash? We answer
this question in the negative, by proving that the largedependent set in a randomly and uniformly
selected point set in the unit squareQ$én log” log n/ log n), with probability tending to 1. We also
show that our bound is not far from optimal, as the Delaunayplgiof a uniform random set afpoints
almost surely has an independent set of size at tegsiog n.

We give two further applications of our methods. 1. We cardt2-dimensionah-element partially
ordered sets such that the size of the largest independenbfseertices in their Hasse diagrams is
o(n). This answers a question of Matek and Fivétivy [MaP06] and improves a result offk and
Nesefil [KrN91]. 2. For any positive integers andd, we prove the existence of a planar point set
with the property that no matter how we color its elements bglors, we find an axis-parallel rectangle
containing at least points, all of which have the same color. This solves an adbiem from [BrMP05].

Keywords:Delauney graphs, Voronoi diagrams, Frequency assignment, Hasgard, Graph coloring

1 Delaunay graphs and conflict-free colorings

The Delaunay graphassociated with a set of poinizin the plane is a graph’(P) whose vertex set i
and whose edge set consists of those pgitg} C P for which there exists a closed disk that contagins
andgq, but does not contain any other elemen#bfThe Delaunay graph a? is a planar graph and its dual
is theDirichlet—Voronoi diagranof P (see, e.g., [BKOS00]). As any other planar grapt,P) contains an
independent set of size at leaBYy /4. It was discovered by Even, Lotker, Ron, and Smorodinsky [ELRS03
that this fact easily implies that any getof »n points in the plane hasanflict-free coloringwith respect to
disks, which uses at moét(log n) colors, that is, a coloring with the property that any closed diskith
C'N P # ) has an element whose color is not assigned to any other elemémt &f. Here, the logarithmic
bound is tight for every point set [PaT03].

The question was motivated by a frequency assignment problem in cellldphéme networks. The
points correspond tbase stationgnterconnected by a fixed backbone network. Eelgdnt continuously
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scans frequencies in search of a base station within its (circular) raitlyg@od reception. Once such a
base station is found, the client establishes a radio link with it, using a freguenshared by any other
station within its range. Therefore, a conflict-free coloring of the pointsesponds to an assignment of
frequencies to the base stations, which enables every client to conreebate station without interfering
with the others. For many results on conflict-free colorings, consult [BISChFKO06], [HaS05].

The same scheme can be used to construct conflict-free colorings ofsptantith respect to various
other families of geometric figures. In general, letbe a set of points ifR?, and letC be a family of
d-dimensional convex bodies. Define thelaunay graphD¢(P) of P with respect taC on the vertex set
P by connecting two elemenis ¢ € P with an edge if and only if there is a member®that containg
andgq, but no other element dP. The existence of large independent sets in such graphs implieB tex
a conflict-free coloring with respect 1, which uses a small number of colors. That is, a coloring with the
property that any membé&r € C with C' N P # () has an element whose color is not assigned to any other
element ofC N P.

In this paper, we consider this problem in the special case @l etihe family ofaxis-parallel rectangles
in the plane. The Delaunay graph P) of a point setP with respect to axis-parallel rectangles is also called
the rectangular visibility graphof P. Computing all rectangularly visible pairs of arelement point set,
that is, all edges oD (P), is a classical problem, solved ®(nlogn + |D(P)|) time by Qiting, Nurmi,
and Ottman [GUNO85], in a paper presented atRingt ACM Symposium on Computational Geoméiry
1985. See also [GUNO89], [OvW88], [DeH91], [JaT92].

The maximum size of an independent set of vertices in a géajhcalled theindependence number
of G, and is usually denoted hy(G) in the literature. Smorodinsky et al. [ELRS03], [HaS05] asked
whether the Delaunay graph of every setgfoints in the plane with respect to axis-parallel rectangles has
independence number at least for an absolute constant> 0. In Section 3, we give a negative answer to
this question. More precisely, we establish

Theorem 1. There aren-element point sets in the plane such that the independence numbees @eh

. . 2
launay graphs with respect to axis-parallel rectangles are at rﬁbén% .
In fact, a randomly and uniformly selected set:gboints in the unit square will meet the requirements

with probability tending tal.
For randomly selected point sets, this result is not far from being bastlge. In Section 2, we prove

Theorem 2. The independence number of a randomly and uniformly selecedement point set in the unit

square is almost surel§ (%).

