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Abstract

Given a point setP in the plane, theDelaunay graphwith respect to axis-parallel rectangles is a
graph defined on the vertex setP , whose two pointsp, q ∈ P are connected by an edge if and only if
there is a rectangle parallel to the coordinate axes that containsp andq, but no other elements ofP .
The following question of Even et al. [ELRS03] was motivatedby a frequency assignment problem in
cellular telephone networks. Does there exist a constantc > 0 such that the Delaunay graph of any set
of n points in general position in the plane contains an independent set of size at leastcn? We answer
this question in the negative, by proving that the largest independent set in a randomly and uniformly
selected point set in the unit square isO(n log2 log n/ log n), with probability tending to 1. We also
show that our bound is not far from optimal, as the Delaunay graph of a uniform random set ofn points
almost surely has an independent set of size at leastcn/ log n.

We give two further applications of our methods. 1. We construct 2-dimensionaln-element partially
ordered sets such that the size of the largest independent sets of vertices in their Hasse diagrams is
o(n). This answers a question of Matoušek and P̌rı́větivý [MaP06] and improves a result of Křı́ž and
Něseťril [KrN91]. 2. For any positive integersc andd, we prove the existence of a planar point set
with the property that no matter how we color its elements byc colors, we find an axis-parallel rectangle
containing at leastd points, all of which have the same color. This solves an old problem from [BrMP05].

Keywords:Delauney graphs, Voronoi diagrams, Frequency assignment, Hasse diagram, Graph coloring

1 Delaunay graphs and conflict-free colorings

TheDelaunay graphassociated with a set of pointsP in the plane is a graphD′(P ) whose vertex set isP
and whose edge set consists of those pairs{p, q} ⊂ P for which there exists a closed disk that containsp
andq, but does not contain any other element ofP . The Delaunay graph ofP is a planar graph and its dual
is theDirichlet–Voronoi diagramof P (see, e.g., [BKOS00]). As any other planar graph,D′(P ) contains an
independent set of size at least|P |/4. It was discovered by Even, Lotker, Ron, and Smorodinsky [ELRS03]
that this fact easily implies that any setP of n points in the plane has aconflict-free coloringwith respect to
disks, which uses at mostO(log n) colors, that is, a coloring with the property that any closed diskC with
C ∩P 6= ∅ has an element whose color is not assigned to any other element ofC ∩P . Here, the logarithmic
bound is tight for every point set [PaT03].

The question was motivated by a frequency assignment problem in cellular telephone networks. The
points correspond tobase stationsinterconnected by a fixed backbone network. Eachclient continuously
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scans frequencies in search of a base station within its (circular) range with good reception. Once such a
base station is found, the client establishes a radio link with it, using a frequency not shared by any other
station within its range. Therefore, a conflict-free coloring of the points corresponds to an assignment of
frequencies to the base stations, which enables every client to connect toa base station without interfering
with the others. For many results on conflict-free colorings, consult [AlS06], [ChFK06], [HaS05].

The same scheme can be used to construct conflict-free colorings of pointsets with respect to various
other families of geometric figures. In general, letP be a set of points inRd, and letC be a family of
d-dimensional convex bodies. Define theDelaunay graphDC(P ) of P with respect toC on the vertex set
P by connecting two elementsp, q ∈ P with an edge if and only if there is a member ofC that containsp
andq, but no other element ofP . The existence of large independent sets in such graphs implies thatP has
a conflict-free coloring with respect toC, which uses a small number of colors. That is, a coloring with the
property that any memberC ∈ C with C ∩ P 6= ∅ has an element whose color is not assigned to any other
element ofC ∩ P .

In this paper, we consider this problem in the special case whenC is the family ofaxis-parallel rectangles
in the plane. The Delaunay graphD(P ) of a point setP with respect to axis-parallel rectangles is also called
the rectangular visibility graphof P . Computing all rectangularly visible pairs of ann-element point set,
that is, all edges ofD(P ), is a classical problem, solved inO(n log n + |D(P )|) time by G̈uting, Nurmi,
and Ottman [GuNO85], in a paper presented at theFirst ACM Symposium on Computational Geometryin
1985. See also [GuNO89], [OvW88], [DeH91], [JaT92].

