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Abstract

A graph drawn in the plane with straight-line edges is called a
geometric graph. If no path of length at most k in a geometric graph
G is self-intersecting we call G k-locally plane. The main result of
this paper is a construction of k-locally plane graphs with a super-
linear number of edges. For the proof we develop randomized thinning
procedures for edge-colored bipartite (abstract) graphs that can be
applied to other problems as well.

1 Introduction

A geometric graph G is a straight-line drawing of a simple, finite (abstract)
graph (V, E), i.e., we identify the vertices x ∈ V with distinct points in
the Euclidean plane, and we identify any edge {x, y} ∈ E with the straight
line segments xy in the plane. We assume that the edge xy does not pass
through any vertex of G besides x and y. We call (V, E) the abstract graph
underlying G. We say that the edges e1, e2 ∈ E cross if the corresponding
line segments cross each other, i.e., if they have a common interior point. We
say that a subgraph of G is self-intersecting if it contains a pair of crossing
edges.

Geometric graphs without crossing edges are plane drawings of planar
graphs: they have at most 3n − 6 edges if n ≥ 3 is the number of vertices.
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Avital and Hanani [3], Erdős, and Perles initiated in the mid 1960s the
systematic study of similar questions for more complicated forbidden config-

urations: Let H be set of forbidden configurations (geometric subgraphs).
What is the maximal number of edges of an n vertex geometric graph not
containing any configuration belonging to H? This problem can be regarded
as a geometric version of the fundamental problem of extremal graph theory:
What is the maximum number of edges that an abstract graph on n vertices
can have without containing subgraphs of a certain kind.

Many questions of the above type on geometric graphs have been ad-
dressed in recent years. In a number of papers linear upper bounds have
been established for the number of edges of a graph, under various forbidden
configurations. They include the configurations of three pairwise crossing
edges [2], four pairwise crossing edges [1], the configurations of an edge
crossed by many edges [9], or even two large stars with all edges of one of
them crossing all edges of the other [13].

For a constant number of 5 or more pairwise crossing edges Pavel Valtr
has the best result [11]: a geometric graph on n vertices avoiding this config-
uration has O(n log n) edges. Adam Marcus and the present author [4] build-
ing on an earlier result of Pinchasi and Radoičić [10] prove an O(n3/2 log n)
bound on the number of edges of an n vertex geometric graph not containing
self-intersecting cycles of length four. No construction is known beating the
Ω(n3/2) edges of an abstract graph having no cycles of length four.

For surveys on geometric graph theory, consult [5], [6] and [8].
In this paper we consider forbidding self-intersecting paths. For k ≥ 3 we

call a geometric graph k-locally plane if it has no self-intersecting subgraph
(whose underlying abstract graph is) isomorphic to a path of length at most
k.

Pach et al. [7] consider 3-locally plane graphs, i.e., the case of geometric
graphs with no self-intersecting paths of length three. They prove matching
lower and upper bounds of Θ(n log n) on the maximal number of edges of a
3-locally plane graph on n vertices.

We extend the the lower bound result of [7] by forbidding all self-intersecting
drawings of longer paths. Technically k-locally plane graphs are defined by
forbidding self intersecting paths of length k or shorter, but forbidding only
self-intersecting paths of length exactly k would lead to almost the same
extremal function. Indeed, one can delete at most nk edges from any graph
on n vertices, such that all the non-zero degrees in the remaining graph are
larger than k. This ensures that all shorter paths can be extended to a path
of length k. It is possible, but not likely, that if one only forbids paths of
length k with the first and last edges crossing significantly higher number of
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edges is achievable.
For even k a geometric graph is k-locally plane if and only if the k/2-

neighborhood of any vertex x is intersection free. Note that this requirement
is much stronger than the similar condition on abstract graphs, namely that
the k/2 neighborhood of any point is planar. One can construct graphs

with girth larger than k and Ω(n
k

k−1 ) edges. In such a graph the k/2-
neighborhood of any vertex is a tree, still by [7] the graph does not even
have 3-locally plane drawing.

Extending the lower bound result in [7] we prove in Theorem 3 that for
arbitrary fixed k ≥ 3 there exist k-locally plane graphs on n vertices with
Ω(n log(⌊k/2⌋) n) edges. Here log(t) denotes t times iterated logarithm and
the hidden constant in Ω depends on k. Given two arbitrarily small disks in
the plane we can even ensure that all edges of the constructed graph connect
a vertex from one disk with another vertex from the second. This ensures
that all the edges of the constructed geometric graph are arbitrarily close
to each other in length and direction. In the view of the author this makes
the existence of a high average degree (or for that matter high minimum
degree) 100-locally plane graphs even more surprising.

As a simple corollary we can characterize the abstract graphs H such
that any geometric graph having no self-intersecting subgraph isomorphic
to H has a linear number of edges. These graphs H are the forests with at
least two nontrivial components. To see the linear bound for the number of
edges of a geometric graph avoiding a self-intersecting copy of such a forest
H first delete a linear number of edges from an arbitrary geometric graph G
until all non-zero degrees of the remaining geometric graph G′ are at least
|V (H)|. If G′ is crossing free the linear bound of the number of edges follows.
If you find a pair of crossing edges in G′ they can be extended to a subgraph
of G′ isomorphic to H. On the other hand, if H contains a cycle, then even
an abstract graph avoiding it can have a super-linear number of edges. If
H is a tree of diameter k, then a k-locally plane geometric graph has no
self-intersecting copy of H. Notice that the extremal number of edges in
this case (assuming k > 2) is O(n log n) by [7], thus much smaller than the
Ω(nα) edges (α > 1) for forbidden cycles.

The main tool used in the proof of the above result is a randomized
thinning procedure that takes a d edge colored bipartite graph of average
degree Θ(d) and returns a subgraph on the same vertex set with average
degree Θ(log d) that does not have a special type of colored path (walk) of
length four. The procedure can be applied recursively to obtain a subgraph
avoiding longer paths of certain types. We believe this thinning procedure
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to be of independent interest. In particular it can be used to obtain optimal
0-1 matrix constructions for certain avoided submatrix problems, see the
exact statement in Section 4 and the details in [12].

In Section 2 we define two thinning procedures for edge colored bipartite
graphs and prove their main properties. This is the most technical part of
the paper. While these procedures proved useful in other setting too (and
the author finds the involved combinatorics appealing) this entire section can
be skipped if one reads the definition of k-flat graphs (the two paragraphs
before Lemma 2.9) and is willing to accept Corollary 2.1 at the end of the
section (we also use the simple observation in Lemma 2.10). In fact, in
order to understand the main ideas behind the main result of this paper it
is recommended to skip Section 2 on the first reading and to go straight to
Section 3 where we use Corollary 2.1 to construct locally plane graphs with
many edges. In Section 4 we comment on the optimality of the thinning
procedures and have some concluding remarks.

2 Thinning

In this section we state and prove combinatorial statements about edge
colored abstract graphs, i.e., we do not consider here geometric graphs at
all. The connection to locally plane geometric graphs will be made clear in
Section 3.

A bipartite graph is a triple G = (A, B, E) with disjoint vertex sets A
and B (called sides) and edge set E ⊆ A × B. In particular, all graphs
considered in this paper are simple, i.e., they do not have multiple edges
or loops. The edge connecting the vertices x and y of G is denoted by xy
or (x, y). The latter notation is only used if x ∈ A and y ∈ B. By a d-
edge coloring of a graph we mean a mapping χ : E → {1, 2, . . . d} such that
adjacent edges receive different colors. When we do not specify d we call
such coloring a proper edge coloring but we always assume that the “set of
colors” are linearly ordered. The degree of any vertex in G is at most the
number d of colors, and our results are interesting if the average degree is
close to d. Unless stated otherwise the subgraphs of an edge colored graph
are considered with the inherited edge coloring. Our goal is to obtain a
subgraph of G with as many edges as possible without containing a certain
type of colored path or walk.
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2.1 Heavy paths

A simple example of the above concept is the following. We call a path
P = v0v1v2v3 of length 3 heavy if v0 ∈ B and the colors c1 = χ(v0v1),
c2 = χ(v1v2), c3 = χ(v2v3), satisfy c2 < c1 ≤ c3. The next lemma describes
a thinning procedure that gets rid of heavy paths. Although we do not need
this lemma in our construction, we present it as a simple analogue of our
results for more complicated forbidden walks.