For arbitrary point sets, Ajwani, Elbassioni, Govindarajan, and Ray G&H proved that the inde-
pendence number of the Delaunay graph of any set pbints in the plane with respect to axis-parallel
rectangles is at least (n'7). This implies that any set of points in the plane admits a conflict-free
coloring usingO (n-3%3), with respect to the family of all axis-parallel rectangles. For weakeitsesion-
sult [PaT03],[MaPO06], [EIMO6]. It follows immediately from Theorem 1 thiaere existn-element point
sets in the plane such that the chromatic number of their Delaunay graphsesfitact to rectangles is

log? logn
Q logn

Matousek and Bvétivy raised another closely related problem. Given a finite partially ordered se
(X, <), we say thap € X is animmediate predecessof ¢ € X if p < g and there is ne € X with
p < r < q. TheHasse diagran (X, <) of (X, <) is an undirected graph on the vertex 3&tin which
two vertices are connected if and only if one is an immediate predecesserathér. The (Dushnik-Miller)
dimensiorof a partial ordering< is the smallest number of linear (that is, total) orderings whose intersection
is <. Matousek and Fivétivy [MaP06] asked whether the Hasse diagram of every two-dimensiartzlfy
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ordered set of, elements contains an independent set whose size is lin@afTihe next theorem provides
a negative answer to this question.

Theorem 3. There are two-dimensional partially ordered sets witklements such that the independence
numbers of their Hasse diagrams are at m@sénloggﬂ).

logn

Given a finite point sef in the plane and a fixefr, y) coordinate system, we can define a partial
ordering onP by lettingp < ¢ if the x-coordinate ofp does not exceed the-coordinate ofy and they-
coordinate op does not exceed thecoordinate of;. This ordering is called thdomination ordeof P with
respect to the coordinate system. Reversing the direction afthés (that is, replacing by —z), we obtain
another domination order d?. Denoting the Hasse diagrams of these two domination ordefg(183) and
H'(P), we have that their unio#/ (P) U H'(P) is equal toD(P), the Delaunay graph with respect to
axis-parallel rectangles. Therefore, the independence numhE Bj satisfiesa(H (P)) > a(D(P)).
Theorem 3 can be established by a slight modification of the proof of €hedr the details are left to the
reader. The argument also gives thatifs the intersection of two randomly and uniformly selected linear

orderings of am-element sef\, thena(H (X, <)) = O (n1°g2 log”), with probability tending to 1.

logn
K¥iz and N&efil [KrN91] gave an explicit construction proving that the chromatic nuraloéthe Hasse
diagrams of planar point sets are not bounded. A little calculation basecewrcgmstruction shows that
there exist-element point set® such that the chromatic numbers of their Hasse diagrams grow as fast as
log™* n, the iterated logarithm af. Theorem 3 implies a better bound.

Corollary 4. There are two-dimensional partially ordered sets witfelements such that the chromatic

numbers of their Hasse diagrams are at Ieﬁs@ logn )
log“ logn

Note that the construction offiz and N&efil contains linear sized independent sets.

In geometric discrepancy theory [BeCh87], [Ch00], [Ma99], thene @enty of results that indicate
some unavoidable irregularities in geometric configurations. In Section geweralize Theorem 1. As a
corollary of our results, we obtain a solution to Problem 5, Chapter 2.1 MEB5].

Theorem 5. For any positive integerg andd, there is a finite point set in the plane with the property that
no matter how we color its elements witleolors, there always exists an axis-parallel rectangle containing
at leastd points, all of which have the same color.