The maximum size of an independent set of vertices in a graphG is called theindependence number
of G, and is usually denoted byα(G) in the literature. Smorodinsky et al. [ELRS03], [HaS05] asked
whether the Delaunay graph of every set ofn points in the plane with respect to axis-parallel rectangles has
independence number at leastcn, for an absolute constantc > 0. In Section 3, we give a negative answer to
this question. More precisely, we establish

Theorem 1. There aren-element point sets in the plane such that the independence numbers of their De-

launay graphs with respect to axis-parallel rectangles are at mostO
(

n log2 log n
log n

)

.

In fact, a randomly and uniformly selected set ofn points in the unit square will meet the requirements
with probability tending to1.

For randomly selected point sets, this result is not far from being best possible. In Section 2, we prove

Theorem 2. The independence number of a randomly and uniformly selectedn-element point set in the unit

square is almost surelyΩ
(

n log log n
log n log log log n

)

.

For arbitrary point sets, Ajwani, Elbassioni, Govindarajan, and Ray [AjEG07] proved that the inde-
pendence number of the Delaunay graph of any set ofn points in the plane with respect to axis-parallel
rectangles is at leastΩ

(

n.617
)

. This implies that any set ofn points in the plane admits a conflict-free
coloring usingO

(

n.383
)

, with respect to the family of all axis-parallel rectangles. For weaker results, con-
sult [PaT03],[MaP06], [ElM06]. It follows immediately from Theorem 1 that there existn-element point
sets in the plane such that the chromatic number of their Delaunay graphs with respect to rectangles is

Ω
(

log2 log n
log n

)

.

Matoǔsek and P̌rı́větivý raised another closely related problem. Given a finite partially ordered set
(X, <), we say thatp ∈ X is an immediate predecessorof q ∈ X if p < q and there is nor ∈ X with
p < r < q. TheHasse diagramH(X, <) of (X, <) is an undirected graph on the vertex setX, in which
two vertices are connected if and only if one is an immediate predecessor of the other. The (Dushnik-Miller)
dimensionof a partial ordering< is the smallest number of linear (that is, total) orderings whose intersection
is <. Matoǔsek and P̌rı́větivý [MaP06] asked whether the Hasse diagram of every two-dimensional partially
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ordered set ofn elements contains an independent set whose size is linear inn. The next theorem provides
a negative answer to this question.

Theorem 3. There are two-dimensional partially ordered sets withn elements such that the independence

numbers of their Hasse diagrams are at mostO
(

n log2 log n
log n

)

.

Given a finite point setP in the plane and a fixed(x, y) coordinate system, we can define a partial
ordering onP by lettingp ≤ q if the x-coordinate ofp does not exceed thex-coordinate ofq and they-
coordinate ofp does not exceed they-coordinate ofq. This ordering is called thedomination orderof P with
respect to the coordinate system. Reversing the direction of thex-axis (that is, replacingx by−x), we obtain
another domination order ofP . Denoting the Hasse diagrams of these two domination orders byH(P ) and
H ′(P ), we have that their unionH(P ) ∪ H ′(P ) is equal toD(P ), the Delaunay graph with respect to
axis-parallel rectangles. Therefore, the independence number ofH(P ) satisfiesα(H(P )) ≥ α(D(P )).
Theorem 3 can be established by a slight modification of the proof of Theorem 1; the details are left to the
reader. The argument also gives that if< is the intersection of two randomly and uniformly selected linear

orderings of ann-element setX, thenα(H(X, <)) = O
(

n log2 log n
log n

)

, with probability tending to 1.