Lemma 2.1. Let G = (A, B, E) be a bipartite graph with a proper edge

coloring χ : E → {1, 2, . . . d}. Then there exists a subgraph G′ = (A, B, E′)
of G that does not contain a heavy path with |E′| ≥ |E|/(3⌈

√
d ⌉).

The constant 3 in the lemma could be replaced by the base of the natural
logarithm. Notice that if G had average degree Θ(d), then the average degree
of G′ is Ω(

√
d).

Proof: Let t = ⌈
√

d ⌉ and select a uniform random value iy ∈ {1, 2, . . . , t}
independently for each vertex y ∈ B. We say that an edge e ∈ E is of class

⌈χ(e)/t⌉. We call an edge e = (x, y) ∈ E eligible if its class is iy. Let the
subgraph G′ = (A, B, E′) consists of those eligible edges e = (x, y) ∈ E for
which there exists no other eligible edge (x, y′) ∈ E of the same class. Note
that the words “class” and “eligible” will be used in a different meaning
when defining the two thinning procedures in the next subsection.

By the construction, all edges incident to a vertex x ∈ A have different
classes and all edges incident to a vertex y ∈ B have the same class. Let e1,
e2 and e3 form a path in G′ starting in B. Then e2 and e3 are of the same
class, while the class of e1 is different. For the colors ci = χ(ei) this rules
out the order c2 < c1 ≤ c3. Thus, G′ does not contain a heavy path. Note
that another order, c3 ≤ c1 < c2 is also impossible.

The number of edges in G′ depends on the random choices we made.
Any edge (x, y) ∈ E is eligible with probability 1/t, and this is independent
for all the edges incident to a vertex x ∈ A. As edges of a fixed color form a
matching, there are at most t edges of any given class incident to x. Thus,
we have

Pr[(x, y) ∈ E′] ≥ (1 − 1/t)t−1

t
>

1

3t
.

The expected number of edges in G′ is

Exp[|E′|] ≥ |E|
3t

.

It is possible to choose the random variables iy so that the size of E′ is at
least as large as its expected value. This proves the lemma.
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2.2 Fast and slow walks

Next we turn to more complicated forbidden subgraphs. For motivation we
mention that self-crossing paths of length 4 in the 3-locally plane graphs of [7]
(considered with their natural edge coloring) are exactly the fast walks (to be
defined below). For technical reasons, it will be more convenient to consider
walks, i.e., to permit that a vertex is visited more than once, but we will not
allow backtracking, i.e., turning back on the same edge immediately after it
was traversed. Thus, for us a walk of length k is a sequence v0, v1, . . . , vk

of vertices in the graph such that vi−1vi is an edge for 1 ≤ i ≤ k and
vi−2 6= vi for 2 ≤ i ≤ k. The χ-coloring (or simply coloring) of this walk is
the sequence (χ(v0v1), χ(v1v2), . . . , χ(vk−1vk)) of the colors of the edges of
the walk. If χ is a proper edge coloring, then any two consecutive elements
of the coloring sequence are different.

We use log to denote the binary logarithm. We introduce the notation
P (a, b) for two non-equal strings a, b ∈ {0, 1}t to denote the first position
i ∈ {1, 2, . . . , t}, where a and b differ. We consider the set {0, 1}t to be
ordered lexicographically, i.e., for a, b ∈ {0, 1}t we have a < b if a has 0 in
position P (a, b) (and thus b has 1 there).

The following trivial observation is used often in this paper. We state it
here without a proof.

Lemma 2.2. Let t ≥ 1 and let a, b and c be distinct binary strings of length

t with P (a, b) < P (a, c). We have P (b, c) = P (a, b). Furthermore a > b
implies c > b, and a < b implies c < b.

A walk of length 4 with coloring (c1, c2, c3, c4) is called a fast walk if
c2 < c3 < c4 ≤ c1. Note that a fast walk may start in either class A or
B. We call a walk of length 4 a slow walk if it starts in the class B and its
coloring (c1, c2, c3, c4) satisfies c2 < c3 < c4 and c2 < c1 ≤ c4. Note that
either the color c1 or c3 can be larger in a slow walk, or they can be equal.

The two thinning procedures below find a random subgraph of an edge-
colored bipartite graph. One is designed to avoid slow walks, the other is
designed to avoid fast walks.

Lexicographic thinning Let G = (A, B, E) be a bipartite graph and let
χ : E → {1, . . . , d} be a proper edge coloring with d ≥ 2. Lexicographic

thinning is a randomized procedure that produces a subset E′ ⊆ E of the
edges and the corresponding subgraph G′ = (A, B, E′) of G as follows:

Let t =
⌈

log d
2

⌉

+1. Let H be the set of triplets (a, i, z), where a ∈ {0, 1}t,

i ∈ {2, 3, . . . , t}, z ∈ {1, 2, 3, . . . 2i}, and a has 0 in position i. Straightfor-
ward calculation gives that |H| = 22t − 2t+1 ≥ 2d.
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We order H lexicographically, i.e., (a, i, z) < (b, j, s) if a < b, or a = b
and i < j, or (a, i) = (b, j) and z < s.

Consider the following random function F : {1, . . . , d} → H. We select
uniformly at random the value F (1) = (a, i, z) ∈ H with the property that
the first bit of a is 0. We make F (2) to be the next element of H larger than
F (1), and in general F (k) is the next element of H larger than F (k − 1) for
2 ≤ k ≤ d. As |H| ≥ 2d and F (1) is chosen from the first half of H, this
defines F . In what follows we simply identify the color k with the element
F (k) ∈ H without any reference to the function F .

We say that (a, i, z) ∈ H and any edge with this color is of class a and
type i, while z will play no role except in counting how many values it can
take.

We choose an independent uniform random value ax ∈ {0, 1}t for each
vertex x ∈ A ∪ B. Let e = (x, y) ∈ E be an edge of class a and type i.
We say that e is eligible if a = ay < ax and P (a, ax) = i. Let the subgraph
G′ = (A, B, E′) contain those edges e ∈ E that are eligible but not adjacent
to another eligible edge e′ of the same type as e.

Reversed thinning Let G = (A, B, E) be a bipartite graph and let χ :
E → {1, . . . , d} be a proper edge coloring with d ≥ 2. Reversed thinning is a
randomized procedure that produces a subset E′ ⊆ E of the edges and the
corresponding subgraph G′ = (A, B, E′) of G.

Reversed thinning is almost identical to the lexicographic thinning, the
only difference is in the ordering of the set H. We define t and H as in the
case of lexicographic thinning. Recall that H is the set of triplets (a, i, z)
where a ∈ {0, 1}t, i ∈ {2, 3, . . . , t}, z ∈ {1, 2, . . . 2i}, and a has 0 in position i.
We still order {0, 1}t lexicographically, but now we reverse the lexicographic
order of H in the middle term i. That is, we have (a, i, z) < (b, j, s) if a < b,
or a = b and i > j or (a, i) = (b, j) and z < s.