Pach and Tardos [PaT08] proved the “dual” statement: For any positegersc andd, there is ad-
fold covering of the unit squar®, 1]2 with finitely many axis-parallel rectangles such that no matter how we
color them withe colors, there always exists a point{in 1] with the property that all rectangles containing
it are of the same color. (A collection of sets is said to fordxfald coveringof the unit square if every point
of [0, 1] is contained in at leasgtof its members.) It was shown in [Pa86] that no sdebld covering exists
with translatesof a fixed rectangle it > 1 andd is large enough. See also [PaTT07]. The construction in
[PaT08] for d=2-fold cover requiras= ©(logn) colors to avoid monochromatic points, this is optimal by
the result of Smorodinsky [SmO7].

2 The size of Delaunay graphs of random point sets:

The proof of Theorem 2

The aim of this section is to prove Theorem 2. First, we estimate the averageenof edges of a Delaunay
graph of random point sets, and then the standard deviation of the nofrdx#es from its expected value.



Let P = {(z;,y;) : 1 <i < n} be a point set in the unit square, which has no two elements that share
the samer-coordinate ory-coordinate. Clearly, the Delaunay graph P) with respect to axis-parallel
rectangles depends only on the relative position of the poinksamd not on their actual coordinates. That
is, there exists a permutation: {1,2,...,n} — {1,2,...,n} such that for the se?’ = {(i,7(i)) : 1 <
i < n} we haveD(P) ~ D(P'). Moreover, for a random set of points in the square, the correspgnd
permutationr is uniformly random. With a slight abuse of notation, we wilid¢r) for the Delaunay graph
D(P’). In our arguments about Delaunay graphs of randomly selected poinhgbes square, it will be
convenient to consider the grah(w) for arandom permutatiomr. The number of edges @b () will be
denoted by D(x)| andlog denotes the natural logarithm.

Lemma 6. Letw : {1,2,...,n} — {1,2,...,n} be a random permutation. The expected value of the
number of edges of the Delaunay graplgr) satisfies

E[|D(m)|] = 2nlogn — O(n).

Proof. Two pointsp; = (i, 7(7)) andp; = (j,7(j)) with i < j are connected by an edge in P) if and
only if w(z) andx(j) are consecutive elements in the natural ordering of th&'set{x(k)|i < k < j}.
Among all (j_gﬂ) pairs of elements in this set, precisgly- i consist of consecutive elements. Clearly,
after fixingn (k) for k < i ork > j, the pair{= (i), 7(j)} is equally likely to be any one of the pairs fh
Therefore, the probability that andp; are connected is equal to

j—i 2

(o i

Thus, the expected number of edgei(P) is

n—1 Q(H—Z) n 1
l

1 = (2n+2)z —4n =2nlogn — O(n).
=1

Lemma 6 easily implies that

Ela(D(m)] = 2 ().

logn
To complete the proof of Theorem 2, we first show that the number ofseafge(~), for a random permu-
tationr, is concentrated around its expected value.

Lemma 7. Let 7 : {1,2,...,n} — {1,2,...,n} be a random permutation, and let(|D(x)|) =
\/var|D()| denote the standard deviation of the number of edges of the Delaungly Brar). We have

o(|D(m)]) = O(v/nlogn).

Proof. Let p; denote the same as in the proof of Lemma 6, ang;letbe the indicator random variable of
the event thap; andp; form an edge inD(r). Clearly, we haveD ()| = >, ; &i;.
We have to estimate the variance

var | Y & =Y varlégl 42 Y covléy, Gyl 1)
1,J .3 {a.33#{7 .5’}



In the proof of Lemma 6, we have shown thats;;) = 2__ forany; > i. Using the fact thag;; isa 0-1

) ) e
valued function, we obtain that

2
var[&i;] = E[&;](1 — E[&;]) < i —itl
Therefore, we havd_, ; var[¢;;] = O(nlogn), and in (1) it remains to estimate the pairwise covariances of
the random variables;.

Let &; and{y; be two indicator random variables, as above. We distinguish two casesesarhl
subcases.