Křı́ž and Něseťril [KrN91] gave an explicit construction proving that the chromatic numbers of the Hasse
diagrams of planar point sets are not bounded. A little calculation based on their construction shows that
there existn-element point setsP such that the chromatic numbers of their Hasse diagrams grow as fast as
log∗ n, the iterated logarithm ofn. Theorem 3 implies a better bound.

Corollary 4. There are two-dimensional partially ordered sets withn elements such that the chromatic

numbers of their Hasse diagrams are at leastΩ
(

log n
log2 log n

)

.

Note that the construction of Ǩrı́ž and Něseťril contains linear sized independent sets.
In geometric discrepancy theory [BeCh87], [Ch00], [Ma99], there are plenty of results that indicate

some unavoidable irregularities in geometric configurations. In Section 4, wegeneralize Theorem 1. As a
corollary of our results, we obtain a solution to Problem 5, Chapter 2.1 in [BrMP05].

Theorem 5. For any positive integersc andd, there is a finite point set in the plane with the property that
no matter how we color its elements withc colors, there always exists an axis-parallel rectangle containing
at leastd points, all of which have the same color.

Pach and Tardos [PaT08] proved the “dual” statement: For any positiveintegersc andd, there is ad-
fold covering of the unit square[0, 1]2 with finitely many axis-parallel rectangles such that no matter how we
color them withc colors, there always exists a point in[0, 1]2 with the property that all rectangles containing
it are of the same color. (A collection of sets is said to form ad-fold coveringof the unit square if every point
of [0, 1]2 is contained in at leastd of its members.) It was shown in [Pa86] that no suchd-fold covering exists
with translatesof a fixed rectangle ifc > 1 andd is large enough. See also [PaTT07]. The construction in
[PaT08] for d=2-fold cover requiresc = Θ(log n) colors to avoid monochromatic points, this is optimal by
the result of Smorodinsky [Sm07].

2 The size of Delaunay graphs of random point sets:
The proof of Theorem 2

The aim of this section is to prove Theorem 2. First, we estimate the average number of edges of a Delaunay
graph of random point sets, and then the standard deviation of the numberof edges from its expected value.
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Let P = {(xi, yi) : 1 ≤ i ≤ n} be a point set in the unit square, which has no two elements that share
the samex-coordinate ory-coordinate. Clearly, the Delaunay graphD(P ) with respect to axis-parallel
rectangles depends only on the relative position of the points inP and not on their actual coordinates. That
is, there exists a permutationπ : {1, 2, . . . , n} → {1, 2, . . . , n} such that for the setP ′ = {(i, π(i)) : 1 ≤
i ≤ n} we haveD(P ) ≈ D(P ′). Moreover, for a random set of points in the square, the corresponding
permutationπ is uniformly random. With a slight abuse of notation, we writeD(π) for the Delaunay graph
D(P ′). In our arguments about Delaunay graphs of randomly selected point setsin the square, it will be
convenient to consider the graphD(π) for a random permutationπ. The number of edges ofD(π) will be
denoted by|D(π)| andlog denotes the natural logarithm.

Lemma 6. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a random permutation. The expected value of the
number of edges of the Delaunay graphD(π) satisfies

E[|D(π)|] = 2n log n − O(n).

Proof. Two pointspi = (i, π(i)) andpj = (j, π(j)) with i < j are connected by an edge inD(P ) if and
only if π(i) andπ(j) are consecutive elements in the natural ordering of the setS = {π(k)|i ≤ k ≤ j}.
Among all

(

j−i+1
2

)

pairs of elements in this set, preciselyj − i consist of consecutive elements. Clearly,
after fixingπ(k) for k < i or k > j, the pair{π(i), π(j)} is equally likely to be any one of the pairs inS.
Therefore, the probability thatpi andpj are connected is equal to

j − i
(

j−i+1
2

) =
2

j − i + 1
.

Thus, the expected number of edges inD(P ) is

n−1
∑

l=1

2(n − l)

l + 1
= (2n + 2)

n
∑

l=1

1

l
− 4n = 2n log n − O(n).