We define the function F : {1, . . . , d} → H, the types and classes of
colors and edges, eligible edges and the subset E′ of edges the same way as
for the lexicographic thinning, but using this modified ordering of H.

Note that we associated a type in {2, . . . , t} and a class in {0, 1}t to each
edge in either procedure and they satisfy that

• an edge with a smaller class has smaller color;

• among edges of equal class an edge with smaller type has smaller color
in the case of lexicographic thinning and it has larger color in the case
of reversed thinning;
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• among the edges incident to a vertex at most 2i have the same class a
and the same type i.

Proving most of the properties of the thinning procedures this is all we need
to know about how classes and types are associated to the edges and we
could use a deterministic scheme for F . But for Lemma 2.6 we need that
all types are well represented and the randomization in the identification
function F (as well as the dummy first bit of the class) is introduced to
ensure this on the average. This randomization is not needed if one assumes
all color classes have roughly the same size.

The next lemmas state the basic properties of the thinning procedure.
Lemma 2.3 lists common properties of the two procedures, while Lemmas 2.4
and 2.5 state the result of the thinning satisfies its “design criteria” avoiding
slow or fast walks. Finally Lemma 2.6 shows that enough edges remain in
the constructed subgraphs on average. Note that Lemmas 2.4 and 2.5 are
special cases of the more complex Lemmas 2.7 and 2.8 proved independently.
We state and prove the simple cases separately for clarity, but these proofs
could be skipped.

Lemma 2.3. Let G = (A, B, E) be a bipartite graph with a proper edge

coloring χ : E → {1, . . . , d}. If G′ = (A, B, E′) is the result of either the

lexicographic or the reversed thinning then we have

a) Adjacent edges in G′ have distinct types.

b) If two edges of G′ meet in B, they have the same class.

c) Suppose two distinct edges e and e′ of G′ meet in A. Let their classes

and types be a, a′ and i, i′, respectively. If i < i′ then a < a′ and

P (a, a′) = i.

d) G′ has no heavy path.

Proof: The definition of E′ immediately gives a).
For b) note that all eligible edges incident to y ∈ B have ay for class.
For c) let x ∈ A be the common vertex of the two edges and apply

Lemma 2.2 for ax, a, and a′.
Finally d) follows since if a walk of G′ starts in B then its coloring

(c1, c2, c3) must satisfy that c1 and c2 have different class by c) but c2 and
c3 have the same class by b), so c2 < c1 ≤ c3 is impossible.

Lemma 2.4. Let G = (A, B, E) be a bipartite graph with a proper edge

coloring. Lexicographic thinning produces a subgraph G′ with no slow walk.
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Proof: Suppose v0v1v2v3v4 is a walk in G′ starting at v0 ∈ B and let its
coloring be (c1, c2, c3, c4). Assume c1 > c2 < c3 < c4. We show that c1 > c4,
so this walk is not slow. By Lemma 2.3/a,b, as c2 and c3 are colors of edges
incident to v2 ∈ B, they have the same class, but they have different types:
c2 = (a, i, z), c3 = (a, j, s) with i 6= j. We use lexicographic ordering, so
c2 < c3 implies i < j. Both c1 and c2 are colors of edges incident to v1 ∈ A,
so by Lemma 2.3/c their classes are different. Since c1 > c2 we have b > a
for the class b of c1. Still by Lemma 2.3/c P (a, b) = i. Similarly, c3 and c4

are colors of distinct edges in E′ incident to v3 ∈ A, so they have different
classes. As c3 < c4 we have c > a for the class c of c4. We have P (a, c) = j.
By Lemma 2.2 we have b > c. This proves c1 > c4 as claimed.

Lemma 2.5. Let G = (A, B, E) be a bipartite graph with a proper edge

coloring. Reversed thinning produces a subgraph G′ with no fast walk.

Proof: Suppose v0v1v2v3v4 is a walk in G′ with coloring (c1, c2, c3, c4). As-
sume c1 > c2 < c3 < c4. We show that c1 < c4, so this walk is not fast.
First assume the walk starts at v0 ∈ A. As G′ does not contain a heavy
path, v3v2v1v0 is not heavy, so c1 < c3. This implies c1 < c4 as claimed.

Now assume v0 ∈ B. Just as in the proof of the previous lemma, c2 and
c3 are colors of edges incident to v2 ∈ B, so they have the same class, but
they have different types: c2 = (a, i, z), c3 = (a, j, s) with i 6= j. We use
the reversed ordering, so c2 < c3 implies i > j. Both c1 and c2 are colors of
edges incident to v1 ∈ A, so their classes are different. Since c1 > c2 we have
b > a for the class b of c1 and P (a, b) = i. Similarly, c3 and c4 are colors
of distinct edges in E′ incident to v3 ∈ A, so they have different classes. As
c3 < c4 we have c > a for the class c of c4 and P (a, c) = j. By Lemma 2.2
we have c > b. This proves c1 < c4 as claimed.

Below we estimate the number of edges in E′. Recall that both thinning
procedures are randomized. We can show that the subgraphs they produce
have a large expected number of edges. We did not make any effort to
optimize for the constant in this lemma.

Lemma 2.6. Let G = (A, B, E) be a bipartite graph with a d edge coloring.

Let G′ = (A, B, E′) be the result of either the lexicographic or the reversed

thinning. We have

Exp[|E′|] ≥ t − 1

240d
|E| ≥ log d

480d
|E|.

Proof: We compute the probability for a fixed edge e = (x, y) ∈ E to
end up in E′. For this we break down the random process producing E′
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into three phases. In the first phase we select F . With F the color χ(e) is
identified with an element of H, most importantly, the type of e is fixed. In
the second phase we select ax and ay uniformly at random. These choices
determine if e is eligible. If e is not eligible then e /∈ E′. So in the third
phase we consider F , ax, and ay fixed and assume e is eligible. We select
the random values az for vertices z 6= x, y. This effects if other edges are
eligible and if e ∈ E′. Here is the detailed calculation:

Let e ∈ E have the color χ(e) = k ∈ {1, 2, . . . , d}. The choice of F in the
first phase determines F (k) = (a, i, z) ∈ H. By the construction of F , if we
call a′ the last t − 1 bits of a then (a′, i, z) is uniformly distributed among
all its possible values. In particular, the probability that e becomes a type
i edge is exactly

Pr[e is of type i] =
2t+i−2

22t−1 − 2t
=

2i

2t+1 − 4
.

For phase two we consider the function F identifying colors with elements
of H fixed. Consider an edge e = (x, y) of color (a, i, z) ∈ H. This edge is
eligible if ay = a < ax and P (a, ax) = i. This determines ay and the first i
bits of ax. Recall that by the definition of H the string a has 0 in position
i. Thus, the probability that the edge e of type i is eligible is exactly 2−t−i.

Assume for the third phase that e is eligible. Consider another edge
e′ = (x, y′) ∈ E with color χ(e′) = (a′, i, z′) of type i. If a and a′ do not
agree in the first i positions, then e′ is not eligible. If they agree in the first
i positions, then e′ is eligible if and only if ay′ = a′, so with probability 2−t.
Let k′

e be the number of edges (x, y′) of type i with the first i digits of their
class agreeing with a, but not counting e itself. We have k′

e < 2t.
Consider now an edge e′′ = (x′′, y) ∈ E with color (a′′, i, z′′) such that

e′′ 6= e. As e is eligible, e′′ can only be eligible if a′′ = a. If a′′ = a then e′′

is eligible if and only if ax and ax′′ agree in the first i digits. This happens
with probability 2−i. For the number k′′

e of the edges (x′′, y) 6= e of type i
and class a we have k′′

e < 2i.
In phase three the eligibility of all these edges e′ and e′′ adjacent with e

are independent events.
Still consider the function F fixed. The total probability for an edge e

of type i to be in E′ is

Pr[e ∈ E′|F ] = 2−t−i(1 − 2−t)k′

e(1 − 2−i)k′′

e

≥ 2−t−i(1 − 2−t)2
t−1(1 − 2−i)2

i−1

> 2−t−i/7.5.
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The total probability of e ∈ E′ can be calculated from the distribution
of its type and the above conditional probability depending on its type:

Pr[e ∈ E′] >
t
∑

i=2

2i

2t+1 − 4
· 2−t−i

7.5
>

t − 1

15 · 22t
>

t − 1

240d
.