Case 1:The indices, j,7, 5’ are all distinct.

Subcase l1aThe intervalgs, j] and[i’j] are disjoint. In this case, obviously, the random variagjesnd
& are independent, so that we hawe[¢;;, {j/] = 0.

Subcase 1bOne of the interval$i, j] and[:’;'] contains the other. In this case, we can still argue ghat
and¢; ;» are independent. Indeed, assume without loss of generalityithiatontainsfi’j']. Generate the
permutationr by first fixing its values outside the interv@l, j'], and then, at the second stage, by fixing
the values of the elements jii, j'|. Observe that after the first stage we know wheghgy is an edge of
D(w). Itis decided at the second stage whether;, is an edge, but the probability of this event is exactly
j,_% independently of the outcome at the first stage. Thus, again wechajg;, £,/ = 0.

Subcase 1cThe intervalgji, j| and[i’j’] are intertwined. We may assume without loss of generality that
i < i < j < j. Generater by the following process. First we fix the valuesmobutside of the interval

[, 7']. Next we determine the valuesofor i and;’. In the third step, we temporarily fix for the remaining
elements in the open intervdl j'). Finally, in the fourth step we swap the imagéz ), of arandom element

x € [i,7)\ {7} with 7(¢). Clearly, this way we obtain a random permutation. We need the fourth step for
technical reasons. The probability that after the third step the rectangieaddbyp; andp; is either empty

or contains the poing;; (but no other point) is exactlyf—i. Let us denote this event By. If after the last
stepp;p; is an edge, thefl” holds. Compute the probability, conditioned @ thatp, p; is an edge after

the fourth step. Let,, = minke[ild‘/]\{j} 71'(]{5) andzy; = maXgeli 5/\{;} 71'(]{5) If W(j/) ¢ {:Cm, acM}, then
before the final (fourth) step exactly two elementgi6f;’) \ {j} have the property that swapping their
values withr(¢'), the rectangle induced by andp;, becomes empty or it only contaips. (We think of

p; as invisible.) Ifr(j") € {x,, zn}, there is exactly one such element. Hence, the probabilityptha
becomes an edge after the fourth step is at r}%@_?;t regardless of how is fixed on[s, j] \ {i'}. Therefore,

we have

"o no_ / 2 2 B 2 2
coule, €)= Bl ElgE] < 2ot oo
8

<

(G =) =) min{(j =), G" =)}

Remark. Itis easy to see that jf—i = j'—¢' = 2, and the interval§, j] and[i’, ;] are intertwined, then the
covariance i$/12—4/9 = —1/36. If i = 1,7/ = 2,5 = 3,/ = 5, the covariance i88/120—1/3 = —1/60.

Case 2:The indices, 7,4, 7/ are not all distinct.



Subcase 2ai = i’ < j' < j. We obtain by direct computation that

cov[¢, &'l = E[¢€] — E[CJEE]
4(j —i—1) B 4

=i+ DG =00 =) G—i+ D =i +1)

Subcase 2bi’ < j/ =i < 7. An argument similar to the one applied in Subcase 1c yields thatif >
j/ — i/, thenCOV(g,gl) =0 (W), and |f] —1 S j/ — ?:/, thenCOV(g,gl) =0 (m .

Summarizing: the last term of (1), and therefore the varian¢®6f)| = >, ; &;;, can be estimated by
Z cov[&; j, & j1] = O(nlog? n),
{i.3}#{i".5'}
completing the proof of Lemma 7. O