Lemma 6 easily implies that

E[α(D(π))] = Ω

(

n

log n

)

.

To complete the proof of Theorem 2, we first show that the number of edges ofD(π), for a random permu-
tationπ, is concentrated around its expected value.

Lemma 7. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a random permutation, and letσ(|D(π)|) =
√

var|D(π)| denote the standard deviation of the number of edges of the Delaunay graphD(π). We have

σ(|D(π)|) = O(
√

n log n).

Proof. Let pi denote the same as in the proof of Lemma 6, and letξij be the indicator random variable of
the event thatpi andpj form an edge inD(π). Clearly, we have|D(π)| =

∑

i,j ξij .
We have to estimate the variance

var





∑

i,j

ξij



 =
∑

i,j

var[ξij ] + 2
∑

{i,j}6={i′,j′}

cov[ξij , ξi′j′ ]. (1)
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In the proof of Lemma 6, we have shown thatE(ξij) = 2
j−i+1 , for anyj > i. Using the fact thatξij is a 0-1

valued function, we obtain that

var[ξij ] = E[ξij ](1 − E[ξij ]) <
2

j − i + 1
.

Therefore, we have
∑

i,j var[ξij ] = O(n log n), and in (1) it remains to estimate the pairwise covariances of
the random variablesξij .

Let ξij and ξi′j′ be two indicator random variables, as above. We distinguish two cases andseveral
subcases.

Case 1:The indicesi, j, i′, j′ are all distinct.

Subcase 1a:The intervals[i, j] and[i′j′] are disjoint. In this case, obviously, the random variablesξij and
ξi′j′ are independent, so that we havecov[ξij , ξi′j′ ] = 0.

Subcase 1b:One of the intervals[i, j] and[i′j′] contains the other. In this case, we can still argue thatξij

andξi′j′ are independent. Indeed, assume without loss of generality that[i, j] contains[i′j′]. Generate the
permutationπ by first fixing its values outside the interval[i′, j′], and then, at the second stage, by fixing
the values of the elements in[i′, j′]. Observe that after the first stage we know whetherpipj is an edge of
D(π). It is decided at the second stage whetherpi′pj′ is an edge, but the probability of this event is exactly

2
j′−i′+1 , independently of the outcome at the first stage. Thus, again we havecov[ξij , ξi′j′ ] = 0.

Subcase 1c:The intervals[i, j] and [i′j′] are intertwined. We may assume without loss of generality that
i < i′ < j < j′. Generateπ by the following process. First we fix the values ofπ outside of the interval
[i, j′]. Next we determine the values ofπ for i andj′. In the third step, we temporarily fixπ for the remaining
elements in the open interval(i, j′). Finally, in the fourth step we swap the image,π(x), of a random element
x ∈ [i′, j′) \ {j} with π(i′). Clearly, this way we obtain a random permutation. We need the fourth step for
technical reasons. The probability that after the third step the rectangle induced bypi andpj is either empty
or contains the pointpi′ (but no other point) is exactly2

j−i . Let us denote this event byW . If after the last
steppipj is an edge, thenW holds. Compute the probability, conditioned onW , thatpi′pj′ is an edge after
the fourth step. Letxm = mink∈[i′,j′]\{j} π(k) andxM = maxk∈[i′,j′]\{j} π(k). If π(j′) 6∈ {xm, xM}, then
before the final (fourth) step exactly two elements of[i′, j′) \ {j} have the property that swapping theirπ
values withπ(i′), the rectangle induced bypi′ andpj′ becomes empty or it only containspj . (We think of
pj as invisible.) Ifπ(j′) ∈ {xm, xM}, there is exactly one such element. Hence, the probability thatpi′pj′

becomes an edge after the fourth step is at most2
j′−i′ , regardless of howπ is fixed on[i, j] \ {i′}. Therefore,

we have

cov[ξ, ξ′] = E[ξξ′] − E[ξ]E[ξ′] ≤ 2

j − i

2

j′ − i′
− 2

j − i + 1

2

j′ − i′ + 1

<
8

(j − i)(j′ − i′)min{(j − i), (j′ − i′)} .