The expected number of edges in E′ is then

Exp[|E′|] >
t − 1

240d
|E| ≥ log d

480d
|E|.

Theorem 1. Let G = (A, B, E) be a bipartite graph with a proper edge

coloring. There exists a subgraph G′ = (A, B, E′) of G without a slow walk

and with |E′| > log d
480d · |E|. Similarly, there exists a subgraph G′′ = (A, B, E′′)

of G without a fast walk and with |E′′| > log d
480d · |E|.

Proof: By Lemmas 2.4 and 2.5 the results of the lexicographic and reversed
thinnings avoid the slow and fast walks, respectively. There exists an in-
stance of the random choices with the size of E′ being at least its expectation
given in Lemma 2.6. This proves the theorem.

2.3 Longer forbidden walks

Here we generalize the concept of fast and slow walks to longer walks. Con-
sider a bipartite graph G = (A, B, E) with a proper edge coloring. For k ≥ 2
we call a walk of length 2k in G a k-fast walk if its coloring (c1, . . . , c2k) sat-
isfies c1 > c2 > . . . > ck < ck+1 < ck+2 < . . . < c2k and c1 ≥ c2k. For k ≥ 2
we call a walk of length 2k in G a k-slow walk if its coloring (c1, . . . , c2k) sat-
isfies the following: c2j−1 > c2j for 1 ≤ j ≤ k/2; c2j < c2j+1 for 1 ≤ j < k/2;
c2j−1 < c2j for k/2 < j ≤ k; c2j > c2j+1 for k/2 ≤ j < k; and finally
c1 ≥ c2k. If a k-slow walk starts in the vertex set B we call it a (k, B)-slow
walk, otherwise it is a (k, A)-slow walk.

Notice that 2-fast walks are the fast walks and (2, B)-slow walks are the
slow walks with their orientation reversed. For the coloring (c1, . . . , c2k) of
a k-fast walk cj is in between cj−1 and cj+1 for all 1 < j < 2k, j 6= k, while
ck is the smallest color on this list. For the coloring (c1, . . . , c2k) of a k-slow
walk the situation is reversed: the only index 1 < j < 2k with cj being in
between cj−1 and cj+1 is the index j = k.

In order to apply the lexicographic and reversed thinning recursively
we have to change the coloring of the subgraph. Let G = (A, B, E) be a
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bipartite graph with a proper edge coloring given by χ : E → {1, . . . , d}. Let
G′ = (A, B, E′) the result of the lexicographic or the reversed thinning of G.
Recall that the edges in E′ have a type 2 ≤ i ≤ t with t = ⌈(log d)/2⌉ + 1.
The type edge coloring of G′ is the map χ′ : E′ → {1, . . . , t − 1} defined by
χ′(e) = t+1− i for an edge e ∈ E′ of type i. By Lemma 2.3/a χ′ is a proper
edge coloring of G′.

Lemma 2.7. Let G = (A, B, E) be a bipartite graph with proper edge col-

oring given by χ : E → {1, . . . , d}. Let G′ = (A, B, E′) the result of the

lexicographic thinning of G. Let χ′ be the type edge coloring of G′ and let

k ≥ 2. If a subgraph G′′ = (A, B, E′′) of G′ with its edge coloring given by

χ′ has no (k′, A)-slow walk for 2 ≤ k′ < k then G′′ with its edge coloring

given by χ has no (k, B)-slow walk.

Notice that the k = 2 case of this lemma gives a second proof of
Lemma 2.4.

Proof: Let W = v0v1 . . . v2k be a walk in G′′ starting at v0 ∈ B and let
its χ-coloring be (c1, c2, . . . , c2k). Assume that ci > ci+1 or ci < ci+1 for
1 ≤ i < 2k as required in the definition of a (k, B)-slow walk. We need to
show c1 < c2k.

We identify the colors of χ with the triplets (a, i, z) ∈ H as in the
definition of lexicographic thinning. We let cj = (aj , ij , zj). The χ′-coloring
of W is (t + 1 − i1, . . . , t + 1 − i2k). We have ij 6= ij+1 for 1 ≤ j < 2k.

For 1 ≤ j < k the colors c2j and c2j+1 are colors of distinct edges incident
to v2j ∈ B, so by Lemma 2.3/b their class is the same: a2j = a2j+1. We
consider lexicographic thinning, so the order between c2j and c2j+1 is the
same as the order between their types: i2j and i2j+1. For 1 ≤ j < k/2 we
have i2j < i2j+1 but for k/2 ≤ j < k we have i2j > i2j+1.

For 1 ≤ j ≤ k the colors c2j−1 and c2j are colors of edges incident to
v2j−1 ∈ A. By Lemma 2.3/c the classes of these colors do not agree, and
the ordering between the classes, between the types, and between the colors
themselves are the same. Thus, for 1 ≤ j ≤ k/2 we have a2j−1 > a2j and
i2j−1 > i2j . For k/2 < j ≤ k we have a2j−1 < a2j and i2j−1 < i2j . Also by
Lemma 2.3/c for all 1 ≤ j ≤ k we have P (a2j−1, a2j) = min(i2j−1, i2j).

The sequence a1, a2, . . . , ak is monotone decreasing and it changes only in
every other step. The first positions of change between distinct consecutive
elements are i2, i4, . . . , i2⌊k/2⌋. So we have a1 > ak and P (a1, ak) = min(S1)
for the set S1 = {i2, i4, . . . , i2⌊k/2⌋}.

Similarly, ak, ak+1, . . . , a2k is monotone increasing and it changes only
in every other step. The first positions of change between distinct con-
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secutive elements are i2⌊k/2⌋+1, . . . , i2k−3, i2k−1. So we have ak < a2k and
P (ak, a2k) = min(S2) for the set S2 = {i2⌊k/2⌋+1, . . . , i2k−3, i2k−1}.

Let us consider an arbitrary value 1 ≤ j < k/2 and let 2 ≤ k′ = k −
2j + 1 < k. Consider the 2k′ long middle portion W ′ of the walk W : let
W ′ = v2j−1v2j . . . v2k−2j+1. This is a walk of length 2k′ in G′′ starting
at v2j−1 ∈ A. By our assumption on G′′ this is not a (k′, A)-slow walk
if considered with the coloring χ′. But the χ′-coloring of W ′ is (t + 1 −
i2j , t + 1 − i2j+1, . . . , t + 1 − i2k−2j+1) and the consecutive values in this
list compare as required for a (k′, A)-slow walk. Therefore, we must have
t + 1 − i2j < t + 1 − i2k−2j+1.

We have just proved i2j > i2k−2j+1 for 1 ≤ j < k/2. For even k and
j = k/2 the same formula compares the types of two consecutive edges of
W and we have already seen its validity in that case too. For every element
of the set S1 we have just found a smaller element of the set S2. Therefore,
min(S1) > min(S2). Using that a2k > ak and P (a1, ak) = min(S1) >
min(S2) = P (ak, a2k) Lemma 2.2 gives a1 < a2k. This implies c1 < c2k and
finishes the proof of the lemma.