Proof of Theorem 2.By Lemma 6, the expected number of edges in the Delaunay graph of amrando
permutationr onn elements satisfies
E[[D(m)]] = © (nlogn).
By Chebyshev’s Inequality, as long as
o(|D(m)|) = /var|D(m)| = o(E[| D(m)|])

holds, the number of edges is almost surely within a factor ef ¢ of its expectation, for any > 0.
Lemma 7 shows that this is the case, therefore almost surely we Bgv¢| = O(nlogn).
According to Tuan’s theorem, any graph with vertices,e edges, and average degite- % has an

independent set of size at leggt; = 2:;. In particular, we have

n2
>
a(D(m) 2 55
so that almost surely (D (7)) = Q(n/logn).
To obtain the slightly stronger bound claimed in the theorem we use that theriaglguaph of any
permutation contains no clique of siZe By the result of Shearer [Sh95] such a graphnovertices with

average degre#has an independent set of sﬁe{dﬁ)gﬁ)gd). Using thatd = ©(log n) holds almost surely
for the Delaunay graph of a random permutation, the claimed bound follows. O

3 The independence number of Delaunay graphs of random point sets:
The proof of Theorem 1

We reformulate and prove Theorem 1 in a more precise form.

Theorem 8. Let P be a set of: randomly and uniformly selected points in the squiitd]?. Then there
exists a constant such that

log2 1
Prob, .. (a(mp)) - gg) Y

logn



Proof. The pointsp; € P will be defined in two steps. First we select theoordinates from the interval
[0, 1] uniformly at random. With probability 1, all the coordinates are distinct. Let us relabel the points so
that

0<ri <9 <<z < 1.

In the second step, we select theoordinates op; = (x;,y;) uniformly and independently frorfo, 1].
Note that, after the:;’s have been fixed, the edge set of the Delaunay giapR) depends only on the
relative order of they;’s.
The coordinateg; are generated as follows. Fix an inteder> 2 to be specified later. We write the
numbersy; € [0, 1] in baseL:
yi = (0.dMd® ).

The digitsdgt) of y; are chosen independently and uniformly from the{@et.., L — 1}. Fort > 1, denote
by yz@ the truncated.-ary fraction ofy;, consisting ot — 1 digits after0:

JO — (04D ..d0D),.

The digits ofy; will be chosen one by one. Attaget, we determinel!”’ (and, hencey"*"), for all

1. Note thatbeforestaget, the truncated fractiongsgt) have already been fixed. As soon as we complete
staget, we know they-coordinates of the points; up to an error of at most—*. If yi(t“) = ](.Hl), then
the relative order of; andy; has not yet been decided. Otherwise, if we hgl%l) < yj(.t“), say, then
y; < y; holds in the final configuration.
Let1 < i < j < n be fixed. Suppose that for somehe following two conditions are satisfied:
1. yz(tJrl) _ ?/j(-tﬂ)a

2.yt o 4 holds for allk satisfyingi < k < j.

)

Then the rectanglgr;, =] x [yf“), y§t+1> + L~") containsp; andp;, but no other element d. Thus, in

this casep; andp; are connected i) (P), and we say that this edgefisrced at stage. Although D(P)
may contain many edges that are not forced at any stage, we are goisg ¢oly forced edges in proving
our upper bound on the independence numbdp@P).

Let us fix a subsef C {1,...,n}, and letQ = Q(I) = {p; : ¢ € I'}. We want to estimate from above
the probability that) is anindependenset inD(P).

Lett > 1, and consider stageof our selection process. Before this stag;fé), has been fixed for every
i. For anyL-ary fractiony of the formy = (0.dMd® ... 4=, define a subset, C {1,...,n} by

Hy:{lgign:yi(t):y}.

Obviously, these sets partitid, ..., n}, and hencd, into at mostZ.!~! nonempty parts. If two indices
i,7 € I are consecutive elements of the same pat I, then we call thenrmeighbors That is,: < j are
neighbors if

1. 4" = %" = y holds for somey, and
2. Hyn{kel:i<k<j}=0.



For any two neighbors j € H, (i < j), define
Sij={keHy:i<k<j}

Two neighbors, j € I (i < j) are callecclose neighborg |S; ;| < L.

If there are two close neighboisj € I such that thep;, p;} is an edge oD (P) forced at stage, then
@ is not an independent set In( P) and we say that) fails at stagel. Otherwise() is said tosurvivestage
t, and we indicate this fact by writin@ ~ t.