Remark. It is easy to see that ifj−i = j′−i′ = 2, and the intervals[i, j] and[i′, j′] are intertwined, then the
covariance is5/12−4/9 = −1/36. If i = 1, i′ = 2, j = 3, j′ = 5, the covariance is38/120−1/3 = −1/60.

Case 2:The indicesi, j, i′, j′ are not all distinct.
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Subcase 2a:i = i′ < j′ < j. We obtain by direct computation that

cov[ξ, ξ′] = E[ξξ′] − E[ξ]E[ξ′]

=
4(j − i − 1)

(j − i + 1)(j − i)(j′ − i′)
− 4

(j − i + 1)(j′ − i′ + 1)

= O

(

1

(j − i)(j′ − i′)2

)

.

Subcase 2b:i′ < j′ = i < j. An argument similar to the one applied in Subcase 1c yields that ifj − i ≥
j′ − i′, thencov(ξ, ξ′) = O

(

1
(j−i)(j′−i′)2

)

, and ifj − i ≤ j′ − i′, thencov(ξ, ξ′) = O
(

1
(j′−i′)(j−i)2

)

.

Summarizing: the last term of (1), and therefore the variance of|D(π)| =
∑

i,j ξij , can be estimated by
∑

{i,j}6={i′,j′}

cov[ξi,j , ξi′,j′ ] = O(n log2 n),

completing the proof of Lemma 7.

Proof of Theorem 2.By Lemma 6, the expected number of edges in the Delaunay graph of a random
permutationπ onn elements satisfies

E[|D(π)|] = Θ (n log n) .

By Chebyshev’s Inequality, as long as

σ(|D(π)|) =
√

var|D(π)| = o(E[|D(π)|])

holds, the number of edges is almost surely within a factor of1 + ε of its expectation, for anyε > 0.
Lemma 7 shows that this is the case, therefore almost surely we have|D(π)| = Θ(n log n).

According to Tuŕan’s theorem, any graph withn vertices,e edges, and average degreed = 2e
n has an

independent set of size at leastnd+1 = n2

2e+n . In particular, we have

α(D(π)) ≥ n2

2|D(π)| + 1
,

so that almost surelyα(D(π)) = Ω(n/ log n).
To obtain the slightly stronger bound claimed in the theorem we use that the Delaunay graph of any

permutation contains no clique of size5. By the result of Shearer [Sh95] such a graph onn vertices with

average degreed has an independent set of sizeΩ
(

n log d
d log log d

)

. Using thatd = Θ(log n) holds almost surely

for the Delaunay graph of a random permutation, the claimed bound follows.

3 The independence number of Delaunay graphs of random point sets:
The proof of Theorem 1

We reformulate and prove Theorem 1 in a more precise form.

Theorem 8. Let P be a set ofn randomly and uniformly selected points in the square[0, 1]2. Then there
exists a constantc such that

Probn→∞

(

α(D(P )) < c
n log2 log n

log n

)

→ 1.
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Proof. The pointspi ∈ P will be defined in two steps. First we select thex-coordinates from the interval
[0, 1] uniformly at random. With probability 1, all thex coordinates are distinct. Let us relabel the points so
that

0 ≤ x1 < x2 < · · · < xn ≤ 1.

In the second step, we select they-coordinates ofpi = (xi, yi) uniformly and independently from[0, 1].
Note that, after thexi’s have been fixed, the edge set of the Delaunay graphD(P ) depends only on the
relative order of theyi’s.

The coordinatesyi are generated as follows. Fix an integerL ≥ 2 to be specified later. We write the
numbersyi ∈ [0, 1] in baseL:

yi = (0.d
(1)
i d

(2)
i . . . )L.