Lemma 2.8. Let G = (A, B, E) be a bipartite graph with proper edge col-

oring given by χ : E → {1, . . . , d}. Let G′ = (A, B, E′) the result of the

reversed thinning of G. Let χ′ be the type edge coloring of G′ and let k ≥ 2.
If a subgraph G′′ = (A, B, E′′) of G′ with its edge coloring given by χ′ has

no (k′, A)-slow walk for 2 ≤ k′ < k then G′′ with its edge coloring given by

χ has no k-fast walk.

Notice that the k = 2 case of this lemma gives a second proof of
Lemma 2.5.

Proof: The proof of this lemma is very similar to that of Lemma 2.7.
Let W = v0v1 . . . v2k be a walk in G′′ and let its χ-coloring be (c1, c2, . . . , c2k).

Assume that c1 > c2 > . . . > ck < ck+1 < ck+2 < . . . < c2k as required in
the definition of a k-fast walk. We need to show c1 < c2k. Instead, we prove
the slightly stronger statement that the class of c1 is smaller than the class
of c2k. We first do that for walks starting in B: assume that v0 ∈ B.

We identify the colors of χ with the triplets (a, i, z) ∈ H as in the
definition of reverse thinning. We let cj = (aj , ij , zj). Note that the χ′-
coloring of W is (t+1−i1, . . . , t+1−i2k). We have ij 6= ij+1 for 1 ≤ j < 2k.

For 1 ≤ j < k the colors c2j and c2j+1 are colors of distinct edges incident
to v2j ∈ B, so by Lemma 2.3/b their classes are the same: a2j = a2j+1. Thus
the order between c2j and c2j+1 is determined by the order between i2j and
i2j+1, but as we use the reversed ordering in H the order between c2j and
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c2j+1 is reversed compared to the order between i2j and i2j+1. Specifically,
for 1 ≤ j < k/2 we have i2j < i2j+1 and for k/2 ≤ j < k we have i2j > i2j+1.
For 1 ≤ j ≤ k the colors c2j−1 and c2j are colors of edges incident to
v2j−1 ∈ A. By Lemma 2.3/c the classes of these colors do not agree, and
the ordering between the classes, between the types, and between the colors
themselves are the same. Thus, for 1 ≤ j ≤ k/2 we have a2j−1 > a2j and
i2j−1 > i2j . For k/2 < j ≤ k we have a2j−1 < a2j and i2j−1 < i2j . Also by
Lemma 2.3/c for 1 ≤ j ≤ k we have P (a2j−1, a2j) = min(i2j−1, i2j).

At this point we have the same ordering of the classes and types of
the coloring of W as in the proof of Lemma 2.7. We also have the same
assumption that G′′ with the edge coloring χ′ has no (k′, A)-slow walk for
2 ≤ k′ < k. So we arrive to the same conclusion a1 < a2k with an identical
proof.

We finish the proof of the lemma by considering the alternative case
when W starts in A. Now c1 and c2 are colors of edges sharing a vertex
v1 ∈ B, so by Lemma 2.3/b their classes are equal. Similarly, the classes
of c2k−1 and c2k are equal, so it is enough to prove that the class of c2 is
smaller than the class of c2k−1. For k = 2 this follows directly from Lemma
2.3/c. For k > 2 the walk W ′ = v1v2 . . . v2k−1 is exactly the type of walk we
considered for k0 = k− 1. As it starts in B we have already proved that the
class of its first edge is smaller than the class of its last edge. This finishes
the proof of the case of a walk starting in A and also the proof of Lemma
2.8.

Lemmas 2.7 and 2.8 set the stage to use the thinning procedures re-
cursively to get subgraphs avoiding (k, B)-slow or k-fast walks. In a single
application of either thinning procedure the number d of colors in the orig-
inal coloring is replaced by t − 1 = ⌈log d/2⌉ colors in the type coloring.
Here 4(t − 1) > log(4d), so after k recursive calls we still have more than
log(k)(4d)/4 colors, where log(k) stands for the k times iterated log func-
tions. (Of course, this only makes sense if log(k)(4d) > 2. Otherwise we can
get stuck, as neither thinning procedure is defined in the pathetic case of
d = 1 colors.) Making optimal random choices we may assume that each
thinning procedure yields at least the expected number of edges. Thus, the
ratio of the number of edges and the number of colors decreases by at most
a factor of 240 in each iteration. Clearly, the only interesting case is when
the original average degree was Θ(d) in which case the average degree after
k iterations remains Θ(log(k) d). The constant of proportionality depends
on k.

Theorem 2. Let G = (A, B, E) be a bipartite graph with a proper edge
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d-coloring and let k ≥ 2. There exists a subgraph G′ = (A, B, E′) of G

without a (k′, B)-slow walk for any 2 ≤ k′ ≤ k and with |E′| > log(k−1) d
4·240k−1d

|E|.
Similarly, there exists a subgraph G′′ = (A, B, E′′) of G without a k′-fast

walk for any 2 ≤ k′ ≤ k and with |E′′| > log(k−1) d
4·240k−1d

|E|.

Proof: We apply the thinning procedures recursively. First we use lexi-
cographic and reversed thinning to obtain subgraphs G1 and G2 of G, re-
spectively. We make sure these graphs have at least as many edges as the
expected number given in Lemma 2.6. If k = 2 we are done, G′ = G1 and
G′′ = G2 satisfy the conditions of the theorem. Otherwise we consider G1

and G2 with the type edge coloring. We find recursively their subgraphs G′

and G′′, respectively, avoiding (k′, A)-slow walks for 2 ≤ k′ ≤ k − 1. This
can be done because the sides A and B play symmetric roles. Finally, we
apply Lemmas 2.7 and Lemma 2.8 to see that the subgraphs G′ and G′′,
if considered with the original edge coloring of G, avoid all walks required
in the theorem. The number of edges guaranteed in the subgraphs is cal-
culated in the paragraph preceding the theorem and is at least the stated
bound.

2.4 k-flat graphs

In this subsection we establish that removing a linear number of edges from
a k-fast walk free graph the resulting graph has special structural properties.
We note here that the recursive thinning construction that we used to arrive
at k-fast walk free graphs results in a graph that itself is k-flat as defined
below. We chose however to keep the inductive part of the proof simple
and concentrated only on (k, B)-slow and k-fast walks. We derive the more
complicated properties from these simpler ones. Note that in this subsection
we do not use that our graphs are bipartite.

Let G be a graph and χ a proper edge coloring of G. We define the
shaving of the graph G to be the subgraph obtained from G by deleting the
edge with the largesr color incident to every (non-isolated) vertex. Clearly,
we delete at most n edges, where n is the number of vertices in G. We
define the k-shaving of G to be the subgraph obtained from G by repeating
the shaving operation k times. Clearly, we delete at most kn edges for a
k-shaving.

Let W be a walk of length m in a properly edge colored graph G, and
assume its coloring is (c1, . . . , cm). We define the height function hW from
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{1, . . . , m} to the integers recursively letting hW (1) = 0 and

hW (i + 1) =

{

hW (i) + 1 if ci+1 > ci

hW (i) − 1 if ci+1 < ci

for 1 ≤ i < m. Note hW (i) + i is always odd. This function considers how
the colors of the edges in the walk change, in particular, how many times
the next color is larger and how many times it is smaller than the previous
color.

We call a graph G with proper edge coloring k-flat if the following is true
for every walk W in G. Let m ≥ 2 be the length of W , let (c1, . . . , cm) be
the coloring of W and assume that the height function satisfies hW (i) < 0
for 2 ≤ i ≤ m. If m ≤ 2k + 1 or hW (i) ≥ −k for all i then c1 > cm.

Lemma 2.9. Let G be properly edge colored graph. Let k ≥ 1 and assume

G has no k′-fast walk for 2 ≤ k′ ≤ k. Then the (k − 1)-shaving G′ of G is

k-flat.