Leti < jbea pair of close neighbors. Note tHat, p;} is an edge ofD(P) forced in stage if and

only if 4" = d'"), butd” # d" holds for allk € S ;. The probability of this event is

. 1 |Sl,]‘
Prob({p;, p;} is forced at stage) = T <1 - L> .

Taking into account thgts; ;| < L, we obtain

1

Prob({p;,p;} is forced at stage) > i

Notice that, assuming a fixed outcome of previous stages pﬁffé.i,s fixed for all k), the presence of
edges{p;, p; } forced at stage are independent for all neighbors. Thus,

SE

1 m
Prob(Q ~ t|outcome of stages < t) < <1 — 4L> <e irL,

wherem stands for the number of paiisj € I that are close neighbors before stage

Obviously, everyi € I, except the last element in each #&f, has exactlyoneneighborj > i. As the
setssS; ; are pairwise disjoint for different pairs of neighbars< j, there are fewer tha# pairs that are
neighbors but not close neighbors. Thus, we have

I == Lt 1
m > |1 L
If t <logn/logLand|I| > 3n/L,we havem > n/L, and thus

Prob(Q ~ tloutcome of stageé < t) < e~ 1LZ.

As the above bound applies assuming any set of choices made at prstdages, so in particular, it
applies to the conditional probability th@tsurvives stage, given that it has survived all previous stages:

1\™ n
Prob(Q ~ t|Q ~ t' forallt’ < t) < <1 - 4L> < e 1?,

Taking the product of these estimates fortai logn/log L, we obtain

. . n logn
p he firstlog n/ log L <exp (-7 -1
obQsunves e st s 1 stages < v (7 (K57 1)

The last bound is valid for any s& = Q(I) C P, wherel C {1,...,n} satisfie§| > 3n/L. Letting

logn 3n
=|———| and a=|—|,
1001og“ logn L

8



we can conclude that

Prob(a(D(P)) >a) < Y Prob(Q survives all staggs
QCP|Q|=a

< (™). _n logn _q
=\a) P\ 7222 \log L
— 0

)

as required. O

4 Discrepancy in colored random point sets

In this section, we strengthen Theorem 1.

P is calledd-
Q. Let ad(P)

Definition. Given an integerl > 1 and a finite point sef’ in the plane, a subs&)
independenif there is no axis-parallel rectangle such thaiR N P| = dandR N P
denote the size of the largesindependent subset &f.

C
C

According to this definition, a subset éfis 2-independent if and only if it is an independent set in the
Delaunay graptD(P) associated wittP. In particular, we havew(P) = a(D(P)).

Obviously, if a set isd-independent for somé > 1, then it is alsod’-independent for ang’ > d.
Thereforep(P) is increasing ind.

Theorem 5 is a direct corollary of

Theorem 9. A randomly and uniformly selected getof n points in the unit square almost surely satisfies

dnlog?logn
Iogl/(d_l) n

aq(P) =0 (

Proof. We maodify the proof of Theorem 1. Lal > 2 be an integer to be set later. Pick the random
pointsp; = (x;,y;) € P according to the same multi-stage model as in the previous section, and define th
truncated fractiongzm that approximate; in exactly the same way as before.

Fix a subsef C {1,...,n}, and letQ = Q(I) = {p; : i € I}. Just like in the proof of Theorem 1,

analyze a fixed stageof the selection process, by introducing the défs= {k : y,(f) =y}
Instead of using the notion akighborswe need a new definition. For any two elemenyse I (i < j)

such thatyi(t) = y](.t) = y for somey, introduce the sets
Tij={keH,NI:i<k<j} and S;;={keH,\I:i<k<j}.

The numbers andj are calledi-neighborsif |T; ;| = d. Note that ford > 2, d-neighbors are not neigbors
in the sense used in the previous section. The{aajt} of d-neighbors is called a pair afosed-neighbors
if 1.5;,;1 < L.