The digitsd(t)
i of yi are chosen independently and uniformly from the set{0, . . . , L− 1}. Fort ≥ 1, denote

by y
(t)
i the truncatedL-ary fraction ofyi, consisting oft − 1 digits after0:

y
(t)
i = (0.d

(1)
i . . . d

(t−1)
i )L.

The digits ofyi will be chosen one by one. Atstaget, we determined(t)
i (and, hence,y(t+1)

i ), for all

i. Note thatbeforestaget, the truncated fractionsy(t)
i have already been fixed. As soon as we complete

staget, we know they-coordinates of the pointspi up to an error of at mostL−t. If y
(t+1)
i = y

(t+1)
j , then

the relative order ofyi andyj has not yet been decided. Otherwise, if we havey
(t+1)
i < y

(t+1)
j , say, then

yi < yj holds in the final configuration.
Let 1 ≤ i < j ≤ n be fixed. Suppose that for somet, the following two conditions are satisfied:

1. y
(t+1)
i = y

(t+1)
j ,

2. y
(t+1)
k 6= y

(t+1)
i holds for allk satisfyingi < k < j.

Then the rectangle[xi, xj ] × [y
(t+1)
i , y

(t+1)
i + L−t) containspi andpj , but no other element ofP . Thus, in

this case,pi andpj are connected inD(P ), and we say that this edge isforced at staget. AlthoughD(P )
may contain many edges that are not forced at any stage, we are going to use only forced edges in proving
our upper bound on the independence number ofD(P ).

Let us fix a subsetI ⊂ {1, . . . , n}, and letQ = Q(I) = {pi : i ∈ I}. We want to estimate from above
the probability thatQ is anindependentset inD(P ).

Let t ≥ 1, and consider staget of our selection process. Before this stage,y
(t)
i has been fixed for every

i. For anyL-ary fractiony of the formy = (0.d(1)d(2) · · · d(t−1))L, define a subsetHy ⊆ {1, . . . , n} by

Hy = {1 ≤ i ≤ n : y
(t)
i = y}.

Obviously, these sets partition{1, . . . , n}, and henceI, into at mostLt−1 nonempty parts. If two indices
i, j ∈ I are consecutive elements of the same partHy ∩ I, then we call themneighbors. That is,i < j are
neighbors if

1. y
(t)
i = y

(t)
j = y holds for somey, and

2. Hy ∩ {k ∈ I : i < k < j} = ∅.
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For any two neighborsi, j ∈ Hy (i < j), define

Si,j = {k ∈ Hy : i < k < j}.

Two neighborsi, j ∈ I (i < j) are calledclose neighborsif |Si,j | ≤ L.
If there are two close neighborsi, j ∈ I such that the{pi, pj} is an edge ofD(P ) forced at staget, then

Q is not an independent set inD(P ) and we say thatQ fails at staget. Otherwise,Q is said tosurvivestage
t, and we indicate this fact by writingQ y t.

Let i < j be a pair of close neighbors. Note that{pi, pj} is an edge ofD(P ) forced in staget if and

only if d
(t)
i = d

(t)
j , butd(t)

i 6= d
(t)
k holds for allk ∈ Si,j . The probability of this event is

Prob({pi, pj} is forced at staget) =
1

L

(

1 − 1

L

)|Si,j |

.

Taking into account that|Si,j | ≤ L, we obtain

Prob({pi, pj} is forced at staget) ≥ 1

4L
.

Notice that, assuming a fixed outcome of previous stages (i.e.,p
(t)
k is fixed for allk), the presence of

edges{pi, pj} forced at staget are independent for all neighbors. Thus,

Prob(Q y t|outcome of stagest′ < t) ≤
(

1 − 1

4L

)m

≤ e−
m
4L ,

wherem stands for the number of pairsi, j ∈ I that are close neighbors before staget.
Obviously, everyi ∈ I, except the last element in each setHy, has exactlyoneneighborj > i. As the

setsSi,j are pairwise disjoint for different pairs of neighborsi < j, there are fewer thannL pairs that are
neighbors but not close neighbors. Thus, we have

m > |I| − n

L
− Lt−1.