Proof: We prove the following slightly stronger statement by induction on
m. Let W = v0 . . . vm be a walk of length m in G with coloring (c1, . . . , cm).
Let 1 ≤ j ≤ m be the largest index such that hW (j) = 1 − j. Assume
the walk vjvj+1 . . . vm is in the (k − 1)-shaving G′ of G. Also assume that
hW (i) < 0 for 2 ≤ i ≤ m. If m ≤ 2k + 1 or hW (i) ≥ −k for all i then we
claim c1 > cm. This statement is stronger than Lemma 2.9 since it allows
for the initial decreasing segment of W be outside G′.

If j = m the statement of the claim is obvious from the definition of the
height function. This covers the m = 2 and m = 3 base cases. Let m ≥ 4
and assume the statement is true for walks of length m − 1 and m − 2.

If j > k + 1 we have hW (j) = 1 − j < −k so we must have m ≤ 2k + 1.
Consider the walk W ′ = v1 . . . vm of length m−1. We have hW ′(i) = 1−i < 0
for 2 ≤ i < j and hW ′(i) ≤ hW ′(j − 1) + (i − (j − 1)) = 3 + i − 2j < 0
for j ≤ i ≤ m − 1. Thus the inductive hypothesis is applicable and we get
c1 > c2 > cm.

Finally consider the j ≤ k + 1 case. As the trivial j = m case was
already dealt with we also assume j < m. Clearly, hW (2) < 0 implies j ≥ 2.
We chose a w0 . . . wj−2 walk in G ending at wj−2 = vj and with coloring
(c′1, . . . , c

′
j−2) satisfying c′1 > c′2 > . . . > c′j−2 > cj+1. This is possible since

the edge vjvj+1 is in the (k − 1)-shaving G′ of G, so we can find the edge
wj−3wj−2 in the (k − 2)-shaving of G, wj−4wj−3 in the (k − 3)-shaving,
and so on. We must have c1 > c′1 as otherwise w0w1 . . . wj−3vjvj−1 . . . v0

is a (j − 1)-fast walk and no such walk exists in G. Now consider the
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walk W ′ = w0w1 . . . wj−3vjvj+1 . . . vm. This is a walk of length m − 2 and
satisfies hW ′(i) = 1 − i for 1 ≤ i ≤ j − 1 and hW ′(i) = hW (i + 2) for
j−1 ≤ i ≤ m−2. All requirements of the inductive hypothesis are satisfied,
so we have c′1 > cm. Thus c1 > c′1 > cm as claimed.

Corollary 2.1. Let G = (A, B, E) be a bipartite graph with a proper edge

d-coloring and let k ≥ 2. There exists a k-flat subgraph G′ = (A, B, E′) of

G with |E′| > log(k−1) d
4·240k−1d

|E| − (k − 1)(|A| + |B|).

Proof: Combine Theorem 2 nwith Lemma 2.9 and the fact that (k − 1)-
shaving keeps all but at at most (k − 1)(|A| + |B|) edges of G.

The final lemma in this section is a simple but useful observation on
k-flat graphs. It can also be stated for longer walks with height function
bounded from below, but for simplicity we restrict attention to short walks.

Lemma 2.10. Let k ≥ 1 and let G be a properly edge colored k-flat graph.

Let W = v0 . . . vm be a walk in G of length m ≤ 2k + 1 with coloring

(c1, . . . , cm). If c1 ≥ ci for all 1 ≤ i ≤ m then hW (i) ≤ 0 for all 1 ≤ i ≤ m.

Proof: We prove the contrapositive statement. Assume hW (i) > 0 for some
1 ≤ i ≤ m and let i0 be the smallest such index. Clearly, i0 ≥ 2, hW (i0) = 1
and for the walk W ′ = vi0vi0−1 . . . v0 we have hW ′(i) = hW (i0−i+1)−1 < 0
for 1 < i ≤ i0. So by the definition of k-flatness we have ci0 > c1.

3 Locally plane graphs

Locally plane graphs were introduced in the paper [7] (though the name
appears first in this paper). That paper gives a simple construction for 3-
locally plane graphs. We recall (a simplified version of) the construction as
it is our starting point.

3.1 Construction of 3-locally plane graphs in [7]

Let d ≥ 1 and consider the orthogonal projection of (the edge graph of)
the d dimensional hypercube into the plane. A suitable projection of the
“middle layer” of the hypercube provides the 3-locally plane graph. Here is
the construction in detail:

Let d ≥ 1 be fixed and set b = ⌊d/2⌋. The bit at position i in x ∈ {0, 1}d

(the ith coordinate) is denoted by xi for 1 ≤ i ≤ d. We let A = {x ∈ {0, 1}d |
∑d

i=1 xi = b} and B = {x ∈ {0, 1}d | ∑d
i=1 xi = b + 1}. The abstract graph
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underlying the geometric graph to be constructed is Gd = (A, B, E) with
(x, y) ∈ E if x ∈ A, y ∈ B and x differs from y in a single position. This
is the middle layer of the d dimensional hypercube. We define the edge
coloring χ : E → {1, . . . , d} that colors an edge e = (x, y) ∈ E by the unique
position χ(e) = i with xi 6= yi. Notice that this is a proper edge coloring.
The number of vertices is n = |A| + |B| =

(d
b

)

+
( d
b+1

)

≤ 2d, the number

of edges is |E| =
(d
b

)

(d − b) > nd/4. The average degree is greater than
d/2 ≥ log n/2.

To make the abstract graph Gd into a geometric graph we project the
hypercube into the plane. We give two possible projections here. The first
is more intuitive and it is closer to the actual construction in [7]. We let
ai = (10i, i · 10i) for 1 ≤ i ≤ d and use ai as the projection of the edge
of the hypercube parallel to the coordinate axis i. The important property
of these vectors is the following: higher indexed vectors have higher slope
and much greater length. We identify the vertex x ∈ A ∪ B with the point
Px =

∑d
i=1 xiai. The edges are represented by the straight line segment

connecting their endpoints.
We give the second construction to obtain a graph where all edges are

very close in length and direction. Let 0 < ǫ < 10−d arbitrary and consider
the vectors bi = (ǫd+1−i, 10iǫ) and identify a point x ∈ A ∪ B with Qx =
∑d

i=1 xibi.
It is easy to verify that we get a geometric graph in both cases (i.e.,

the vertices are mapped to distinct points and no edge passes through a
vertex that is not its endpoint). Note that edges of color i are all translates
of the same vector ai or bi. We do not introduce separate notations for
the two geometric graphs constructed this way as they will only be treated
separately in the proof of Lemma 3.1, where we refer to them as the first
and the second realization of Gd.

3.2 Self-intersecting paths in Gd

In [7] a graph very similar to Gd was shown to be 3-locally plane. Here we
do more, we analyze all self-intersecting paths of Gd as follows.

Lemma 3.1. Let W be a walk in Gd with coloring (c1, . . . , cm) and as-

sume c1 ≥ cm and W and all its non-empty subwalks have a unique edge

of maximal color. The first and last edges of W cross in either geometric

realization if and only if m is even and there is an odd index 1 < j < m
satisfying c1 > cm > cj ≥ ci for all 1 < i < m.

Proof: Let W = v0 . . . vm. Note that the first and the last edges cross if
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and only if v0 and v1 are on different sides of the line ℓ through vm−1 and
vm and similarly vm−1 and vm are on different sides of the line ℓ′ through
v0 and v1. To analyze such separations consider the projection πi to the y
axis parallel to edges of color i.