We say that the pair of closéneighbors{p;, p;} fails at staget if at this stage the-coordinates ol
pointsp;, with k € T; ; receive the same new digif) = 0, but they-coordinate of no point, with ¢ € S; ;
receives this digit. The probability of this event is exactly

1\ /571 1\ % 1
1-d 1-d
b (1_L> =k <1_L> gLt



Obviously, if any pair{p;, p; } fails at stage, then) cannot bel-independent. In this case, we say that
fails at staget. Otherwise() is said to haveurvivedstaget, and we writeQ) ~ .

The failures of certain pairs at a given stage are not independanisev¥owever, they are independent
for any collection of closel-neighbor pairs(7, j) with the property that the corresponding sétg are
pairwise disjoint. To find such a collection consisting of many pairs, seldeaat% — 1 pairs ofd-

neighbors from eacl/, with pairwise disjoint set; ;, and thus a total of at Ieaéé'1 — L' pairs. Since
the corresponding sefs; ; are pairwise disjoint, all but at mosy/ L of them are closé@-neighbors. Thus,
aslong asi| > 3(d — 1)n/L andt < logn/ log L, we obtain collection of

I| t—1 1
> R
mzg g F g
closed-neighbors with the required property.
If any pair of this collection fails at stage then( fails at this stage. As in the proof of Theorem 1, if
|I| > 3(d — 1)n/L andt < logn/log L, we have

Prob(Q ~ t|Q ~ ¢ forall ¢/ < t) < e 1d

and for|I| > 3(d — 1)n/L,

' n logn
Prob Il stages < exp (——— 1)
rob(Q survives all stagep < exp ( A4 <logL >>

Letting

1/(d—1) _
I— log ! n and a— [B(d 1)n—‘ 7
100log” logn L

Prob (a(D(P)) = a) < (Z) exp <—4”Ld GZ:Z - 1)) 0.

we obtain

5 Concluding remarks, open problems

The notion of Delaunay graphs for axis-parallel boxes naturally géimes to higher dimensions. An easy
extension of the proof of Theorem 2 proves that for any fidedhe Delaunay graph of randomly and
uniformly selected points in thé-dimensional unit cube has expected average de@téleg n)?). (To see
this, consider two out of the randomly selected point®, andg, and letB be the minimal axis-parallel
box containing them. For < i < d, let k; denote the number of points in the random collection with the
property that their projection to the subspace spanned by the €iestrdinates falls into the corresponding
projection of B. The verticep andq are connected by an edge of the Delaunay graph if and ohly4# 2.
The probability that the resulting sequence is equal to a giigh can be bounded bg?/(n Hf;ll k?).
Summing this over all sequencés’) with k% = 2 gives the bound((log n)?/n) for the probability that
pq is an edge of the Delaunay graph.) This implies that random Delaunaygjhayle independent sets
of sizen'=°( in higher dimensions, too. All upper bounds on the independence numateagply to
dimensiond also apply to every larger dimension. This can easily be seen by projectifdiraensional
point sets to a coordinate hyperplane. Delaunay graphs can only lges edder this operation.

In general, by repeated application of the &se5zekeres lemma it is easy to show that the independence
number of the Delaunay graph of any sengfoints ind-dimensions, with respect to axis-parallel boxes, is

10



at IeastQ(nl/Qd*l). As far as we know, no significant improvement on this bound is knowngadfih the
truth may well be(n!—°(1)), for any fixedd.

Returning to the plane, it is not hard show that the expected numheétugfies? in a randomly and
uniformly selected seP of n points in the plane, for which there exists an axis-parallel rectangle whose
intersection withP is T', is ©(d?nlogn). By a result of Spencer [Sp72], amyuniform hypergraph with
n vertices andd(nk) edges has an independent set of sie/k'/(¢~1)). Therefore,P contains ad-
independent subset of sig&n/ log'/(“~1) ). This is withinO(log? log n) of our upper bound.

Acknowledgement. Lemma 6 has been proved independently by Sariel Har-Peled (persmnaiunica-
tion). We are indebted to him and to Shakhar Smorodinsky for many intereisogssions on the subject.
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