If t ≤ log n/ log L and|I| ≥ 3n/L, we havem ≥ n/L, and thus

Prob(Q y t|outcome of stagest′ < t) ≤ e−
n

4L2 .

As the above bound applies assuming any set of choices made at previousstages, so in particular, it
applies to the conditional probability thatQ survives staget, given that it has survived all previous stages:

Prob(Q y t|Q y t′ for all t′ < t) ≤
(

1 − 1

4L

)m

≤ e−
n

4L2 .

Taking the product of these estimates for allt ≤ log n/ log L, we obtain

Prob(Q survives the first⌊log n/ log L⌋ stages) ≤ exp

(

− n

4L2

(

log n

log L
− 1

))

.

The last bound is valid for any setQ = Q(I) ⊆ P , whereI ⊂ {1, . . . , n} satisfies|I| ≥ 3n/L. Letting

L =

⌊

log n

100 log2 log n

⌋

and a =

⌈

3n

L

⌉

,
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we can conclude that

Prob (α(D(P )) ≥ a) ≤
∑

Q⊂P,|Q|=a

Prob (Q survives all stages)

≤
(

n

a

)

exp

(

− n

4L2

(

log n

log L
− 1

))

→ 0,

as required.

4 Discrepancy in colored random point sets

In this section, we strengthen Theorem 1.

Definition. Given an integerd > 1 and a finite point setP in the plane, a subsetQ ⊆ P is calledd-
independentif there is no axis-parallel rectangleR such that|R ∩ P | = d andR ∩ P ⊆ Q. Let αd(P )
denote the size of the largestd-independent subset ofP .

According to this definition, a subset ofP is 2-independent if and only if it is an independent set in the
Delaunay graphD(P ) associated withP . In particular, we haveα2(P ) = α(D(P )).

Obviously, if a set isd-independent for somed > 1, then it is alsod′-independent for anyd′ > d.
Therefore,αd(P ) is increasing ind.

Theorem 5 is a direct corollary of

Theorem 9. A randomly and uniformly selected setP of n points in the unit square almost surely satisfies

αd(P ) = O

(

dn log2 log n

log1/(d−1) n

)

.

Proof. We modify the proof of Theorem 1. LetL ≥ 2 be an integer to be set later. Pick the random
pointspi = (xi, yi) ∈ P according to the same multi-stage model as in the previous section, and define the

truncated fractionsy(t)
i that approximateyi in exactly the same way as before.

Fix a subsetI ⊆ {1, . . . , n}, and letQ = Q(I) = {pi : i ∈ I}. Just like in the proof of Theorem 1,

analyze a fixed staget of the selection process, by introducing the setsHy = {k : y
(t)
k = y}.

Instead of using the notion ofneighbors, we need a new definition. For any two elementsi, j ∈ I (i < j)

such thaty(t)
i = y

(t)
j = y for somey, introduce the sets

Ti,j = {k ∈ Hy ∩ I : i ≤ k ≤ j} and Si,j = {k ∈ Hy \ I : i < k < j}.

The numbersi andj are calledd-neighborsif |Ti,j | = d. Note that ford > 2, d-neighbors are not neigbors
in the sense used in the previous section. The pair{i, j} of d-neighbors is called a pair ofclosed-neighbors
if |Si,j | ≤ L.

We say that the pair of closed-neighbors{pi, pj} fails at staget if at this stage they-coordinates ofall

pointspk with k ∈ Ti,j receive the same new digitd
(t)
k = δ, but they-coordinate of no pointpℓ with ℓ ∈ Si,j

receives this digit. The probability of this event is exactly

L1−d

(

1 − 1

L

)|SJ |

≥ L1−d

(

1 − 1

L

)L

≥ 1

4Ld−1
.
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Obviously, if any pair{pi, pj} fails at staget, thenQ cannot bed-independent. In this case, we say thatQ
fails at staget. Otherwise,Q is said to havesurvivedstaget, and we writeQ y t.