Let us consider the first realization of Gd with the vectors ai. We have
πi(x, y) = y − ix and the projection of the vector aj is of length |i − j|10j .
Thus higher colored edges map to longer intervals (except color i itself).
Under the projection πc1 the direction of the highest colored edge in the
walks v1 . . . vm−1 (respectively, v1 . . . vm) determines which side vm−1 (re-
spectively vm) lies of the line ℓ′. Indeed this highest color cannot be c1, so
the projections of the other edges will be much shorter and by the unique
maximal color property we see that the walk contains at most 2k−1 edges
having the kth largest color, so these shorter projections cannot add up to
be more than the projection of the largest edge.

We can only have vm−1 and vm lying on different sides of ℓ′ if these edges
of maximal color are distinct, thus we must have cm > ci for all 1 < i < m.
From c1 ≥ cm and the unique maximal property we have c1 > cm. Taking cj

to maximize ci for 1 < i < m (this is unique again) we have c1 > cm > cj ≥ ci

for all 1 < i < m.
It is left to prove that the first and last edges of W cross if and only if

m is even and j is odd.
To prove this claim one has to use that Gd is bipartite with vertex sets A

and B, and every edge of color c is a translate of the vector ac with its head
in B and tail in A. Thus, the vector vi−1vi is either aci

or −aci
depending

on the parity of i. Which sides of ℓ′ vm−1 and vm lie is determined by the
projections of the jth and last edge, so they are on opposite sides if j and
m have different parities. Similarly, the sides of ℓ on which v0 and v1 lies is
detemined by the πcm

projection of the first and jth edges, but as we have
c1 > cm > cj they are on different sides if 1 and j has the same parity. See
Figure 1 for a rough depiction of all four cases. This end the proof of the
claim and the part of the lemma regarding the first realization of Gd.

The proof for the second realization of Gd as a geometric graph (involving
the vectors bi) is only slightly more complicated. We have πi(x, y) = y −
ǫd+1−ix and πi(bj) = ǫd+1−j(1+10jǫ)−10jǫd+2−i−ǫd+1−i. The ǫd+1−i terms
alternate in sign in the projection on the edges and cancel completely for
an even length walk. For odd length walks a single such term remains but
it is dominated by the other terms if the walk has an edge with color above
i. If however no such edge exists, the remaining uncanceled ǫd+1−i term
dominates the other terms in the projection. Thus if the projection of the
unique largest colored edge of a walk has color c > i or if the walk has even
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Figure 1: Rough picture of W in the four cases according to the parity of m
and j. The scale is set to match the edge vj−1vj of color cj , shorter edges
are are appriximated by zero, and only initial segments of the two longer
edges are depicted

length the sign of the πi image of the largest colored edge determines the
sign of the projection of the walk. But in case c < i and the walk has odd
length, then the non-canceling ǫd+1−i term determines the sign.

Let the edge vj−1vj be the one with the unique largest color in the walk
v1 . . . vm−1. A case analysis of the parities of j, m and whether cj > c1 or
cj > cm hold show that the first and last edges of W cross if and only if
cm > cj , j is odd and m is even – as claimed in the lemma.

We call vm . . . v0 the reverse of the walk W = v0 . . . vm.

Lemma 3.2. Let k ≥ 1 and let G′ be a k-flat subgraph of Gd. If the length

of a walk W in G′ does not exceed 2k +1, then W has unique edge of largest

color.

Proof: Let W be a walk of length 3 ≤ m ≤ 2k + 1 in G′ with coloring
(c1, . . . , cm) and assume the largest color is not unique. We may assume
c1 = cm > ci holds for all 1 < i < m, otherwise one can take a suitable
subwalk of W . By Lemma 2.10 we have hW (m) ≤ 0. Consider W ′ the
reverse of the path W . Clearly, hW ′(m) = −hW (m), but also by Lemma 2.10
we have hW ′(m) ≤ 0. So we must have hW (m) = 0 and m must be odd.

The contradiction that proves the statement of the lemma comes from
the simple observation that between two consecutive appearances of a color
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in any walk of Gd there always are an even number of edges, so m must
be even. To see this recall that Gd is bipartite with sides A and B where
A consists of the 0-1 sequences of length d with ⌊d/2⌋ ones, while the 0-1
sequences in B contain one more ones. The A end of an edge of color c has
0 at position c, while the B end of this edge has 1 there. Along edges of
other colors bit c does not change. Thus if a walk traverses an edge of color
c from A to B say, then along the walk bit c remains 1 until the next time
the walk traverses an edge of color c and this has to be from B to A.

We note that Lemma 3.2 immediately implies that the girth of a k-flat
subgraph of Gd is at least 2k+2. This estimate can be improved by observing
that any cycle in Gd has an even number of edges of any color (you need
to flip a bit even times to get beck to the original state). In particular any
cycle has at least two occurrences of the largest color. These edges break
the cycle into two paths sharing two edges. Both path has to be of length
at least 2k + 2, the length of the cycle is at least 4k + 2.

As every properly edge colored graph is 1-flat the k = 1 case of the next
lemma establishes that Gd is 3-locally plane.

Lemma 3.3. For any k ≥ 1, any k-flat subgraph of Gd is (2k + 1)-locally
plane.

Proof: Let G′ be a k-flat subgraph of Gd. We need to show that no walk
(or path) W of length m ≤ 2k + 1 is self-intersecting. It is clearly enough
to show that the first and the last edges of W do not cross and we may
assume that the color of the first edge is not smaller than that of the last
edge (otherwise simply consider the same walk reversed). By Lemma 3.2
W and all its subwalks have a unique edge of maximal color, so Lemma 3.1
applies. It is enough to show that the coloring (c1, . . . , cm) of W does not
satisfy the conditions of Lemma 3.1. Assume the contrary. So m is even,
and there is an odd index j such that c1 > cm > cj ≥ ci for all 1 < i < m.

Consider the walk W1 = vmvm−1 . . . vj−1 of length m−j+1. Its coloring
is (cm, . . . , cj) and cm is its largest color. By Lemma 2.10 hW1(m−j+1) ≤ 0.
In fact, as m−j+1 is even hW1(m−j+1) is odd, so we have hW1(m−j+1) ≤
−1.

Consider the walk W2 = vjvj−1 . . . v1 of length j − 1 and its coloring
(cj , . . . , c2). The largest color in W2 is cj , so we have hW2(j − 1) ≤ 0 by
Lemma 2.10. And again by parity considerations hW2(j − 1) ≤ −1.

It is easy to see that hW (m) = −1−hW2(j − 1)−hW1(m− j +1). So we
have hW (m) ≥ −1+1+1 = 1 contradicting Lemma 2.10. The contradiction
proves Lemma 3.3.
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Theorem 3. For any fixed k > 0 and large enough n there exists a (2k+1)-

locally plane graphs on n vertices having at least ( log(k) n
240k −k)n edges. Given

two arbitrary disks in the plane, one can further assume that all edges of

these graph connect a vertex inside the first disk to one inside the other

disk.

Proof: Simply combine the results of Corollary 2.1 and Lemma 3.3. If n is
not the size of the vertex set of Gd for any d, add isolated vertices to the
largest Gd with fewer than n vertices. Use the second realization of Gd as a
geometric graph with a small enough ǫ > 0 to obtain a geometric graph with
all edges connecting two small disks and apply a homothety and a rotation
to get to the desired disks.