The failures of certain pairs at a given stage are not independent events. However, they are independent
for any collection of closed-neighbor pairs(i, j) with the property that the corresponding setsTi,j are

pairwise disjoint. To find such a collection consisting of many pairs, select atleast |Hy∩I|
d−1 − 1 pairs ofd-

neighbors from eachHy with pairwise disjoint setsTi,j , and thus a total of at least|I|d−1 − Lt−1 pairs. Since
the corresponding setsSi,j are pairwise disjoint, all but at mostn/L of them are closed-neighbors. Thus,
as long as|I| ≥ 3(d − 1)n/L andt ≤ log n/ log L, we obtain collection of

m ≥ |I|
d − 1

− Lt−1 − n

L
≥ n

L

closed-neighbors with the required property.
If any pair of this collection fails at staget, thenQ fails at this stage. As in the proof of Theorem 1, if

|I| ≥ 3(d − 1)n/L andt ≤ log n/ log L, we have

Prob(Q y t|Q y t′ for all t′ < t) ≤ e
− n

4Ld

and for|I| ≥ 3(d − 1)n/L,

Prob(Q survives all stages) ≤ exp

(

− n

4Ld

(

log n

log L
− 1

))

.

Letting

L =

⌊

log1/(d−1) n

100 log2 log n

⌋

and a =

⌈

3(d − 1)n

L

⌉

,

we obtain

Prob (α(D(P )) ≥ a) <

(

n

a

)

exp

(

− n

4Ld

(

log n

log L
− 1

))

→ 0.

5 Concluding remarks, open problems

The notion of Delaunay graphs for axis-parallel boxes naturally generalizes to higher dimensions. An easy
extension of the proof of Theorem 2 proves that for any fixedd, the Delaunay graph of randomly and
uniformly selected points in thed-dimensional unit cube has expected average degreeO((log n)d). (To see
this, consider two out of then randomly selected points,p andq, and letB be the minimal axis-parallel
box containing them. For1 ≤ i ≤ d, let ki denote the number of points in the random collection with the
property that their projection to the subspace spanned by the firsti coordinates falls into the corresponding
projection ofB. The verticesp andq are connected by an edge of the Delaunay graph if and only ifkd = 2.
The probability that the resulting sequence is equal to a given(k∗

i ) can be bounded by2d/(n
∏d−1

i=1 k∗
i ).

Summing this over all sequences(k∗
i ) with k∗

d = 2 gives the boundO((log n)d/n) for the probability that
pq is an edge of the Delaunay graph.) This implies that random Delaunay graphs have independent sets
of sizen1−o(1) in higher dimensions, too. All upper bounds on the independence number that apply to
dimensiond also apply to every larger dimension. This can easily be seen by projecting ad-dimensional
point sets to a coordinate hyperplane. Delaunay graphs can only lose edges under this operation.

In general, by repeated application of the Erdős-Szekeres lemma it is easy to show that the independence
number of the Delaunay graph of any set ofn points ind-dimensions, with respect to axis-parallel boxes, is

10



at leastΩ(n1/2d−1

). As far as we know, no significant improvement on this bound is known, although the
truth may well beΩ(n1−o(1)), for any fixedd.

Returning to the plane, it is not hard show that the expected number ofd-tuplesT in a randomly and
uniformly selected setP of n points in the plane, for which there exists an axis-parallel rectangle whose
intersection withP is T , is Θ(d2n log n). By a result of Spencer [Sp72], anyd-uniform hypergraph with
n vertices andΘ(nk) edges has an independent set of sizeΩ(n/k1/(d−1)). Therefore,P contains ad-
independent subset of sizeΩ(n/ log1/(d−1) n). This is withinO(log2 log n) of our upper bound.

Acknowledgement. Lemma 6 has been proved independently by Sariel Har-Peled (personalcommunica-
tion). We are indebted to him and to Shakhar Smorodinsky for many interestingdiscussions on the subject.
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