4 Discussion on optimality of thinning

The maximum number of edges of a 3-locally plane graph on n vertices is
Θ(n log n) as proved in [7]. The lower bound is reproduced here by the k = 1
case of Theorem 3, which is therefore tight. The upper bound of [7] extends
to x-monotone topological graphs, i.e., when the edges are represented by
curves with the property that every line parallel to the y axis intersects an
edge at most once. Without this artificial assumption on x-monotonicity
only much weaker upper bounds are known. For higher values of k we
do not have tight results even if the edges are straight line segments as
considered in this paper. While the number of edges in a k-locally plane
graph constructed here deteriorates very rapidly with the increase of k, the
upper bound hardly changes. In fact the only general upper bound better
than O(n log n) is for 5-locally plane graphs: they have O(n log n/ log log n)
edges as shown in [7]. Another result of that paper deals with geometric (or
x-monotone topological) graphs with the additional condition that a vertical
line intersects every edge. It claims that if such graphs are (2k)-locally plane
for k ≥ 2, then they have O(n log1/k n) edges. The first realization of Gd

does not satisfy this condition, but the second one does. Still, the lower and
upper bounds for this restricted problem are far apart: for 4-locally plane
graphs with cutting line the upper bound on the edges is O(n

√
log n) while

the construction gives Ω(n log log n).
Although we cannot establish that the locally plane graphs constructed

are optimal we can prove that the thinning procedure we use is optimal
within a constant factor. It follows that any 4-locally plane subgraph of
Gd has O(n log log n) edges. This optimality result below refers to a single
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step of the thinning procedure. It would be interesting to establish a strong
upper bound on the number of edges of a k-flat graph for k ≥ 3.

Let us mention here that the thinning procedures described in this paper
found application in the extremal theory of 0-1 matrices, see [12], and there
the result is shown to be optimal within a constant factor. Consider an n
by n 0-1 matrix that has no 2 by 3 submatrix of either of the following two
forms:

(

1 1 ∗
1 ∗ 1

)

,

(

1 ∗ 1
∗ 1 1

)

,

where the ∗ can represent any entry. The maximal number of 1 entries in
such a matrix is Θ(n log log n) as proved in [12]. The construction proving
the lower bound is based on lexicographic thinning.

The following lemma shows that the number of edges in the subgraphs
claimed in Lemma 2.1 and Theorem 1 are optimal in a very strong sense:
no properly edge colored graph with significantly more edges than the ones
guaranteed by the above results can avoid heavy paths (slow or fast walks,
respectively).

Lemma 4.1. Let G = (A, B, E) be a bipartite graph with proper edge col-

oring given by χ : E → {1, . . . , d}.

a) If G does not have a heavy path then |E| ≤ 2
√

d|A| |B| ≤ (|A|+ |B|)
√

d.

b) If G does not have a slow walk then |E| ≤ (|A| + |B|)(log d + 2).

c) If G does not have a fast walk then |E| = 2(|A| + |B|)(log d + 2).

Proof: For any vertex z ∈ A ∪ B denote by m(z) = max(χ(e)), where the
maximum is for edges e incident to z. For an edge e = (x, y) ∈ E we define its
weight to be w(e) = m(x)−χ(e), while its B-weight is wB(e) = m(y)−χ(e).
Clearly, both w(e) and wB(e) are integers in [0, d − 1].

To prove part a) of the lemma assume G does not contain a heavy path.
We set a threshold parameter t = ⌊

√

d|A|/|B|⌋ and call an edge e B-light if
wB(e) < t, otherwise e is B-heavy.

All the edges incident to a vertex y ∈ B have different colors, thus they
also have different B-weights, so at most t of them can be B-light. The total
number of B-light edges is at most |B|t ≤

√

d|A| |B|.
Now consider two edges e1 = (x, y1) and e2 = (x, y2) incident to vertex

x ∈ A. Assume χ(e2) ≤ χ(e1). If wB(e2) > 0 we can extend the path
formed by these two edges with the edge e3 incident to y2 having maximum
color χ(e3) = m(y2). Clearly, χ(e3) = χ(e2)+wB(e2) and the resulting path
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is heavy unless χ(e2) > χ(e1) + w(e2). Therefore, the number of B-heavy
edges incident to x is at most d/(t+1). The total number of B-heavy edges
is at most |A|d/(t + 1) ≤

√

d|A| |B|.
For the total number of edges we have |E| ≤ 2

√

d|A| |B| ≤ (|A|+|B|)
√

d.
For parts b) and c) of the lemma consider an edge e = (x, y) ∈ E. If

w(e) = 0 we call the edge e maximal. Clearly, there are at most |A| maximal
edges. If e is not maximal we define n(e) to be the “next larger colored edge
at x”, i.e., n(e) is the edge in E having minimal color χ(n(e)) among edges
incident to x and satisfying χ(n(e)) > χ(e). We define the gap of e to be
g(e) = χ(n(e))−χ(e). Clearly, 0 < g(e) ≤ w(e). We call the edge e heavy if
w(e) > 2g(e), otherwise e is light. Recall, that for maximal edges n(e) and
g(e) are not defined and maximal edges are neither light nor heavy.

Let e1 and e2 be distinct edges in E incident to a vertex x ∈ A. If
χ(e1) < χ(e2) then w(e1) ≥ w(e2) + g(e1). If e1 is light, w(e1) ≥ 2w(e2)
follows, therefore at most ⌈log d⌉ light edges are incident to x ∈ A. Thus
the total number of light edges in E is at most ⌈log d⌉|A|.

For part b) of the lemma assume G does not contain a slow walk.
Let e2 = (x2, y) and e3 = (x3, y) be distinct non-maximal edges in E

and assume χ(e2) < χ(e3). Let e1 = n(e2) and let e4 be the maximal edge
incident to x3 in G. We have χ(e1) = χ(e2)+g(e2) and χ(e4) = χ(e3)+w(e3).
The edges e1, e2, e3, and e4 cannot form a slow walk. As χ(e1) > χ(e2) <
χ(e3) < χ(e4) we must have χ(e4) < χ(e1). This implies g(e2) > w(e3),
and if e2 is heavy w(e2) > 2w(e3). Therefore, at most ⌈log d⌉ heavy edges
can be incident to y ∈ B. The total number of heavy edges in G is at most
(⌈log d⌉|B|.

For the total number of edges we add the bound obtained for light, heavy,
and maximal edges and get |E| ≤ (|A| + |B|)⌈log d⌉ + |A|.

Finally for part c) of the lemma we assume G does not contain a fast
walk. Let E1 consist of the edges (x, y) ∈ E for which m(x) ≥ m(y). Assume
without loss of generality that |E1| ≥ |E|/2. If this is not the case consider
the same graph with its sides switched. We use here that the definition of a
fast walk and the claimed bound on the number of edges are both symmetric
in the color classes.

As in the previous case consider two non-maximal edges e2 = (x2, y) and
e3 = (x3, y) in E1 with χ(e2) < χ(e3). Let e1 be the maximal edge incident
to x2 and let e4 = n(e3). As χ(e2) < χ(e3) < χ(e4) but G does not contain
a fast walk we must have χ(e1) < χ(e4). As e2 ∈ E1 we must also have
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χ(e1) = m(x2) ≥ m(y) ≥ χ(e3). If e3 is heavy we also have

χ(e3) + w(e3) − m(y) > χ(e3) + 2g(e3) − m(y)
≥ 2(χ(e3) + g(e3) − m(y))
= 2(χ(e4) − m(y))
> 2(χ(e1) − m(y))
= 2(χ(e2) + w(e2) − m(y)).

For all the heavy edges e ∈ E1 incident to y ∈ B the values χ(e)+w(e)−m(y)
increase strictly more than by a factor of 2. As these values are integers from
[0, d − 1], there are at most ⌈log d⌉ heavy edges in E1 incident to y. The
total number of heavy edges in E1 is at most ⌈log d⌉|B|.

For the total number of edges in E1 we sum our bound on heavy edges in
E1 and the bounds on the light and maximal edges in E. We obtain |E1| ≤
(|A|+ |B|)⌈log d⌉+ |A|. Finally we get |E| ≤ 2(|A|+ |B|)⌈log d⌉+ 2|A|.
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